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Abstract

We study how the interaction between the protective effect of local institutions and the am-
plifying effect of road infrastructure jointly shape deforestation in the Peruvian Amazon.
Using data from 289 districts, we construct a local institutional index via principal com-
ponents analysis and estimate a Spatial Durbin Model to capture both direct and indirect
(spillover) effects on cumulative deforestation between 2001 and 2023. Our results show
that stronger local institutions are associated with a 5.51 p.p. reduction in cumulative defor-
estation, 1 p.p. stemming from a district’s own institutions (direct effect) and 4.51 p.p. from
those of neighboring districts (indirect effect). However, this protective role is entirely offset
by proximity to paved roads, suggesting that road infrastructure significantly undermines
institutional effectiveness. Our findings indicate that effective responses to deforestation
cannot rely on isolated local actions. Because institutional spillovers extend across district
borders, strengthening local governance requires coordination among municipalities. At the
same time, road development—while important for connectivity and growth—can under-
mine institutional capacity to protect forests if not carefully managed. An integrated policy
framework that combines institutional strengthening with strategic infrastructure planning
is therefore essential to ensure that road investments reinforce, rather than weaken, collec-
tive efforts to curb forest loss.
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1 Introduction

Global deforestation has accelerated at an alarming pace in recent decades. Between 2010 and
2020, the world lost an estimated 4.7 million hectares of forest annually (FAO, 2024). In the
Peruvian Amazon, more than 3 million hectares of forest were lost between 2001 and 2023
(SERFOR, 2024). This trend not only threatens biodiversity and local ecosystems but also carries
significant global implications, particularly for climate change and the loss of natural heritage.
Despite governmental efforts to curb deforestation—such as the creation of Protected Natural
Areas—the problem remains persistent (Cotrina Sánchez et al., 2021; Almeyda Zambrano et al.,
2010).

The literature underscores the important role of institutions and public policies in address-
ing deforestation. Studies such as Moreira-Dantas and Söder (2022) highlight the importance
of law enforcement capacity, administrative efficiency, and low levels of corruption in reduc-
ing forest loss. However, other research points to the limitations in weak institutional settings,
which are common in developing countries. This is particularly evident in Peru, where weak
governance in managing environmental conflicts and the proliferation of illegal economies–
such as coca cultivation–further exacerbates deforestation (Grima and Singh, 2019; Paredes and
Manrique, 2021). Moreover, the expansion of road infrastructure in the Amazon has increased
access to remote areas, enabling activities such as mining and small-scale agriculture, both of
which are major drivers of forest loss (Barrantes et al., 2014; Imbernon, 1999).

While previous studies have assessed the individual effects of local institutions (Moreira-
Dantas and Söder, 2022; Fischer et al., 2020; Gibson et al., 2000; Wehkamp et al., 2018) and road
infrastructure (Arima, 2016; Da Silva et al., 2023; Barber et al., 2014; Nelson and Hellerstein,
1997) on deforestation, limited attention has been paid to how these factors interact. Specifi-
cally, it remains unclear whether the effectiveness of local institutions in protecting forests is
influenced–or even undermined–by the presence of road infrastructure.

Our study addresses that gap by quantitatively analyzing how the interaction between lo-
cal institutions and proximity to paved roads affects cumulative deforestation in the Peruvian
Amazon. We use a dataset comprising 289 districts across 14 Peruvian regions affected by
deforestation between 2001 and 2023. To measure local institutional strength, we construct a
local institutional index using principal component analysis (PCA), incorporating indicators
of administrative and operational capacity, fiscal and governance performance, service provi-
sion and enforcement, environmental and territorial governance, and socioeconomic context.
We then apply spatial econometric methods to capture both the direct and indirect (spillover)
effects of institutions, road infrastructure, and their interaction on deforestation.

Our findings indicate that stronger local institutions are significantly associated with lower
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deforestation rates, both within a given district and in neighboring areas. Specifically, a one-
point increase in the institutional quality index is associated with a 5.51 percentage-point reduc-
tion in cumulative deforestation between 2001 and 2023—1.00 p.p. through direct effects within
the district and 4.51 p.p. through spillover effects from neighboring districts. However, this
protective influence is significantly moderated by proximity to paved roads. In districts located
near road infrastructure, the effectiveness of local institutions is substantially weakened and
ultimately offset, as road access amplifies economic activities—such as illegal logging and un-
regulated agricultural expansion—that frequently operate beyond institutional oversight. This
dynamic reveals a critical tension: while stronger institutions can curb forest loss, their ef-
fectiveness is undermined by infrastructure-driven pressures that transcend local governance
capacity.

This study makes three main contributions to the literature. First, it provides empirical evi-
dence on the interaction between two critical drivers of deforestation—local institutions and
road infrastructure—in the Peruvian Amazon. Second, it applies spatial econometric tech-
niques to disentangle direct and spillover effects, thereby capturing spatial externalities that
are often overlooked in deforestation research. Third, and most importantly, it offers policy in-
sights: because institutional spillovers extend beyond district borders, isolated efforts are insuf-
ficient. Effective forest protection requires coordinated action among municipalities, ensuring
that institutional strengthening is accompanied by the regulation of infrastructure-driven eco-
nomic activity. Such coordination is essential to prevent road development from undermining
governance capacity and to design policies that align infrastructure planning with collective
efforts to curb forest loss.

The paper is structured as follows. Section 2 reviews the literature on deforestation, with
particular attention to studies that employ spatial econometric approaches. Section 3 provides
contextual background on deforestation in Peru, focusing on the roles of institutions and road
infrastructure. Section 4 describes the dataset, while Section 5 outlines the methodological
framework, including the construction of the institutional index and the empirical strategy.
Section 6 presents the results, and Section 7 concludes with policy implications and final re-
marks.

2 Related Studies

Deforestation is a complex phenomenon shaped by a wide range of socioeconomic, political,
and environmental factors. The literature has employed various approaches to investigate its
causes and consequences (Hänggli et al., 2023; Bos et al., 2020; Armenteras et al., 2017; Bernhard
et al., 2024). In recent years, spatial econometric methods have gained prominence for their
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ability to capture the spillover effects often associated with deforestation dynamics. In this
section, we review studies that apply spatial analysis to study deforestation, categorizing them
into two main groups: (i) those that examine specific drivers of deforestation, and (ii) those that
assess its impacts on well-being or environmental indicators–particularly health and climate.

2.1 Explaining deforestation

The use of spatial econometric models has deepened our understanding of how land-use deci-
sions in one region can influence outcomes in adjacent areas. A recurring topic in this literature
is the effectiveness of protected areas (PAs) in curbing deforestation. For instance, Amin et al.
(2019) apply a Dynamic Spatial Durbin Model to examine the protective effects of PAs in the
Brazilian Amazon, finding that both fully protected areas and indigenous lands not only reduce
local deforestation but also produce significant spillover effects in neighboring municipalities.
In contrast, drawing on a Spatial Durbin Model for the Bolivian context, Boillat et al. (2022) find
that Indigenous lands provide only direct protective effects, while protected areas deliver both
direct and indirect effects. These findings suggest that land tenure and management regimes
are key factors in determining whether conservation policies can yield benefits beyond their
immediate boundaries.

Road infrastructure is another critical driver of deforestation, as it facilitates access to previ-
ously remote areas and enables economic activities that threaten forest stability. Arima (2016)
use a Spatial Probit Model to simulate the impact of new roads in Loreto, Peru. While they find
a moderate increase in deforestation and carbon emissions, their analysis may underestimate
long-term effects and does not fully account for land-use changes resulting from improved
market access.

Agricultural and livestock activities have also been widely linked to deforestation. Draw-
ing on a Spatial Durbin Model, Kuschnig et al. (2021) find that in Mato Grosso, Brazil, agricul-
tural crops create spatial spillovers that fuel deforestation, whereas the direct impact of cattle
ranching has diminished. This contrasts with earlier studies that identified cattle as the primary
driver of deforestation (Andrade de Sa et al., 2015; Santos et al., 2021; Ramírez et al., 2018). Coca
cultivation represents another significant factor, particularly in Colombia, in areas where drug
trafficking is widespread. Rivadeneyra et al. (2023) apply various spatial econometric meth-
ods and show that coca plantations have a strong positive effect on deforestation, including
spillover effects in neighboring municipalities.

The literature further examines how macroeconomic and political dynamics shape defor-
estation outcomes. Employing Spatial Durbin and Spatial Lag models for the Brazilian Ama-
zon, Faria and Almeida (2016) find that trade liberalization intensifies deforestation, largely
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through the expansion of soybean production and cattle ranching.
Similarly, Ferrer Velasco et al. (2020) employ Spatial Durbin and Spatial Error models to

show that the relevance of deforestation drivers depends critically on geographic scale. Their
cross-regional analysis—covering Africa, the Americas, and Asia—reveals that while popula-
tion pressure and agricultural suitability consistently shape deforestation, their impacts differ
markedly across spatial and regional settings.

2.2 Effects of Deforestation

A growing body of research has examined the consequences of deforestation for climatic and
health-related outcomes. For instance, Silva et al. (2023) analyze the Brazilian Amazon and
show that forest loss is associated with rising temperatures and declining precipitation, under-
scoring the climatic implications of deforestation.

The relationship between deforestation and public health has also emerged as a key area of
inquiry, particularly in relation to vector-borne diseases. Several studies document a positive
correlation between forest loss and malaria incidence. Aguirre et al. (2024), applying a Spatial
Durbin Model to the Peruvian Amazon, estimate that the loss of 1,000 hectares of forest leads to
approximately 69 additional malaria cases. Likewise, Santos et al. (2021) use a Spatial Durbin
Error Model in the Brazilian Amazon and find that deforestation significantly increases malaria
incidence both directly in affected municipalities and indirectly in neighboring ones.

The link between deforestation and other vector-borne diseases, such as dengue, has also
been investigated. Da Silva et al. (2023), employing Geographically Weighted Regression (GWR),
show that deforestation significantly raises dengue incidence rates across the Brazilian Amazon
biome.

Taken together, this literature demonstrates substantial progress in applying spatial econo-
metric models to assess the direct and spillover effects of deforestation. Yet important gaps
remain. Most studies estimate the isolated impact of individual drivers without fully exam-
ining how these factors may interact or moderate one another’s influence on forest loss. Our
study seeks to address these limitations by analyzing not only the direct and indirect effects
of local institutions and road infrastructure on deforestation, but also the extent to which their
interaction shapes deforestation dynamics. In particular, we test whether the presence of road
infrastructure mitigates—or amplifies—the protective effect of institutions against forest loss.

4



3 Background

Deforestation in Peru has increased drastically over the past decade, rising from an annual
average of 105,221 hectares deforested between 2001 and 2010 to an annual 153,934 hectares
between 2011 and 2023 (SERFOR, 2024). To put these figures into perspective and illustrate
the severity of the issue, the 132,216 hectares lost in 2023 alone are equivalent to the 46.9% of
the area of Metropolitan Lima, Peru’s main city. Peru has 73.28 million hectares of forest, dis-
tributed across 15 of the country’s 25 regions, covering 57.3% of the national territory (MINAM,
2016). The fifteen regions that recorded deforestation between 2001 and 2023 are: Amazonas,
Ayacucho, Cajamarca, Cusco, Huancavelica, Huánuco, Junín, La Libertad, Loreto, Madre de
Dios, Pasco, Piura, Puno, San Martín, and Ucayali. Since our study focuses only on the Peru-
vian Amazon, we do not include the Huancavelica region.

Institutions and public policies may play a fundamental role in controlling deforestation.
According to Moreira-Dantas and Söder (2022), a government’s ability to enforce laws, its ad-
ministrative efficiency, and low levels of corruption can all contribute to reducing deforestation.
In line with this, Peru has implemented several initiatives, such as the creation of Protected Nat-
ural Areas (Cotrina Sánchez et al., 2021) and the protection of Indigenous rights (Almeyda Zam-
brano et al., 2010). However, several authors highlight governmental inefficiency in addressing
environmental conflicts (Grima and Singh, 2019) and in preventing the emergence of illegal
economies—such as coca cultivation—that exacerbate deforestation (Paredes and Manrique,
2021). Political interests also play a critical role in deforestation. On this point, Rosa da Con-
ceição et al. (2018) argue that the electoral and political agendas of bureaucrats often hinder the
implementation of effective deforestation policies.

On the other hand, road infrastructure in the Peruvian Amazon has developed in response
to the need to reduce transportation costs and facilitate both natural resource extraction and
access to new markets (Barrantes et al., 2014). Between 1955 and 1965, road expansion in the
Amazon surged by 440 percent, a rate more than six times higher than the 72 percent growth
observed in other regions of Peru. This expansion continued at a moderate pace for three more
decades, before accelerating again in the early 21st century at a rate comparable to that of the
1955–1965 period. However, this has also facilitated the development of deforestation-related
activities, such as mining and small-scale agriculture. The literature emphasizes that the in-
crease in deforestation has occurred mainly in areas near new roads in the Amazon (Imbernon,
1999). Specifically, some previous work has found that paved roads are the most commonly
used type for such activities (Reyes et al., 2024), which is why our analysis will focus on this
type of roads. We further examine the role of unpaved roads in subsection 6.2.
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4 Data

We rely on deforestation and forest area data provided by Geobosques–MINAM for districts
located within the 14 regions previously identified. Given data availability, our analysis is
restricted to the year 2023. We construct the dependent variable—cumulative deforestation
rate—by dividing cumulative deforestation up to 2023 by the forest area recorded in 2001 for
each district. The final sample comprises 289 districts in the Peruvian Amazon, representing
approximately 15 percent of all districts nationwide.

We also include a series of district-level explanatory variables that the literature identifies as
influential in determining deforestation levels1. These include the Euclidean distance (in km)
from the centroid of each district to the nearest nearest road (paved, dirt, gravel, and unpaved;
as well as national, regional, and local roads). To construct these variables, we use data from
the Ministry of Transport and Communications.

In addition, we use geospatial data from the National Service of Natural Protected Ar-
eas (SERNANP) to construct ratios indicating the proportion of each district’s forest that falls
within different protection regimes: Natural Protected Areas (NPAs), Regional Conservation
Areas (RCAs), Forest Concessions (FCs), Private Conservation Areas (PRICAs), and Indige-
nous Communities (ICs)2. To control for climatic variation, we incorporate meteorological vari-
ables from NASA POWER, including the annual average of maximum temperature (°C) and
precipitation (mm) for each district centroid. We also account for topography by including
district-level elevation (in meters above sea level), obtained from the Geographic Institute of
Peru.

On the demographic side, we draw on the 2017 National Census to obtain population den-
sity, and on the 2018 poverty map to capture district-level monetary poverty rates. For agri-
culture, we include the area planted with crops commonly associated with forest loss—such as
coca (Cantillo and Garza, 2022), coffee, cacao, and particularly oil palm—using data from the
2012 National Agricultural Census (CENAGRO). Finally, we incorporate geo-referenced data
on mining deposits provided by the Ministry of Energy and Mining (MINEM) to calculate the
distance between each district centroid and the nearest mining site.

In some instances, relevant data were missing for variables such as harmful crop ratios and
altitude. These missing values represent less than 10 percent of the sample, making interpola-
tion a suitable approach. Given the spatial nature of our analysis, we employ Inverse Distance
Weighting (IDW) spatial interpolation, following Cantillo and Garza (2022). This method es-
timates missing values using information from geographically proximate districts, assigning
1Descriptive statistics are shown in Table C.1.
2The share of protected forest is calculated by intersecting the forest area in 2001 with the spatial boundaries of each protection category, and
then dividing this protected forest area by the total forest area in 2001 at the district level. Indigenous communities are included here as they
may function as de facto protective mechanisms for forests.
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greater weight to closer observations and less to those farther away. By doing so, the procedure
ensures spatially coherent imputations while preserving the integrity of the dataset.

5 Methodology

To assess the role of local institutions in deforestation within the Peruvian Amazon, we divide
our analysis into two parts. First, we build on Galarza Arellano et al. (2024) to construct a local
institutional index using principal component analysis (PCA). Second, we estimate the effect
of this index on the cumulative deforestation rate (2001 - 2023) employing spatial econometric
methods.

5.1 Local Institutional Index

The concept of institutions has been widely discussed in the literature and assigned various
definitions. According to North (1994), institutions form the foundation of a society’s structure
and can be classified as formal rules (e.g., laws, property rights) and informal norms (e.g., cus-
toms, traditions). For the purposes of this study, we adopt a definition that enables quantitative
measurement. Considering that institutions are a cornerstone of governance systems, and con-
sistent with the approach of Kaufmann et al. (2010), we define governance as the state’s capacity
to implement policy, citizens’ respect for institutions, and the process by which governments
are selected, monitored, and replaced.

Several authors have developed indexes to measure institutionality at national and regional
levels using different methodologies and indicators. These indexes are typically categorized as
either single-variable or composite. Single-variable indicators include measures of democracy
(Lægreid and Povitkina, 2018; Wehkamp et al., 2018), urban development policies, property
rights and land tenure (Geist and Lambin, 2002), environmental regulation, NGO participation,
political rights, and regulatory compliance (Wehkamp et al., 2018). The most well-known com-
posite measure is the Worldwide Governance Indicators (WGI), which include six dimensions:
voice and accountability, political stability and absence of violence, government effectiveness,
regulatory quality, rule of law, and control of corruption.

At the regional level, many studies reuse variables initially developed for national indices.
Frequently used variables include control of corruption (Rodríguez-Pose and Ketterer, 2020;
Rodríguez-Pose, 2013; Barra and Ruggiero, 2022; Charron et al., 2014; Morrison, 2014); civic
participation (Charron et al., 2014; Barra and Ruggiero, 2022; Arbolino and Boffardi, 2017); gov-
ernment approval (Morrison, 2014); government effectiveness (Rodríguez-Pose and Ketterer,
2020; Rodríguez-Pose, 2013; Barra and Ruggiero, 2022; Charron et al., 2014); regulatory qual-
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ity (Charron et al., 2014; Rodríguez-Pose and Ketterer, 2020; Barra and Ruggiero, 2022); trans-
parency levels (Rodríguez-Pose and Ketterer, 2020; Rodríguez-Pose, 2013); and property rights
(Rodríguez-Pose and Ketterer, 2020; Rodríguez-Pose, 2013; Arbolino and Boffardi, 2017). In the
Peruvian context, the Regional Competitiveness Index (INCORE) incorporates 40 indicators
grouped into six dimensions: economic environment, infrastructure, health, education, labor,
and institutions (Instituto Peruano de Economía (IPE), 2020).

Given that our analysis is conducted at the district level, the development of a local institu-
tional index is of particular relevance. However, the literature on local institutional measure-
ment remains limited, despite the fact that many institution functions operate at this level. To
our knowledge, only two studies directly address this gap. First, Beer and Lester (2015) con-
struct a local institutional "thickness" and effectiveness index in the Australian context, aggre-
gating thirteen variables–such as local government expenditure capacity, tax revenue, and ed-
ucational attainment–using a linear aggregation method. Second, Arbolino and Boffardi (2017)
examine the effect of institutional quality and efficient investment on economic growth in Italy
using a similarly structured local index. Their indicators include the quality of public infras-
tructure, percentage of waste collected, and number of public employees.

In our study, we construct a district-level local institutional index based on the availability of
administrative data. The index incorporates five dimensions: Administrative and Operational
Capacity, Fiscal and Governance Performance, Service Provision and Enforcement, Environ-
mental and Territorial Governance, and Socioeconomic Context. The first dimension captures
the operational and human resources of municipalities, including the log of heavy machinery
and operational vehicles, the number of municipal employees per 1,000 inhabitants, and the
presence of a formal budget execution unit. The second dimension reflects governance qual-
ity, measured through the budget execution rate and an accountability and communication
index. The third dimension accounts for service provision and enforcement, including waste
coverage and the existence of daily municipal patrols. The fourth dimension evaluates envi-
ronmental and territorial governance, specifically the presence of high-capacity environmental
management (PLANEFA and at least two other instruments). Finally, the fifth dimension pro-
vides socioeconomic context, measured by the economic activity ratio and the average years of
schooling of the district population3.

We use principal component analysis (PCA) to generate a composite index from these vari-
ables. This method addresses potential biases in simple additive indices that assign equal
weight to all variables (Beer and Lester, 2015; Instituto Peruano de Economía (IPE), 2020; Kauf-
mann et al., 2010). PCA reduces the dimensionality of a large set of variables while minimiz-
ing information loss and capturing the maximum variance across the variable set (Jolliffe and

3Descriptive statistics for these variables are presented in Table A.2, covering 289 Peruvian Amazon districts in 2023, based on data availability.
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Cadima, 2016). It transforms the original variables into a new set of orthogonal (uncorrelated)
principal components, each representing a linear combination of the original variables. The
first component explains the largest share of variance, followed by subsequent components
(Abdi and Williams, 2010). The component loadings, or weights, reflect the relative impor-
tance of each variable (Nardo et al., 2005). In the case of our study, the loadings are shown in
Figure A.2.

To determine the number of components to retain, we apply the Kaiser criterion, selecting
those with eigenvalues greater than one (Jolliffe and Cadima, 2016; Kaiser, 1974). As shown
in Figure A.1, three components meet this criterion. However, following standard practice to
construct an unique index, we retain the first component, which explain almost 30% of the total
variance (Figure A.3).

In addition, the suitability of applying PCA is empirically validated through the Kaiser-
Meyer-Olkin (KMO) measure of sampling adequacy and Bartlett’s test of sphericity shown in
Table A.4. The KMO statistic of 0.733 exceeds the conventional threshold of 0.70, indicating
that the variables share sufficient common variance to justify factor analysis. Complementar-
ily, Bartlett’s test strongly rejects the null hypothesis that the correlation matrix is an identity
matrix (χ2(45) = 357.68, p < 0.0001), confirming that the variables are significantly correlated.
Together, these diagnostics provide robust evidence that the data structure is appropriate for
principal component extraction, reinforcing the validity of our PCA-based institutional index.

To visualize the relation between our local institutional index and the deforestation in the
Peruvian Amazon, we present the following Figure 1. It is divided into two maps: the left panel
displays the Cumulative Deforestation Rate (2001–2023), while the right panel shows the Local
Institutions Index for the 289 districts in the Peruvian Amazon.

5.2 Empirical Strategy

We aim to evaluate the relationship between a set of variables potentially correlated with defor-
estation, while accounting for spatial dependence and spatial autocorrelation—two key chal-
lenges in estimating effects influenced by spatial spillovers. In the absence of spatial autocorre-
lation, one could estimate the following linear model using Ordinary Least Squares (OLS):

Yd = β0 + β1Id + β2 log(Dd) + β3 (Id × (log(Dd) ≤ P10)) + XdβX + ϵd, (1)

where Yd represents the cumulative deforestation rate in district d between 2001 and 2023.
log(Dd) is the logarithm of the distance (in kilometers) from the district centroid to the nearest
paved road4. Id denotes the local institutions index. The indicator (log(Dd) ≤ P10) equals 1
4Paved roads are particularly important in facilitating access to remote areas where deforestation-driving activities can expand (Reyes et al.,
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Figure 1 – Map of Cumulative Deforestation Rate (2001–2023) and Local Institutions Index

a) Cumulative Deforestation Rate b) Local Institutional Index

0.16%
2.49%
5.75%
8.56%
14.13%
26.49%
67.32%

-2.74
-1.53
-0.85
-0.28
0.47
1.53
4.93

Note: This figure presents the Cumulative Deforestation Rate (2001–2023) (panel a) and the Local Institutions Index (panel b) for all districts
within the Peruvian Amazon (289). Data are grouped by sextiles. Districts outside the Amazon are omitted.

if the district is in the 10th percentile of shortest distances to a paved road. The interaction
term Id × (log(Dd) ≤ P10) captures how institutional quality moderates the effect of proximity
to roads on deforestation. The control vector Xd includes: logarithm of distance to the near-
est mining site (km); population density (per km2̂); monetary poverty rate in 2018; the ratio of
coca, coffee, cocoa, and oil palm cultivation to total agricultural land; proportion of forest under
some protection status (Natural Protected Area (NPA), Private Conservation Area (ACP), Re-
gional Conservation Area (ACR), Forest Concession (FC), or Native Community (CN)); average
temperature (°C); elevation (m.a.s.l.); and precipitation (mm).

Ordinary Least Squares (OLS) estimation becomes problematic in the presence of spatial
autocorrelation, as it leads to biased estimates and violates the assumption of independently
distributed errors, thereby undermining statistical inference (LeSage and Pace, 2009; Seya et al.,
2020). In the case of deforestation, the level of forest loss in one district may be influenced by

2023).
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outcomes in neighboring districts. Furthermore, explanatory variables may themselves exhibit
spatial dependence, reflecting shared institutional arrangements or historical legacies within
provinces.

To address these issues, spatial econometric methods have been developed and are widely
applied in deforestation studies (Aguirre et al., 2024; Ferrer Velasco et al., 2020; Kuschnig et al.,
2021). Among them, the Spatial Durbin Model (SDM) is often preferred because it accounts
for spatial autocorrelation in both the dependent variable and the covariates (Aguirre et al.,
2024; Faria and Almeida, 2016; Kuschnig et al., 2021). Additionally, even when the true data-
generating process corresponds to a more restrictive spatial model, the SDM tends to yield
less biased and more consistent estimates of direct and indirect effects, thereby improving the
accuracy of inference on spatial spillovers (Amin et al., 2019; Boillat et al., 2022).

The primary distinction between OLS and spatial models like the SDM lies in the inclusion
of the spatial weights matrix W, which defines the spatial structure of inter-district interactions.
Several specifications of this matrix are available, but the Queen contiguity matrix is among the
most commonly employed in the literature (Mejía Tejada et al., 2024; Ramírez et al., 2018; San-
tos et al., 2021; Kuschnig et al., 2021), and we adopt this specification as our preferred choice.
To evaluate the robustness of our results, we additionally consider alternative spatial struc-
tures, including Rook contiguity and k-nearest neighbors matrices, which allows us to assess
the stability of the estimated effects across different weighting schemes.

The SDM is specified as follows:5

Yd = ρWYd + β0 + β1Id + β2 log(Dd) + β3 (Id × (log(Dd) ≤ P10)) + Xdβ + WXdθ+ ϵd (2)

This model includes two types of spatial lags: ρWYd, the spatial lag of the dependent vari-
able, and WXdθ, the spatial lag of the explanatory variables. The error term ϵd is assumed to be
normally distributed. The SDM is the most comprehensive among spatial models. Other vari-
ants include the Spatial Durbin Error Model (SDEM), which includes spatial lags of covariates
and spatially autocorrelated errors; the Spatial Autoregressive Model (SAR), which includes
only spatial lags of the dependent variable; the Spatial Lag of X Model (SLX), which includes
only spatially lagged covariates; and the Spatial Error Model (SEM), which accounts for spatial
autocorrelation in the error terms.

Following model selection guidelines such as INSEE (2018), we first apply Lagrange Mul-
tiplier (LM) tests based on OLS residuals to detect spatial dependence. Results in Table B.1
provide strong evidence of spatial autocorrelation. Both LM Error and LM Lag tests are highly
significant, indicating spatial dependence in the residuals (SEM) as well as in the dependent

5An alternative approach could directly interact Id with log(Dd), but this would not isolate the effect of very close proximity to roads.
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variable (SAR). Among the robust versions, only the Robust LM Lag remains significant, point-
ing more clearly toward a SAR-type specification. Moran’s I statistic (0.3543, p < 0.01) confirms
the presence of strong positive spatial autocorrelation, while the SARMA test is also highly sig-
nificant (χ2 = 129.77, p < 0.01), jointly rejecting the absence of both lag and error dependence.
Together, these findings motivate the use of spatial models, with SAR, SDM, or SDEM appear-
ing as plausible candidates.

To formally discriminate between competing specifications, we use likelihood ratio (LR)
tests reported in Table B.2. The SAR vs. SDM comparison yields a χ2 statistic of 35.39 (p =

0.008), and the SEM vs. SDEM comparison yields a χ2 of 48.88 (p = 0.0001), both rejecting
the null hypothesis that the simpler model suffices. These results favor the more general SDM
and SDEM specifications over their nested SAR and SEM counterparts. By contrast, the SAR
vs. SDEM comparison is not significant (p = 0.10), suggesting no statistical advantage of the
SDEM over SAR in this case.

Model performance is further assessed using log-likelihood and information criteria. The
SDM attains the highest log-likelihood (369.87), but the AIC slightly favors the SAR model
(–662.34 vs. –661.73). Since AIC penalizes model complexity more strongly, this result is not
unusual when comparing general and nested models. In such cases, the LR tests provide
more reliable guidance, and our results clearly support the SDM as the preferred specifica-
tion. Nonetheless, because SAR also performs strongly and is widely used in the deforestation
literature, we report results for both models in the robustness section.

6 Results

6.1 Paved Roads

We estimate Equation 1, Equation 2, and additional spatial models, as presented in Table D.1.
In the OLS specification, the institutional index has a negative and statistically significant co-
efficient at the 1% level, suggesting that stronger local institutional quality is associated with
lower cumulative deforestation. Specifically, a one-unit increase in the index corresponds to a
1.22 percentage point reduction in deforestation. However, as previously discussed, the OLS
model produces biased estimates by failing to account for spatial spillover effects from both de-
pendent and explanatory variables. As we show in the spatial models, although the direction
and significance of the institutional effect remain consistent, its magnitude is underestimated
in the OLS framework.

Given the limitations of OLS, our analysis focuses on spatial econometric models, where
coefficient interpretation explicitly accounts for the spatial structure defined by the weights
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Table 1 – Direct, Indirect and Total Effect of Local Institutional Index on Cumulative Deforestation
Rate (2001–2023) by W, SDM

Cumulative Deforestation Rate (2001-2023)

Direct effect
(

∂Fi
∂xi

)
s.e Indirect effect

(
∂Fi
∂xj

)
s.e Total effect

(
∑j

∂Fj
∂xi

)
s.e

Queen Contiguity
Local Institutional Index -0.0100*** 0.0036 -0.0451*** 0.0160 -0.0551*** 0.0182
log(Min. Distance to Paved Road) -0.0260*** 0.0068 -0.0538** 0.0236 -0.0799*** 0.0250
Local Institutional Index ×(log(D) ≤ P10) 0.0276** 0.0126 0.1263** 0.0581 0.1539** 0.0679
Rook Contiguity
Local Institutional Index -0.0099*** 0.0036 -0.0425*** 0.0151 -0.0524*** 0.0172
log(Min. Distance to Paved Road) -0.0267*** 0.0065 -0.0513** 0.0234 -0.0780*** 0.0246
Local Institutional Index ×(log(D) ≤ P10) 0.0289** 0.0119 0.1294** 0.0550 0.1582** 0.0637
KNN (n=4)
Local Institutional Index -0.0102*** 0.0037 -0.0364*** 0.0130 -0.0466*** 0.0148
log(Min. Distance to Paved Road) -0.0360*** 0.0068 -0.0488*** 0.0173 -0.0848*** 0.0189
Local Institutional Index ×(log(D) ≤ P10) 0.0208* 0.0123 0.0770* 0.0469 0.0979* 0.0555
KNN (n=5)
Local Institutional Index -0.0108*** 0.0037 -0.0373*** 0.0145 -0.0481*** 0.0162
log(Min. Distance to Paved Road) -0.0349*** 0.0067 -0.0552*** 0.0190 -0.0901*** 0.0205
Local Institutional Index ×(log(D) ≤ P10) 0.0224* 0.0125 0.0922* 0.0550 0.1146* 0.0636

Note: This table reports the direct, indirect, and total marginal effects of the Local Institutional Index and its interaction with remoteness (mea-
sured as log(Min. Distance to Paved Road) ≤ P10) on the cumulative deforestation rate between 2001 and 2023. Estimates are obtained from
Spatial Durbin Models (SDM) under alternative spatial weight matrices: queen contiguity, rook contiguity, and k-nearest neighbors (KNN).
Controls include climatic variables (average temperature, precipitation, and elevation), forest protection measures (share of forest under pri-
vate conservation areas, regional conservation areas, natural protected areas, forest concessions, and Andean communities), agricultural land
uses (share of land planted with coffee, cocoa, oil palm, and coca), as well as socioeconomic and extractive factors (population density, poverty
rate, and the logarithm of the minimum distance to the nearest mining site). Significance levels are denoted as follows: * p < 0.10, ** p < 0.05,
*** p < 0.01. Standard errors are based on Monte Carlo simulations (reps=1000).

matrix. Based on the diagnostic tests reported in Table B.1 and Table B.2, we adopt the Spatial
Durbin Model (SDM) as our preferred specification. Table 1 reports the estimated Direct Effect
(DE), Indirect Effect (IE), and Total Effect (TE) of the Local Institutional Index on the cumulative
deforestation rate (2001–2023), across alternative spatial weight matrices.

The DE measures the effect of institutional quality on deforestation within the same dis-
trict. For districts not located in close proximity to paved roads, a one-point increase in the
institutional index is associated with a 1 percentage point reduction in cumulative deforesta-
tion, significant at the 1% level. The IE captures spillover effects, showing that stronger insti-
tutions in one district reduce deforestation in neighboring districts by 4.51 percentage points,
also significant at the 1% level. Combining these effects, the TE indicates that a one-unit in-
crease in institutional quality lowers cumulative deforestation by 5.51 percentage points across
the region. These protective effects are consistent with previous regional evidence (Mejía Te-
jada et al., 2024; Ramírez et al., 2018; Santos et al., 2021; Kuschnig et al., 2021). Importantly,
however, these results reflect the baseline effect in districts without nearby road infrastructure.
Where proximity to roads is high, the interaction term significantly alters the marginal impact
of institutions, weakening—and in some cases offsetting—their protective role. We conclude
that achieving substantial reductions in deforestation (5.51 pp) through institutional strength-
ening requires spatial coordination—neighboring districts must also exhibit robust institutional

13



quality to form an effective regional barrier against forest degradation.
Regarding the minimum distance to the nearest paved road, we find that the direct ef-

fect (DE) is negative and statistically significant at the 1% level. A 10% increase in this dis-
tance—meaning that a district is located farther from paved road infrastructure—is associated
with a 0.260 percentage point reduction in its cumulative deforestation rate. The indirect ef-
fect (IE) is likewise negative and significant at the 5% level, indicating that a 10% increase in
distance reduces deforestation in neighboring districts by 0.538 percentage points. Combining
these, the total effect (TE) suggests that a 10% increase in distance results in a 0.799 percentage
point decline in deforestation across districts. These findings highlight that closer proximity to
paved roads is systematically linked to higher deforestation, both locally and through spillovers
to adjacent districts.

To assess how road proximity moderates the protective role of institutions, we interact the
institutional index with a dummy equal to one for districts in the bottom 10th percentile of
minimum road distance (i.e., relatively close to paved roads). While in districts farther from
roads institutions exhibit a strong protective effect against deforestation, the interaction reveals
a different dynamic near roads. The direct effect (DE) of the interaction is positive and statis-
tically significant at the 5% level, amounting to 2.76 percentage points—more than twice the
magnitude of the baseline direct effect of institutions (–1.00 p.p.). This erosion of institutional
effectiveness also extends to neighboring districts: the interaction yields a total effect of 12.63
percentage points, significant at the 5% level. When combined with baseline effects, the overall
total effect of the interaction reaches 15.82 percentage points, effectively offsetting their protec-
tive role.

Overall, our findings underscore the importance of explicitly accounting for spatial depen-
dence when analyzing the role of institutions and infrastructure in shaping deforestation. Con-
ventional approaches such as OLS provide only a rough approximation and systematically un-
derestimate the magnitude of effects by neglecting spatial interdependence. In contrast, spa-
tial econometric models allow the decomposition of impacts into direct and spillover compo-
nents, offering a more nuanced understanding of the mechanisms at play. The results show that
stronger institutions reduce deforestation in districts located farther from paved roads, but this
protective effect is substantially weakened—and can even be offset—when districts are situated
in close proximity to road infrastructure.

6.2 Other Road Types

When shifting the focus from paved to unpaved roads, the results show a somewhat differ-
ent pattern. The institutional index continues to exert a protective effect, but its magnitude is
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weaker: a one-point increase reduces local deforestation by 0.75 percentage points, compared
to 1 percentage point in the paved road specification. Spillovers are also present but more mod-
est, with neighboring districts experiencing a 2.40 percentage point reduction. Importantly,
the interaction term between institutions and proximity to unpaved roads is positive but small
and statistically insignificant, suggesting that institutional capacity remains largely effective in
these areas. This stands in contrast with paved road contexts, where institutional effectiveness
is significantly eroded by proximity to infrastructure. The results therefore highlight that in-
stitutional protections are more robust when dealing with unpaved roads, where the economic
incentives for forest clearing are likely lower than those created by paved road access.

Table 2 – Direct, Indirect and Total Effect of Local Institutional Index on Cumulative Deforestation
Rate (2001–2023) by Road Type, SDM - Queen Contiguity W

Cumulative Deforestation Rate (2001-2023)

Direct effect
(

∂Fi
∂xi

)
s.e Indirect effect

(
∂Fi
∂xj

)
s.e Total effect

(
∑j

∂Fj
∂xi

)
s.e

Paved Roads
Local Institutional Index -0.0100*** 0.0036 -0.0451*** 0.0160 -0.0551*** 0.0182
log(Min. Distance) -0.0260*** 0.0068 -0.0538** 0.0236 -0.0799*** 0.0250
Local Institutional Index ×(log(D) ≤ P10) 0.0276** 0.0126 0.1263** 0.0581 0.1539** 0.0679
Unpaved Roads
Local Institutional Index -0.0075** 0.0036 -0.0240 0.0160 -0.0315* 0.0182
log(Min. Distance) -0.0394*** 0.0057 -0.0509** 0.0227 -0.0903*** 0.0248
Local Institutional Index ×(log(D) ≤ P10) 0.0064 0.0090 0.0145 0.0441 0.0209 0.0507
All Roads
Local Institutional Index -0.0072** 0.0035 -0.0239 0.0158 -0.0311* 0.0178
log(Min. Distance) -0.0402*** 0.0057 -0.0525** 0.0223 -0.0928*** 0.0245
Local Institutional Index ×(log(D) ≤ P10) 0.0049 0.0089 0.0100 0.0449 0.0150 0.0514

Note: This table reports the direct, indirect, and total marginal effects of the Local Institutional Index and its interaction with remoteness
(measured as log(Min. Distance) ≤ P10) on the cumulative deforestation rate between 2001 and 2023. We use a queen contiguity spatial
weight matrix. Estimates are obtained from different road types. Controls include climatic variables (average temperature, precipitation, and
elevation), forest protection measures (share of forest under private conservation areas, regional conservation areas, natural protected areas,
forest concessions, and Andean communities), agricultural land uses (share of land planted with coffee, cocoa, oil palm, and coca), as well
as socioeconomic and extractive factors (population density, poverty rate, and the logarithm of the minimum distance to the nearest mining
site). Significance levels are denoted as follows: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are based on Monte Carlo simulations
(reps=1000).

The analysis of unpaved roads also underscores the distinct channels through which infras-
tructure shapes deforestation. Unlike paved roads, unpaved routes often face limitations in
year-round accessibility, higher transportation costs, and lower integration into broader mar-
kets (Reyes et al., 2024). These constraints appear to dampen the extent to which road proximity
undermines institutional capacity. In other words, while paved roads may trigger substantial
land-use change and weaken institutional control, unpaved roads present a more manageable
challenge for local governance. The results suggest that institutional strengthening in these ar-
eas can still yield measurable benefits in curbing deforestation, even in districts relatively close
to unpaved networks.

Turning to the broader category which includes all the roads, the results reflect a combina-
tion of the dynamics observed for paved and unpaved infrastructure. Institutions continue to
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reduce deforestation both locally and through spillovers, with magnitudes that fall in between
the two specific cases. The distance to roads also shows a strong protective association: a 10%
increase in distance to any road is associated with nearly a 0.93 percentage point reduction in
deforestation across districts. However, the interaction between institutions and proximity to
roads loses much of its statistical strength in this specification, which is consistent with the
idea that aggregating paved and unpaved roads masks the heterogeneous effects documented
above. This aggregation thus highlights the importance of distinguishing between road types
when assessing how institutions interact with infrastructure to influence forest outcomes.

In sum, the comparison across paved, unpaved, and all roads confirms that paved infras-
tructure poses the greatest challenge to institutional effectiveness in protecting forests. While
institutions remain protective near unpaved roads, their role is substantially weakened in the
presence of paved networks. This underscores the need for spatially differentiated policy re-
sponses, with stronger institutional safeguards in areas most exposed to the pressures of paved
road expansion.

7 Robustness Checks

To ensure the reliability of our results, we conduct a series of robustness checks that examine
whether the main findings are sensitive to alternative measurement strategies, model specifi-
cations, and threshold definitions. Specifically, we implement three complementary exercises.
First, we test the consistency of results when constructing alternative versions of the Local Insti-
tutional Index through PCA, incorporating or excluding socioeconomic variables. Second, we
assess the stability of our conclusions across different spatial econometric models, comparing
the SDM to SLX, SAR, SEM, and SDEM alternatives. Finally, we evaluate whether our findings
hold when varying the definition of remoteness, using alternative percentiles of the minimum
distance to paved roads.

To assess the robustness of our main results, we re-estimate the Spatial Durbin Model (SDM)
using alternative specifications of the Local Institutional Index constructed through PCA. As
detailed in Table A.3, the baseline index partially incorporates the Socioeconomic Context cat-
egory, excluding low birth weight share and business density. We then test two alternative
versions. The Local Institutional Capacity Index excludes the entire Socioeconomic Context cat-
egory, focusing exclusively on administrative, fiscal, enforcement, and environmental dimen-
sions of governance. Conversely, the Extended Local Institutional Index expands the baseline
by incorporating all socioeconomic variables, including low birth weight and business density.

Results reported in Table E.1 indicate that the protective role of institutions against defor-
estation is robust across these alternative measures. In all specifications, the institutional in-
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dex is negatively and significantly associated with cumulative deforestation, while the interac-
tion with road proximity weakens or offsets this protective effect. Although magnitudes differ
slightly, the overall pattern remains consistent: institutional quality reduces deforestation in
districts more remote from paved roads, but this effect diminishes near road infrastructure.
This confirms that our findings are not driven by a particular construction of the institutional
index, but rather reflect a systematic relationship between local governance capacity, road prox-
imity, and deforestation dynamics.

To further assess the robustness of our findings, we re-estimate the main specification using
alternative spatial econometric models beyond the Spatial Durbin Model (SDM). Specifically,
we consider the Spatial Lag of X (SLX), the Spatial Durbin Error Model (SDEM), and the Spatial
Autoregressive Model (SAR), all under a queen contiguity weights matrix. As shown in Ta-
ble E.3, the results are highly consistent across specifications: stronger local institutions reduce
deforestation both directly and through spillover effects, while road proximity weakens these
protective effects. The magnitude of the institutional effect varies slightly across models but
remains statistically significant and negative in all cases.

Finally, we vary the threshold used to define proximity to paved roads, considering deciles
from the 10th to the 90th percentile of the distribution of minimum distances. The results,
presented in Figure E.1, confirm the consistency of our baseline conclusions. The protective
effect of institutional quality remains negative across most deciles, while road proximity is
systematically associated with higher deforestation. Crucially, the interaction between insti-
tutional quality and road proximity is persistently positive across thresholds, indicating that
institutional effectiveness is weakened in districts located closer to paved roads. Although the
magnitude of the interaction effect varies, the overall pattern underscores the moderating role
of infrastructure in shaping institutional impacts on deforestation. As expected, the interaction
effect loses statistical significance at higher percentiles, since districts located farther from roads
face limited direct deforestation pressures from infrastructure, thereby reducing the scope for
institutions to counteract road-induced forest loss.

Taken together, the robustness checks strengthen the credibility of our main results. Al-
ternative institutional index specifications, different spatial model formulations, and varying
thresholds of road proximity all point to the same conclusion: institutional quality plays a cen-
tral role in curbing deforestation, but its effectiveness is strongly conditioned by the presence
of road infrastructure. These findings highlight the need for integrated policy approaches that
combine institutional strengthening with careful regulation of road expansion in order to con-
tain forest loss more effectively.

17



8 Concluding Remarks

We examine the drivers of deforestation in the Peruvian Amazon, emphasizing the critical roles
of local institutions and road infrastructure. Using spatial econometric techniques, we decom-
pose the direct and indirect effects of institutional quality and proximity to paved roads on
cumulative deforestation between 2001 and 2023. Our results demonstrate that omitting spa-
tial dependence, as in conventional OLS models, leads to substantial underestimation of key
effects. We find that stronger local institutional quality is significantly associated with reduced
deforestation, both within districts and in their neighbors.

However, this protective institutional effect is fully offset in areas near paved roads. Road in-
frastructure facilitates access to remote areas, promoting economic activities such as small-scale
agriculture and mining that accelerate deforestation. This dynamic presents a policy dilemma:
while institutional strengthening is vital for environmental protection, unregulated road ex-
pansion can undermine its impact. The moderating effect between institutional quality and
road infrastructure reveals the need for integrated, spatially aware interventions to prevent the
erosion of governance benefits.

Our work also allows us to increase the awareness that effective forest conservation in the
Peruvian Amazon requires not only strengthening local institutions but also adopting a more
deliberate approach to infrastructure planning. This includes enforcing stricter regulations on
road development and promoting sustainable land use practices in already accessible regions.
A coordinated strategy that jointly addresses institutional capacity and infrastructure expan-
sion is essential to combat deforestation and preserve forest ecosystems in the region.

In terms of the future venues for research we identify, these include gathering better infor-
mation to exploit the time variation in spatial dependence. The estimation of spatial differences-
in-difference models could then be implemented. From a more practical perspective, qualita-
tive analysis focused on selected geographical areas could help enhance our understanding of
the mechanics behind institutional drivers fostering forest conservation. This endeavor aligns
well with the identification of deforestation hotspots, which could be used as a tool to prioritize
policy interventions.
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Appendices

A Principal Component Analysis

To construct the municipal institutional index, we compile a comprehensive set of standardized
indicators grouped into five broad categories (see Table A.1): Administrative and Operational
Capacity, Fiscal and Governance Performance, Service Provision and Enforcement, Environ-
mental and Territorial Governance, and Socioeconomic Context. This classification reflects the
multidimensional nature of local governments’ institutional capacities.

Administrative and Operational Capacity is measured through three complementary indi-
cators. The Operational Logistics Capacity is defined as the log of the total number of heavy
machinery and operational vehicles, capturing municipalities’ ability to deliver basic services
and respond to local needs. The Municipal Staff per 1,000 People variable reflects the scale of
local government administration, adjusted for population size and expressed in logarithms. Fi-
nally, the Execution Unit Presence is a binary indicator capturing whether municipalities have
an internal execution or enforcement unit, signaling their institutionalization of formal budget
implementation mechanisms.

Fiscal and Governance Performance emphasizes accountability and financial effectiveness.
The Public Budget Execution Rate measures the proportion of the approved municipal budget
effectively spent by year-end. In turn, the Accountability and Communication Index is a com-
posite measure that combines (i) the transparency portal score (0–3), (ii) the availability of fixed
and mobile communication lines, and (iii) the log of active lines. Together, these indicators
capture both fiscal discipline and citizens’ access to transparent information.

Service Provision and Enforcement focuses on local service delivery and security enforce-
ment. The Waste Coverage Score assigns municipalities a score between 0.25 and 1, depending
on the proportion of the population covered by formal solid waste collection systems. The
Daily Municipal Patrols variable is a binary indicator equal to one if municipalities reported
conducting daily security interventions in 2022, reflecting their enforcement capacity in public
safety.

Environmental and Territorial Governance is captured by the High-Capacity Environmental
Management indicator, which takes the value of one when municipalities implemented the
official environmental plan (PLANEFA) and at least two additional environmental instruments.
This variable signals the degree of formalization and institutional investment in territorial and
environmental governance.

Finally, Socioeconomic Context provides a broader perspective on the local environment.
The Economic Activity Ratio measures the share of economically active individuals relative to
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the working-age population, while Average Years of Schooling reflects local educational attain-
ment levels. We also add two complementary indicators: the Low Birth Weight Share, defined
as the percentage of newborns with low birth weight relative to total births, and Business Den-
sity (log), measuring the log of newly registered limited liability corporations per 1,000 inhabi-
tants in 2023. These additions capture health vulnerabilities and entrepreneurial dynamics that
interact with local institutional strength.

As seen in Table A.3, our preferred specification, denoted as the Local Institutional Index,
includes all five categories but excludes Low Birth Weight Share and Business Density to focus
on direct institutional capacity rather than outcomes or broader structural conditions. As ro-
bustness checks, we construct two alternative indices. The Local Institutional Capacity Index
excludes the entire Socioeconomic Context category, allowing us to concentrate exclusively on
core institutional mechanisms. In contrast, the Extended Local Institutional Index incorporates
the full Socioeconomic Context, including both health and business density measures, thereby
providing a comprehensive benchmark. This triangulation of indices allows us to assess the
sensitivity of results to alternative definitions of local institutional capacity.
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Table A.1 – Description of variables used in the PCA

Category Variable Description Units Source Year

Administrative
and Operational Capacity

Operational
Logistics Capacity

Log of the total number
of heavy machinery and
operational vehicles

Count (log) RENAMU 2023

Municipal Staff
per 1,000 People

Log of the number of
municipal employees
per 1,000 inhabitants

Workers per 1,000 (log) RENAMU 2023

Execution Unit
Presence

Dummy indicating
the presence of a
formal budget
enforcement or
execution unit

Binary [0/1] RENAMU 2023

Fiscal
and Governance Performance

Public Budget
Execution Rate

Percentage of municipal
budget effectively spent
by year-end

Ratio [0,1] RENAMU 2023

Accountability
and Communication Index

Composite index
including transparency
portal score (0–3),
availability of fixed and
mobile lines, and log of
the number of active
communication lines

[0, ∞) RENAMU 2023

Service Provision
and Enforcement

Waste Coverage
Score

Score based on the
proportion of population
with access to formal
solid waste collection
(0.25 if <25%, 0.5
if 25–50%, 0.75
if 50–75%, 1 if >75%)

Score [0.25–1] RENAMU 2023

Daily Municipal
Patrols

Binary indicator equal
to one if the municipality
conducted daily security
patrols in 2022.

Binary [0/1] RENAMU 2022

Environmental
and Territorial Governance

High-Capacity
Environmental Management

Dummy equal to 1
if PLANEFA and
at least two other
environmental
instruments are
implemented

Binary [0/1] RENAMU 2023

Socioeconomic Context

Economic Activity
Ratio

Share of economically
active population
relative to working-age
population

Ratio [0,1] INEI 2017

Average Years
of Schooling

Average number
of years of education
of the municipal
population

Years INEI 2017

Low Birth Weight Share
Percentage of newborns
with low birth weight
relative to total births

Ratio [0,1] INEI 2017

Business Density
Log of the number of
registered firms per 1,000
inhabitants in 2023

Log INEI 2023
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Table A.2 – Descriptive Statistics of Variables Used in the Local Institutional Index (Principal Com-
ponent Analysis)

Variable Description Mean Std Deviation Min Max Observations

Operational Logistics Capacity (log) 1.2607 3.0095 0.0 21.8714 289
Municipal Staff per 1,000 People (log) 1.7117 0.7317 0.2548 6.1347 289
Execution Unit Presence 0.8102 0.1438 0.244 0.997 289
Public Budget Execution Rate (%) 7.8232 1.1707 4.9 11.8 289
Accountability and Communication Index 2.9255 1.8581 0.0 8.4012 289
Waste Coverage Score 0.7399 0.0695 0.516 0.887 289
Daily Municipal Patrols 0.6367 0.4818 0.0 1.0 289
High-Capacity Environmental Management 0.2353 0.4249 0.0 1.0 289
Economic Activity Ratio 0.8311 0.2005 0.25 1.0 289
Average Years of Schooling 0.2976 0.458 0.0 1.0 289
Low Birth Weight Share 0.0681 0.0361 0.0 0.2537 289
Business Density per 1,000 People (log) 3.6134 0.7841 1.0065 5.5113 289

Note: This table reports descriptive statistics for the variables included in the municipal institutional index, which is constructed using a
principal component analysis. Not available data was estimated using inverse exponential distance weights interpolation techniques as in
Cantillo and Garza (2022)

Table A.3 – Variable inclusion across alternative PCA specifications for the Local Institutional Index

Category Local Institutional Index Local Institutional Capacity Index Extended Local Institutional Index
Administrative and
Operational Capacity

✓ ✓ ✓

Fiscal and Governance
Performance

✓ ✓ ✓

Service Provision
and Enforcement

✓ ✓ ✓

Environmental and
Territorial Governance

✓ ✓ ✓

Socioeconomic Context
Partial (excl. Low Birth,

Business Density)
Excluded

Full (incl. Low Birth,
Business Density)

Note: The main specification (Local Institutional Index) excludes Low Birth Weight Share and Business Density from the Socioeconomic Context
category. The robustness check (Local Institutional Capacity Index) excludes the entire Socioeconomic Context category. The extended version
(Extended Local Institutional Index) includes all variables in the Socioeconomic Context category.
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Figure A.1 – Eigenvalues by principal components - Local Institutional Index
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Note: This scree plot displays the eigenvalues associated with each principal component. Components with eigenvalues above 1 are typically
retained following the Kaiser criterion.

Figure A.2 – Factorial loadings for each variable - Local Institutional Index
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Note: The heatmap shows the standardized loadings of each variable across principal components. High absolute loadings indicate a strong
contribution of the variable to the corresponding component.
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Table A.4 – Sampling Adequacy and Bartlett’s Test for PCA Validity - Local Institutional Index

Test Result
Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 0.733
Bartlett’s Test of Sphericity χ2(45) = 357.68, p < 0.0001

Note: The Kaiser-Meyer-Olkin (KMO) statistic evaluates whether the data are suitable for factor analysis. A KMO value of 0.733 is considered
“middling to meritorious” (Kaiser, 1974), indicating sufficient common variance among variables to perform principal component analysis
(PCA). Bartlett’s Test of Sphericity examines the null hypothesis that the correlation matrix is an identity matrix. The test result is highly
significant (p < 0.0001), suggesting that the variables are sufficiently correlated to justify the use of PCA.

Figure A.3 – Variance explained by each component - Local Institutional Index
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Note: This plot shows the proportion of total variance explained by each principal component. The cumulative variance helps determine how
many components should be retained for analysis.
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B Spatial Models Tests

Table B.1 – Lagrange Multipliter Tests, SARMA and Moran

Test χ2 Degrees of Freedom (df) p-value

OLS vs SEM (LM Error) 82.266 1 0.0000
OLS vs SAR (LM Lag) 128.25 1 0.0000
OLS vs SEM (Robust LM Error) 1.528 1 0.2164
OLS vs SAR (Robust LM Lag) 47.509 1 0.0000
SARMA 129.77 2 0.0000
Moran’s I 0.3543 — 0.0000

Note: This table reports results from spatial dependence tests applied to the OLS specification. LM tests compare OLS with alternative spatial
models: the Spatial Error Model (SEM) and the Spatial Autoregressive Model (SAR), including robust versions. The SARMA test jointly
evaluates lag and error dependence. Moran’s I assesses residual spatial autocorrelation. A significant test statistic indicates the presence of
spatial dependence and motivates the use of spatial models. We use a queen contiguity spatial weight matrix.

Table B.2 – Likelihood Ratio Tests between Spatial Models

Model Comparison χ2 Statistic Degrees of Freedom p-value

SAR vs. SDM 35.39 18 0.0084
SEM vs. SDEM 48.88 18 0.0001
SAR vs. SDEM 25.95 18 0.1009

Note: Likelihood Ratio Tests (LRT) are presented. The test statistic follows a chi-squared distribution with degrees of freedom equal to the
difference in the number of parameters between models. A statistically significant p-value (e.g., p < 0.05) indicates that the more general model
provides a significantly better fit to the data, leading to rejection of the null hypothesis that the simpler (nested) model is sufficient. We use a
queen contiguity spatial weights matrix.
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C Descriptive Statistics

Table C.1 – Descriptive Statistics

Variable Mean Std Deviation Min Max Observations

Cumulative Deforestation Rate 0.1341 0.1302 0.0016 0.6732 289
Local Institutional Index -0.0 1.6261 -2.7399 4.9318 289
Local Institutional Capacity Index 0.0 1.4401 -2.5351 3.7275 289
Extended Local Institutional Index 0.0 1.7885 -3.5232 5.3235 289
log(Min. Distance to Paved Road) 2.8884 1.2904 0.025 5.8936 289
Temperature (°C) 22.914 4.7968 8.7 30.17 289
Precipitation (mm) 862.9983 687.1908 215.44 2917.52 289
Elevation (m.a.s.l.) 959.7356 839.8341 76.0 4356.0 289
Private Conservation Area (Forest %) 0.007 0.032 0.0 0.2643 289
Regional Conservation Area (Forest %) 0.016 0.0629 0.0 0.5261 289
Natural Protected Area (Forest %) 0.0316 0.0978 0.0 0.7701 289
Forest Concession (Forest %) 0.0633 0.1152 0.0 0.5828 289
Andean Communities (Forest %) 0.0993 0.1768 0.0 0.9482 289
Coffee (Agricultural Land %) 0.1607 0.1955 0.0 0.8725 289
Cocoa (Agricultural Land %) 0.0579 0.0886 0.0 0.425 289
Oil Palm (Agricultural Land %) 0.0060 0.0282 0.0 0.2743 289
Coca (Agricultural Land %) 0.0090 0.0319 0.0 0.2083 289
Population Density (per km2) 30.6161 92.665 0.0708 1302.2221 289
Poverty Rate 0.3286 0.1471 0.019 0.768 289
log(Min. Distance to Mine) 4.1282 1.1135 0.4113 6.5854 289

Note: This table presents descriptive statistics for the main variables used in the empirical analysis. The local institutional index is constructed
using the first three components from a principal component analysis (PCA) of local government capacity indicators. Distance variables
are expressed in natural logarithms and originally measured in kilometers. Precipitation is measured in millimeters, temperature in degrees
Celsius, and elevation in meters above sea level. Variables referring to protected areas indicate the percentage of forest land within the district
under each protection category as of 2001. Crop-related variables represent the percentage of total agricultural land used for each crop.
Population density is measured in people per square kilometer. All statistics are based on a sample of 289 districts from the Peruvian Amazon.
Not available data was estimated using inverse exponential distance weights interpolation techniques as in Cantillo and Garza (2022)

31



D Results

D.1 Spatial Models Regressions

Table D.1 – Effect of Local Institutional Index on Cumulative Deforestation Rate (2001–2023) by
Spatial Model - Queen Contiguity W

Cumulative Deforestation Rate (2001-2023)
SDM SLX SDEM SAR OLS

β s.e β s.e β s.e β s.e β s.e
Local Institutional Index -0.0064** 0.0032 -0.0086** 0.0041 -0.0095*** 0.0036 -0.0063** 0.0031 -0.0122*** 0.0044
log(Min. Distance to Paved Road) -0.0217*** 0.0068 -0.0291*** 0.0087 -0.0265*** 0.0067 -0.0193*** 0.0053 -0.0392*** 0.0073
Local Institutional Index ×(log(D) ≤ P10) 0.0175* 0.0096 0.0212* 0.0123 0.0214* 0.0118 0.0119 0.0096 0.0102 0.0136
Temperature (°C) 4e-04 0.0025 2e-04 0.0032 0.0015 0.0024 0.0026 0.0017 0.0059** 0.0024
Precipitation (mm) -2.8e-06 2.7e-05 2.2e-07 3.5e-05 -8.2e-06 2.6e-05 -3.3e-06 8e-06 -3.5e-05*** 1.1e-05
Elevation (m.a.s.l.) -4e-05*** 1e-05 -5.5e-05*** 1.3e-05 -4.2e-05*** 1.1e-05 -3.3e-05*** 9.7e-06 -4.4e-05*** 1.4e-05
Private Conservation Area (Forest %) 0.1790 0.1533 0.2683 0.1968 0.1410 0.1622 0.0454 0.1339 -0.0334 0.1885
Regional Conservation Area (Forest %) -0.1173 0.0731 -0.2244** 0.0933 -0.1792** 0.0815 -0.1019 0.0659 -0.1443 0.0925
Natural Protected Area (Forest %) -0.1073** 0.0475 -0.1123* 0.0610 -0.1185** 0.0483 -0.1188*** 0.0437 -0.1965*** 0.0613
Forest Concession (Forest %) -0.0334 0.0482 -0.0118 0.0619 -0.0152 0.0511 -0.0307 0.0447 -0.0242 0.0630
Andean Communities (Forest %) -0.0351 0.0364 -0.0324 0.0468 -0.0367 0.0368 -0.0311 0.0300 -0.0792* 0.0419
Coffee (Agricultural Land %) 0.0759** 0.0319 0.0975** 0.0409 0.0837*** 0.0318 0.0794*** 0.0262 0.1092*** 0.0369
Cocoa (Agricultural Land %) -0.2191** 0.0883 -0.2006* 0.1135 -0.1908** 0.0855 -0.0488 0.0593 0.0803 0.0836
Oil Palm (Agricultural Land %) 0.4048** 0.1635 0.4361** 0.2099 0.4751*** 0.1728 0.3487** 0.1497 0.3691* 0.2110
Coca (Agricultural Land %) 0.2075 0.2077 0.2857 0.2665 0.3258 0.2152 0.2945* 0.1640 0.1834 0.2312
Population Density (per km2) 3.4e-05 5.3e-05 4.9e-05 6.8e-05 3e-05 5.5e-05 -4.2e-05 4.8e-05 -1e-04 6.8e-05
Poverty Rate -0.0349 0.0464 -0.0345 0.0596 -0.0431 0.0471 -0.0699* 0.0362 -0.1913*** 0.0507
log(Min. Distance to Mine) -0.0148 0.0112 -0.0107 0.0143 -0.0106 0.0103 -0.0023 0.0053 0.0097 0.0075
Constant 0.0499 0.0839 0.3001*** 0.1059 0.1425 0.1369 0.1017** 0.0453 0.2039*** 0.0635
W. Local Institutional Index -0.0148** 0.0062 -0.0265*** 0.0078 -0.0237*** 0.0087 - - - -
W. log(Min. Distance to Paved Road) -0.0091 0.0111 -0.0332** 0.0139 -0.0389*** 0.0144 - - - -
W. Local Institutional Index ×(log(D) ≤ P10) 0.0418** 0.0200 0.0624** 0.0257 0.0499* 0.0281 - - - -
W. Temperature (°C) 0.0034 0.0038 0.0026 0.0048 0.0090** 0.0045 - - - -
W. Precipitation (mm) 1.2e-05 3e-05 -1.3e-05 3.8e-05 7.9e-06 3.2e-05 - - - -
W. Elevation (m.a.s.l.) 4.2e-06 1.8e-05 -4.8e-05** 2.3e-05 -1.3e-05 2.5e-05 - - - -
W. Private Conservation Area (Forest %) -0.0253 0.2310 0.1865 0.2966 -0.0209 0.2835 - - - -
W. Regional Conservation Area (Forest %) -0.5919*** 0.1537 -0.9596*** 0.1958 -0.6334*** 0.1996 - - - -
W. Natural Protected Area (Forest %) -0.0371 0.0934 -0.2035* 0.1191 -0.1147 0.1307 - - - -
W. Forest Concession (Forest %) 0.1012 0.0897 0.0848 0.1152 0.1166 0.1151 - - - -
W. Andean Communities (Forest %) 0.0740 0.0573 0.0772 0.0736 0.0079 0.0704 - - - -
W. Coffee (Agricultural Land %) 0.1204** 0.0558 0.2542*** 0.0709 0.1477** 0.0714 - - - -
W. Cocoa (Agricultural Land %) 0.2589** 0.1287 0.3467** 0.1653 0.1879 0.1691 - - - -
W. Oil Palm (Agricultural Land %) 0.4458 0.2883 1.1095*** 0.3647 0.8367** 0.4231 - - - -
W. Coca (Agricultural Land %) 0.1020 0.2976 0.1804 0.3823 0.2648 0.4150 - - - -
W. Population Density (per km2) 5.8e-05 2e-04 -4.2e-05 2e-04 1e-04 2e-04 - - - -
W. Poverty Rate -0.0581 0.0672 -0.2118** 0.0855 -0.0774 0.0924 - - - -
W. log(Min. Distance to Mine) 0.0204 0.0130 0.0302* 0.0168 0.0100 0.0154 - - - -
Observations 289 289 289 289 289
Log-Likelihood 369.87 331.42 365.15 352.17 282.75
AIC -661.73 -586.83 -652.29 -662.34 -525.51
λ - - 0.655 - -

Note: The table reports estimated coefficients and standard errors from five regression models: Spatial Durbin Model (SDM), Spatial Lag
of X (SLX), Spatial Durbin Error Model (SDEM), Spatial Autoregressive Model (SAR), and Ordinary Least Squares (OLS). We use a queen
contiguity spatial weights matrix. The dependent variable is the cumulative deforestation rate. All models include controls for socioeconomic,
geographic, and climatic characteristics. Spatial lags of covariates are indicated by “W.”. Standard errors are reported next to each coefficient.
Significance levels are denoted as follows: * p < 0.10, ** p < 0.05, *** p < 0.01. Observations, AIC, log-likelihood, and λ (where applicable) are
reported at the bottom of the table.
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Table D.2 – Effect of Local Institutional Index on Cumulative Deforestation Rate (2001–2023) by
Road Type, SDM - Queen Contiguity W

Cumulative Deforestation Rate (2001-2023)
Unpaved Road All Roads

β s.e β s.e
Local Institutional Index -0.0055* 0.0031 -0.0053* 0.0030
log(Min. Distance) -0.0353*** 0.0055 -0.0360*** 0.0055
Local Institutional Index ×(log(D) ≤ P10) 0.0053 0.0069 0.0041 0.0070
Temperature (°C) 6e-04 0.0023 8e-04 0.0023
Precipitation (mm) 3.1e-06 2.6e-05 3.8e-06 2.6e-05
Elevation (m.a.s.l.) -2e-05** 1e-05 -2e-05** 1e-05
Private Conservation Area (Forest %) 0.2006 0.1472 0.2036 0.1470
Regional Conservation Area (Forest %) -0.0800 0.0695 -0.0872 0.0693
Natural Protected Area (Forest %) -0.0504 0.0465 -0.0495 0.0464
Forest Concession (Forest %) -0.0218 0.0452 -0.0213 0.0451
Andean Communities (Forest %) -0.0189 0.0346 -0.0168 0.0346
Coffee (Agricultural Land %) 0.0414 0.0311 0.0409 0.0311
Cocoa (Agricultural Land %) -0.2052** 0.0840 -0.2020** 0.0837
Oil Palm (Agricultural Land %) 0.3711** 0.1558 0.3762** 0.1556
Coca (Agricultural Land %) 0.0976 0.1954 0.1016 0.1953
Population Density (per km2) 9.8e-06 5e-05 1.2e-05 5e-05
Poverty Rate -0.0384 0.0441 -0.0365 0.0441
log(Min. Distance to Mine) -0.0216** 0.0097 -0.0190* 0.0097
Constant -0.0720 0.0763 -0.0628 0.0759
W. Local Institutional Index -0.0060 0.0058 -0.0062 0.0058
W. log(Min. Distance) 0.0023 0.0098 0.0019 0.0097
W. Local Institutional Index ×(log(D) ≤ P10) 0.0024 0.0157 0.0014 0.0158
W. Temperature (°C) 0.0052 0.0035 0.0044 0.0035
W. Precipitation (mm) 1.9e-05 2.9e-05 1.6e-05 2.9e-05
W. Elevation (m.a.s.l.) 1e-05 1.8e-05 6.4e-06 1.8e-05
W. Private Conservation Area (Forest %) -0.1861 0.2224 -0.1729 0.2219
W. Regional Conservation Area (Forest %) -0.5528*** 0.1459 -0.5635*** 0.1458
W. Natural Protected Area (Forest %) -0.0519 0.0894 -0.0506 0.0893
W. Forest Concession (Forest %) 0.0744 0.0837 0.0902 0.0837
W. Andean Communities (Forest %) 0.0688 0.0535 0.0738 0.0533
W. Coffee (Agricultural Land %) 0.0919* 0.0555 0.0970* 0.0552
W. Cocoa (Agricultural Land %) 0.2838** 0.1185 0.2636** 0.1182
W. Oil Palm (Agricultural Land %) 0.4114 0.2722 0.4470 0.2722
W. Coca (Agricultural Land %) 0.0627 0.2819 0.1162 0.2825
W. Population Density (per km2) 3.3e-06 1e-04 7e-06 1e-04
W. Poverty Rate -0.0406 0.0621 -0.0351 0.0622
W. log(Min. Distance to Mine) 0.0305*** 0.0116 0.0298** 0.0117
Observations 289 289
Log-Likelihood 381.78 382.41
AIC -685.57 -686.82
λ - -

Note: The table reports estimated coefficients and standard errors from five SDM models by road type: Paved Road, Unpaved Road, and All
Roads. The dependent variable is the cumulative deforestation rate. All models include controls for socioeconomic, geographic, and climatic
characteristics. Spatial lags of covariates are indicated by “W.”. We use a queen contiguity spatial weights matrix. Standard errors are reported
next to each coefficient. Significance levels are denoted as follows: * p < 0.10, ** p < 0.05, *** p < 0.01. Observations, AIC, log-likelihood, and
λ (where applicable) are reported at the bottom of the table.
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D.2 Marginal Effects

Table D.3 – Direct, Indirect and Total Effect of Covariates on Cumulative Deforestation Rate
(2001–2023), SDM - Queen Contiguity W

Cumulative Deforestation Rate (2001-2023)

Direct effect
(

∂Fi
∂xi

)
s.e Indirect effect

(
∂Fi
∂xj

)
s.e Total effect

(
∑j

∂Fj
∂xi

)
s.e

Temperature (°C) 0.0011 0.0023 0.0089 0.0076 0.0100 0.0079
Precipitation (mm) -9.1e-07 2.6e-05 2.4e-05 3.9e-05 2.3e-05 2.9e-05
Elevation (m.a.s.l.) -4.4e-05*** 1.2e-05 -4.9e-05 4.5e-05 -9.3e-05* 5.2e-05
Private Conservation Area (Forest %) 0.1953 0.1631 0.2033 0.5256 0.3986 0.5916
Regional Conservation Area (Forest %) -0.2453*** 0.0850 -1.5939*** 0.4433 -1.8392*** 0.4977
Natural Protected Area (Forest %) -0.1272*** 0.0480 -0.2470 0.2168 -0.3742 0.2340
Forest Concession (Forest %) -0.0178 0.0505 0.1938 0.2175 0.1760 0.2390
Andean Communities (Forest %) -0.0250 0.0359 0.1263 0.1249 0.1013 0.1330
Coffee (Agricultural Land %) 0.1081*** 0.0312 0.4010*** 0.1315 0.5091*** 0.1396
Cocoa (Agricultural Land %) -0.1951** 0.0876 0.2990 0.2511 0.1039 0.2660
Oil Palm (Agricultural Land %) 0.5388*** 0.1798 1.6667** 0.6722 2.2055*** 0.7575
Coca (Agricultural Land %) 0.2517 0.2201 0.5494 0.6380 0.8011 0.7139
Population Density (per km2) 5e-05 6.1e-05 2e-04 4e-04 2e-04 4e-04
Poverty Rate -0.0503 0.0463 -0.1908 0.1419 -0.2411 0.1517
log(Min. Distance to Mine) -0.0126 0.0103 0.0271 0.0190 0.0145 0.0172

Note: This table presents the estimated direct, indirect, and total marginal effects of geographic and socioeconomic covariates on the cumulative
deforestation rate between 2001 and 2023. The estimates are derived from a Spatial Durbin Model (SDM) using a queen contiguity spatial
weights matrix. Direct effects capture the marginal impact of a variable on its own location; indirect effects represent spatial spillovers from
neighboring units; and total effects are the sum of both. Standard errors are calculated via Monte Carlo simulations (reps=1000). Significance
levels: * p < 0.10, ** p < 0.05, *** p < 0.01.
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E Robustness Checks

E.1 Alternative Local Institutional Indices

Table E.1 – Direct, Indirect and Total Effect of Local Institutional Index on Cumulative Deforestation
Rate (2001–2023) by Alternative Local Institutional Indexes, SDM - Queen Contiguity W

Cumulative Deforestation Rate (2001-2023)

Direct effect
(

∂Fi
∂xi

)
s.e Indirect effect

(
∂Fi
∂xj

)
s.e Total effect

(
∑j

∂Fj
∂xi

)
s.e

Local Institutional Index
Local Institutional Index -0.0100*** 0.0036 -0.0451*** 0.0160 -0.0551*** 0.0182
log(Min. Distance to Paved Road) -0.0260*** 0.0068 -0.0538** 0.0236 -0.0799*** 0.0250
Local Institutional Index ×(log(D) ≤ P10) 0.0276** 0.0126 0.1263** 0.0581 0.1539** 0.0679

Local Institutional Capacity Index
Local Institutional Capacity Index -0.0098** 0.0039 -0.0396** 0.0176 -0.0494** 0.0201
log(Min. Distance to Paved Road) -0.0261*** 0.0070 -0.0580** 0.0238 -0.0841*** 0.0256
Local Institutional Capacity Index ×(log(D) ≤ P10) 0.0356*** 0.0133 0.1420** 0.0659 0.1776** 0.0760

Extended Local Institutional Index
Extended Local Institutional Index -0.0095*** 0.0036 -0.0458*** 0.0160 -0.0553*** 0.0183
log(Min. Distance to Paved Road) -0.0260*** 0.0066 -0.0539** 0.0238 -0.0800*** 0.0252
Extended Local Institutional Index ×(log(D) ≤ P10) 0.0268** 0.0110 0.1203** 0.0521 0.1471** 0.0604

Note: This table reports the direct, indirect, and total marginal effects of the Local Institutional Index and its interaction with remoteness (mea-
sured as log(Min. Distance to Paved Road) ≤ P10) on the cumulative deforestation rate between 2001 and 2023. We use a queen contiguity
spatial weight matrix. Estimates are obtained from different local institutional index specifications (see Table A.3 for more detail). Controls
include climatic variables (average temperature, precipitation, and elevation), forest protection measures (share of forest under private conser-
vation areas, regional conservation areas, natural protected areas, forest concessions, and Andean communities), agricultural land uses (share
of land planted with coffee, cocoa, oil palm, and coca), as well as socioeconomic and extractive factors (population density, poverty rate, and
the logarithm of the minimum distance to the nearest mining site). Significance levels are denoted as follows: * p < 0.10, ** p < 0.05, ***
p < 0.01. Standard errors are based on Monte Carlo simulations (reps=1000).
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Table E.2 – Effect of Local Institutional Index on Cumulative Deforestation Rate (2001–2023) by
Alternative Local Institutional Indexes, SDM - Queen Contiguity W

Cumulative Deforestation Rate (2001-2023)

Local Institutional Index Local Institutional Capacity Index Extended Local Institutional Index

β s.e β s.e β s.e

PCA Institutional Index -0.0064** 0.0032 -0.0066** 0.0033 -0.0058* 0.0030
log(Min. Distance to Paved Road) -0.0217*** 0.0068 -0.0214*** 0.0068 -0.0217*** 0.0069
PCA Institutional Index ×(log(D) ≤ P10) 0.0175* 0.0096 0.0242** 0.0103 0.0171* 0.0089
Temperature (°C) 4e-04 0.0025 6e-04 0.0025 6e-04 0.0025
Precipitation (mm) -2.8e-06 2.7e-05 -2.2e-06 2.7e-05 -5.2e-06 2.7e-05
Elevation (m.a.s.l.) -4e-05*** 1e-05 -3.9e-05*** 1e-05 -3.9e-05*** 1e-05
Private Conservation Area (Forest %) 0.1790 0.1533 0.1684 0.1532 0.1883 0.1530
Regional Conservation Area (Forest %) -0.1173 0.0731 -0.1103 0.0732 -0.1137 0.0730
Natural Protected Area (Forest %) -0.1073** 0.0475 -0.1107** 0.0475 -0.1063** 0.0475
Forest Concession (Forest %) -0.0334 0.0482 -0.0345 0.0481 -0.0319 0.0482
Andean Communities (Forest %) -0.0351 0.0364 -0.0347 0.0363 -0.0378 0.0363
Coffee (Agricultural Land %) 0.0759** 0.0319 0.0749** 0.0319 0.0748** 0.0319
Cocoa (Agricultural Land %) -0.2191** 0.0883 -0.2140** 0.0887 -0.2233** 0.0881
Oil Palm (Agricultural Land %) 0.4048** 0.1635 0.3963** 0.1648 0.4043** 0.1633
Coca (Agricultural Land %) 0.2075 0.2077 0.1953 0.2077 0.2286 0.2081
Population Density (per km2) 3.4e-05 5.3e-05 1.5e-05 5.2e-05 3.5e-05 5.3e-05
Poverty Rate -0.0349 0.0464 -0.0268 0.0448 -0.0390 0.0475
log(Min. Distance to Mine) -0.0148 0.0112 -0.0146 0.0111 -0.0145 0.0112
Constant 0.0499 0.0839 0.0387 0.0831 0.0530 0.0837

W. PCA Institutional Index -0.0148** 0.0062 -0.0119* 0.0064 -0.0156*** 0.0060
W. log(Min. Distance to Paved Road) -0.0091 0.0111 -0.0099 0.0111 -0.0092 0.0112
W. PCA Institutional Index ×(log(D) ≤ P10) 0.0418** 0.0200 0.0421* 0.0223 0.0397** 0.0181
W. Temperature (°C) 0.0034 0.0038 0.0033 0.0038 0.0037 0.0037
W. Precipitation (mm) 1.2e-05 3e-05 8.9e-06 3e-05 1.6e-05 3e-05
W. Elevation (m.a.s.l.) 4.2e-06 1.8e-05 4.8e-06 1.8e-05 6.8e-06 1.8e-05
W. Private Conservation Area (Forest %) -0.0253 0.2310 -0.0451 0.2306 0.0124 0.2305
W. Regional Conservation Area (Forest %) -0.5919*** 0.1537 -0.5459*** 0.1538 -0.5836*** 0.1529
W. Natural Protected Area (Forest %) -0.0371 0.0934 -0.0545 0.0933 -0.0296 0.0935
W. Forest Concession (Forest %) 0.1012 0.0897 0.0972 0.0905 0.1113 0.0902
W. Andean Communities (Forest %) 0.0740 0.0573 0.0677 0.0580 0.0728 0.0573
W. Coffee (Agricultural Land %) 0.1204** 0.0558 0.1182** 0.0559 0.1216** 0.0558
W. Cocoa (Agricultural Land %) 0.2589** 0.1287 0.2770** 0.1285 0.2607** 0.1291
W. Oil Palm (Agricultural Land %) 0.4458 0.2883 0.4331 0.2945 0.4273 0.2887
W. Coca (Agricultural Land %) 0.1020 0.2976 0.0989 0.2972 0.1274 0.3003
W. Population Density (per km2) 5.8e-05 2e-04 -1e-05 2e-04 6.4e-05 2e-04
W. Poverty Rate -0.0581 0.0672 -0.0388 0.0659 -0.0848 0.0687
W. log(Min. Distance to Mine) 0.0204 0.0130 0.0214* 0.0130 0.0181 0.0131

Observations 289 289 289
Log-Likelihood 369.87 369.18 370.02
AIC -661.73 -660.37 -662.05
λ - - -

Note: The table reports estimated coefficients and standard errors from three spatial durbin models which differs by institutional index con-
struction: local institutional index, local institutional capacity index, and extended local institutional index (see Table A.3 for more detail). We
use a queen contiguity spatial weights matrix. The dependent variable is the cumulative deforestation rate. All models include controls for
socioeconomic, geographic, and climatic characteristics. Spatial lags of covariates are indicated by “W.”. Standard errors are reported next to
each coefficient. Significance levels are denoted as follows: * p < 0.10, ** p < 0.05, *** p < 0.01. Observations, AIC, log-likelihood, and λ
(where applicable) are reported at the bottom of the table.
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E.2 Different Spatial Models

Table E.3 – Direct, Indirect and Total Effect of Local Institutional Index on Cumulative Deforestation
Rate (2001–2023) by Spatial Models, Queen Contiguity W

Cumulative Deforestation Rate (2001-2023)

Direct effect
(

∂Fi
∂xi

)
s.e Indirect effect

(
∂Fi
∂xj

)
s.e Total effect

(
∑j

∂Fj
∂xi

)
s.e

Spatial Durbin Model (SDM)
Local Institutional Index -0.0100*** 0.0036 -0.0451*** 0.0160 -0.0551*** 0.0182
log(Min. Distance to Paved Road) -0.0260*** 0.0068 -0.0538** 0.0236 -0.0799*** 0.0250
Local Institutional Index ×(log(D) ≤ P10) 0.0276** 0.0126 0.1263** 0.0581 0.1539** 0.0679

Spatial Lag of X Model (SLX)
Local Institutional Index -0.0086** 0.0041 -0.0265*** 0.0078 -0.0351*** 0.0085
log(Min. Distance to Paved Road) -0.0292*** 0.0087 -0.0332** 0.0139 -0.0624*** 0.0116
Local Institutional Index ×(log(D) ≤ P10) 0.0212* 0.0122 0.0625** 0.0256 0.0837*** 0.0308

Spatial Durbin Error Model (SDEM)
Local Institutional Index -0.0095*** 0.0038 -0.0238*** 0.0093 -0.0333*** 0.0117
log(Min. Distance to Paved Road) -0.0265*** 0.0072 -0.0389*** 0.0154 -0.0654*** 0.0171
Local Institutional Index ×(log(D) ≤ P10) 0.0214* 0.0126 0.0500* 0.0300 0.0714* 0.0399

Spatial Autoregressive Model (SAR)
Local Institutional Index -0.0074** 0.0037 -0.0139* 0.0077 -0.0213* 0.0112
log(Min. Distance to Paved Road) -0.0228*** 0.0064 -0.0430*** 0.0141 -0.0658*** 0.0197
Local Institutional Index ×(log(D) ≤ P10) 0.0139 0.0111 0.0262 0.0227 0.0402 0.0335

Note: This table reports the direct, indirect, and total marginal effects of the Local Institutional Index and its interaction with remoteness
(measured as log(Min. Distance to Paved Road) ≤ P10) on the cumulative deforestation rate between 2001 and 2023. We use a queen conti-
guity spatial weight matrix. Estimates are obtained from different spatial models. Controls include climatic variables (average temperature,
precipitation, and elevation), forest protection measures (share of forest under private conservation areas, regional conservation areas, natural
protected areas, forest concessions, and Andean communities), agricultural land uses (share of land planted with coffee, cocoa, oil palm, and
coca), as well as socioeconomic and extractive factors (population density, poverty rate, and the logarithm of the minimum distance to the
nearest mining site). Significance levels are denoted as follows: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are based on Monte Carlo
simulations (reps=1000).
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E.3 Different Deciles of the Minimum Distance to Paved Road

Figure E.1 – Total effects of institutional quality, road proximity, and their interaction on cumulative
deforestation by treshold minimum distance to paved road (2001–2023), SDM - Queen Contiguity W

(a) Local Institutional Index (P10 - P90)
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(b) log(Min. Distance to Paved Road) (P10 - P90)
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(c) Local Institutional Index ×(log(D) ≤ PX) (P10 - P90)
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Note: These figures report the total effects of the Local Institutional Index and its interaction with remoteness, measured as
log(Min. Distance to Paved Road) ≤ PX , on the cumulative deforestation rate between 2001 and 2023. Estimates are obtained from Spatial
Durbin Models (SDM) under the queen contiguity spatial weight matrix. The interaction varies according to the percentile threshold PX ,
capturing differences between districts closer and farther from paved roads. Controls include climatic variables (average temperature, pre-
cipitation, and elevation), forest protection measures (share of forest under private conservation areas, regional conservation areas, natural
protected areas, forest concessions, and Andean communities), agricultural land uses (share of land planted with coffee, cocoa, oil palm, and
coca), as well as socioeconomic and extractive factors (population density, poverty rate, and the logarithm of the minimum distance to the
nearest mining site). Confidence intervals are at 95%. Standard errors are based on Monte Carlo simulations (reps=1000).
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Table E.4 – Effect of Local Institutional Index on Cumulative Deforestation Rate (2001–2023) by Different Deciles of the Minimun
Distance to Paved Road, SDM - Queen Contiguity W

Cumulative Deforestation Rate (2001-2023)
P10 P20 P30 P40 P50 P60 P70 P80 P90

β s.e β s.e β s.e β s.e β s.e β s.e β s.e β s.e β s.e
Local Institutional Index -0.0064** 0.0032 -0.0057* 0.0033 -0.0064* 0.0036 -0.0067* 0.0039 -0.0107*** 0.0041 -0.0088* 0.0046 -0.0097* 0.0051 -0.0069 0.0058 -0.0081 0.0095
log(Min. Distance to Paved Road) -0.0217*** 0.0068 -0.0200*** 0.0067 -0.0197*** 0.0068 -0.0212*** 0.0068 -0.0224*** 0.0068 -0.0230*** 0.0069 -0.0199*** 0.0069 -0.0200*** 0.0069 -0.0201*** 0.0068
Local Institutional Index ×(log(D) ≤ PX) 0.0175* 0.0095 0.0058 0.0061 0.0069 0.0057 0.0065 0.0055 0.0124** 0.0054 0.0080 0.0056 0.0077 0.0059 0.0033 0.0066 0.0041 0.0099
Temperature (°C) 4e-04 0.0025 3e-04 0.0025 5e-04 0.0025 8e-04 0.0025 8e-04 0.0024 3e-04 0.0024 1e-04 0.0024 -4.3e-05 0.0024 -1.3e-05 0.0025
Precipitation (mm) -2.8e-06 2.7e-05 -2.4e-06 2.7e-05 -2.8e-06 2.7e-05 -3.8e-06 2.7e-05 -2.3e-06 2.7e-05 -4.7e-06 2.7e-05 -9.6e-07 2.7e-05 -2.7e-06 2.8e-05 -4.5e-06 2.8e-05
Elevation (m.a.s.l.) -4e-05*** 1e-05 -3.9e-05*** 1e-05 -3.9e-05*** 1e-05 -3.8e-05*** 1e-05 -3.8e-05*** 1e-05 -3.8e-05*** 1e-05 -4e-05*** 1e-05 -4.1e-05*** 1e-05 -4.1e-05*** 1e-05
Private Conservation Area (Forest %) 0.1789 0.1533 0.1786 0.1533 0.1963 0.1540 0.2119 0.1538 0.2029 0.1527 0.2142 0.1530 0.1901 0.1552 0.1882 0.1549 0.1840 0.1547
Regional Conservation Area (Forest %) -0.1172 0.0731 -0.1368* 0.0737 -0.1204 0.0735 -0.1284* 0.0735 -0.1358* 0.0729 -0.1298* 0.0731 -0.1096 0.0734 -0.1063 0.0736 -0.1058 0.0738
Natural Protected Area (Forest %) -0.1073** 0.0475 -0.1089** 0.0475 -0.1114** 0.0477 -0.1116** 0.0475 -0.1106** 0.0472 -0.1027** 0.0476 -0.1117** 0.0480 -0.1099** 0.0482 -0.1142** 0.0490
Forest Concession (Forest %) -0.0334 0.0482 -0.0363 0.0485 -0.0385 0.0488 -0.0315 0.0488 -0.0263 0.0484 -0.0180 0.0487 -0.0292 0.0492 -0.0322 0.0490 -0.0350 0.0492
Andean Communities (Forest %) -0.0351 0.0364 -0.0359 0.0364 -0.0360 0.0365 -0.0332 0.0364 -0.0282 0.0363 -0.0248 0.0367 -0.0380 0.0368 -0.0382 0.0368 -0.0389 0.0369
Coffee (Agricultural Land %) 0.0759** 0.0319 0.0778** 0.0318 0.0717** 0.0319 0.0733** 0.0318 0.0736** 0.0316 0.0790** 0.0318 0.0731** 0.0320 0.0738** 0.0321 0.0736** 0.0321
Cocoa (Agricultural Land %) -0.2191** 0.0883 -0.2369*** 0.0894 -0.2243** 0.0889 -0.2268** 0.0884 -0.2337*** 0.0878 -0.2380*** 0.0879 -0.2234** 0.0885 -0.2232** 0.0888 -0.2222** 0.0888
Oil Palm (Agricultural Land %) 0.4049** 0.1635 0.4358*** 0.1635 0.4066** 0.1632 0.3888** 0.1633 0.3939** 0.1615 0.3980** 0.1621 0.4054** 0.1636 0.4093** 0.1645 0.4129** 0.1643
Coca (Agricultural Land %) 0.2075 0.2077 0.2099 0.2075 0.1836 0.2080 0.2068 0.2076 0.2181 0.2069 0.2166 0.2071 0.1981 0.2085 0.1872 0.2091 0.1865 0.2094
Population Density (per km2) 3.4e-05 5.3e-05 4.6e-06 5.4e-05 2.2e-06 5.5e-05 1.6e-06 5.4e-05 -9e-06 5.4e-05 6.2e-06 5.4e-05 1.3e-05 5.4e-05 2.2e-05 5.4e-05 2.3e-05 5.3e-05
Poverty Rate -0.0349 0.0464 -0.0325 0.0465 -0.0373 0.0466 -0.0352 0.0467 -0.0350 0.0461 -0.0227 0.0464 -0.0267 0.0468 -0.0306 0.0470 -0.0323 0.0469
log(Min. Distance to Mine) -0.0148 0.0112 -0.0136 0.0111 -0.0152 0.0111 -0.0134 0.0111 -0.0111 0.0111 -0.0129 0.0111 -0.0154 0.0112 -0.0154 0.0112 -0.0155 0.0112
Constant 0.0501 0.0839 0.0329 0.0848 0.0307 0.0869 0.0016 0.0888 0.0050 0.0852 0.0247 0.0845 0.0575 0.0848 0.0739 0.0839 0.0791 0.0837
W. Local Institutional Index -0.0149** 0.0062 -0.0159** 0.0063 -0.0144** 0.0067 -0.0190** 0.0075 -0.0250*** 0.0081 -0.0277*** 0.0090 -0.0156 0.0103 -0.0146 0.0117 -0.0126 0.0189
W. log(Min. Distance to Paved Road) -0.0091 0.0111 -0.0115 0.0112 -0.0104 0.0112 -0.0135 0.0113 -0.0174 0.0113 -0.0165 0.0115 -0.0125 0.0115 -0.0086 0.0113 -0.0088 0.0112
W. Local Institutional Index ×(log(D) ≤ PX) 0.0419** 0.0200 0.0310** 0.0132 0.0199 0.0123 0.0264** 0.0120 0.0313*** 0.0112 0.0309*** 0.0116 0.0091 0.0122 0.0070 0.0131 0.0041 0.0200
W. Temperature (°C) 0.0034 0.0038 0.0040 0.0038 0.0037 0.0038 0.0044 0.0038 0.0047 0.0038 0.0044 0.0038 0.0030 0.0038 0.0026 0.0037 0.0024 0.0037
W. Precipitation (mm) 1.2e-05 3e-05 1.4e-05 3e-05 1.1e-05 3e-05 1.5e-05 3e-05 1.3e-05 3e-05 1.2e-05 3e-05 4.3e-06 3e-05 3.7e-06 3e-05 5.3e-06 3e-05
W. Elevation (m.a.s.l.) 4.2e-06 1.8e-05 6.7e-06 1.8e-05 9e-06 1.9e-05 1.3e-05 1.9e-05 1.2e-05 1.8e-05 1e-05 1.8e-05 8.6e-06 1.9e-05 5.8e-06 1.9e-05 4.9e-06 1.9e-05
W. Private Conservation Area (Forest %) -0.0252 0.2310 -0.0217 0.2306 -0.0401 0.2315 0.0245 0.2329 0.0609 0.2310 0.0956 0.2354 -0.0267 0.2329 -0.0475 0.2332 -0.0577 0.2327
W. Regional Conservation Area (Forest %) -0.5921*** 0.1537 -0.6089*** 0.1542 -0.5806*** 0.1551 -0.5841*** 0.1542 -0.6042*** 0.1534 -0.5883*** 0.1532 -0.5543*** 0.1541 -0.5523*** 0.1546 -0.5559*** 0.1553
W. Natural Protected Area (Forest %) -0.0370 0.0934 -0.0485 0.0933 -0.0484 0.0938 -0.0446 0.0934 -0.0489 0.0927 -0.0463 0.0933 -0.0394 0.0945 -0.0447 0.0955 -0.0479 0.0987
W. Forest Concession (Forest %) 0.1013 0.0897 0.0991 0.0897 0.1022 0.0901 0.1258 0.0904 0.1677* 0.0912 0.1816* 0.0936 0.1457 0.0960 0.1162 0.0933 0.1093 0.0927
W. Andean Communities (Forest %) 0.0742 0.0574 0.0670 0.0572 0.0694 0.0575 0.0803 0.0576 0.0881 0.0572 0.0826 0.0575 0.0774 0.0581 0.0664 0.0578 0.0643 0.0581
W. Coffee (Agricultural Land %) 0.1204** 0.0558 0.1175** 0.0557 0.1131** 0.0561 0.1140** 0.0555 0.1151** 0.0552 0.1007* 0.0551 0.1034* 0.0556 0.1039* 0.0558 0.1041* 0.0559
W. Cocoa (Agricultural Land %) 0.2592** 0.1287 0.2553** 0.1285 0.2506* 0.1289 0.2251* 0.1271 0.1894 0.1265 0.1838 0.1271 0.2049 0.1278 0.2189* 0.1279 0.2183* 0.1281
W. Oil Palm (Agricultural Land %) 0.4457 0.2883 0.4919* 0.2854 0.4716 0.2868 0.4518 0.2861 0.4321 0.2839 0.4027 0.2869 0.4779* 0.2875 0.5163* 0.2878 0.5079* 0.2895
W. Coca (Agricultural Land %) 0.1014 0.2976 0.1409 0.2971 0.1486 0.2988 0.2515 0.3026 0.2578 0.2975 0.2702 0.3003 0.1289 0.2997 0.1117 0.2997 0.1165 0.2999
W. Population Density (per km2) 5.8e-05 2e-04 -4.8e-05 2e-04 -5.1e-05 2e-04 -7.6e-05 2e-04 -6.9e-05 2e-04 -5e-05 2e-04 -7.4e-06 2e-04 -6.2e-06 2e-04 -3.6e-06 2e-04
W. Poverty Rate -0.0581 0.0672 -0.0486 0.0669 -0.0521 0.0674 -0.0530 0.0674 -0.0414 0.0666 -0.0370 0.0669 -0.0287 0.0677 -0.0405 0.0674 -0.0399 0.0675
W. log(Min. Distance to Mine) 0.0203 0.0130 0.0201 0.0130 0.0223* 0.0130 0.0228* 0.0129 0.0204 0.0129 0.0207 0.0129 0.0222* 0.0131 0.0222* 0.0131 0.0228* 0.0130
Observations 289 289 289 289 289 289 289 289 289
Log-Likelihood 369.87 370.24 368.70 369.83 372.86 371.21 367.84 366.98 366.85
AIC -661.73 -662.47 -659.39 -661.65 -667.72 -664.42 -657.69 -655.95 -655.69
λ - - - - - - - - -

Note: The table reports estimated coefficients and standard errors from nine spatial durbin models divided by different deciles of the minimum distance to paved road. We use a queen
contiguity spatial weights matrix. The dependent variable is the cumulative deforestation rate. All models include controls for socioeconomic, geographic, and climatic characteristics.
Spatial lags of covariates are indicated by “W.”. Standard errors are reported next to each coefficient. Significance levels are denoted as follows: * p < 0.10, ** p < 0.05, *** p < 0.01.
Observations, AIC, log-likelihood, and λ (where applicable) are reported at the bottom of the table.
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