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Abstract

We append the expectation of a monetary-fiscal reform into a standard New Keyne-

sian model. If a reform occurs, monetary policy will temporarily aid debt sustainability

through a temporary burst in inflation. The anticipation of a possible reform links debt

levels with inflation expectations. As a result, interest rates have two effects: they in-

fluence demand and affect expected inflation in opposite directions. The expectations

effect is linked to the impact of interest rates on public debt. While lowering inflation in

the short term is possible through demand control, inflation tends to rise again due to

their impact on inflation expectations (sticky inflation). Optimal monetary policy may

allow negative real interest rates after fiscal shocks, temporarily breaking away from the

Taylor principle. We assess whether the Federal Reserve’s ”staying behind the curve”

was the right strategy during the recent post-Pandemic inflation surge.
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1. Introduction

Persistent inflation became a global phenomenon in the wake of the COVID-19 pandemic.
As inflation gathered momentum, central banks maintained low interest rates, defying early
warning calls and drawing harsh criticism. This criticism is rooted in a traditional view:
that a prompt rate hike would have prevented inflation expectations from de-anchoring,
and that by contracting aggregate demand, central banks signal resolve and avoid more
painful future corrections. This traditional view, however, overlooks that during significant
events such as wars, natural disasters, or political turmoil, inflation often surges alongside
rising national debt levels.1 Under these circumstances, central banks face an atypical chal-
lenge: rate hikes can increase the burden of public debt, potentially leading people to expect
further inflation as a means of stabilizing that debt.

This paper examines inflation dynamics when agents anticipate scenarios where public
debt may need to be stabilized through inflationary finance. Our analysis is prompted by
the sharp rise in medium-term inflationary disaster expectations following the COVID-19
pandemic, as reported by Hilscher, Raviv and Reis (2022). This rise was likely the result of
expectations of inflationary finance. In the U.S., for example, Hazell and Hobler (2024) link
single electoral events to jumps in inflation expectations. Gomez Cram, Kung and Lustig
(2023) find that fiscal news affect Treasury prices through changes in inflation expectations.
We aim to provide a straightforward analysis of how the possibility of future inflationary
finance impairs current monetary policy.

To that end, we study a paper-and-pencil New Keynesian model in which agents an-
ticipate a possible monetary-fiscal reform. In the event of such a reform, the monetary au-
thority temporarily allows higher inflation, resulting in negative real interest rates. After
the reform, debt and inflation are stabilized. The key tension is that, prior to the reform,
increases in nominal interest rates carry two opposing effects: the first is a conventional
decrease in aggregate demand, and the second, the novelty, is the anticipation of a burst
in inflation due to a greater debt burden. The increase in expected inflation modifies the
transmission mechanism of monetary policy.

The paper makes three contributions. First, it portrays the phenomenon of sticky inflation.
Sticky inflation occurs when efforts to reduce inflation through interest rate hikes, while
initially effective, fail because the increased debt burden causes inflation to resurge in the
medium term. That is, under sticky inflation, attempts to control inflation with temporary

1See e.g. the historical evidence in Hall and Sargent (2021,2022).
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rate hikes backfire: The phenomenon occurs because with greater debt, agents anticipate
more inflation if a monetary-fiscal reform scenario materializes. This anticipation appears
in the Euler equation and Phillips curve as endogenous demand and cost-push shocks, re-
spectively. Since expected inflation depends on the debt stock, the effects of interest-rate
increases are persistent.

Second, the paper derives optimal policy prescriptions under sticky inflation. While the
Taylor principle suggests raising real interest rates aggressively whenever inflation spikes,
many central bankers ignored that principle. This paper shows that, under sticky inflation,
such underreaction is actually optimal for a central bank with the standard objectives of
stabilizing inflation and output. Paradoxically, the more hawkish a central bank is, the less
it responds by raising rates after increases in fiscal deficits.

Third, we produce a policy counterfactual for the post-pandemic U.S. inflation. The
model contends that if the Federal Reserve had followed the Taylor principle’s prescription,
inflation would have been higher with much higher national debt levels.

The paper is organized into four core sections. Section 2 presents the framework and
shows we can represent the equilibrium in a 4-equation system akin to the 3-equation sys-
tem in the New Keynesian model. A key feature of this representation is that debt enters the
Phillips curve and Euler equations. This section clarifies that sticky inflation occurs because
the Phillips curve features a backward-looking component associated with the path of debt.
The section also clarifies that sticky inflation does not rely on the equilibrium determination
implied by the fiscal theory of the price level (FTPL); rather, it is a feature of anticipated
inflationary finance.

Section 3 is devoted to characterizing inflationary dynamics and fleshing out the sticky
inflation phenomenon. For that, we present three policy exercises. First, we characterize
sticky inflation in the context of policy-rate paths that aim to close the output gap. This first
exercise shows that stabilizing output generates a prolonged inflationary episode fueled
by inflation expectations associated with higher debt levels. A second exercise shows that
temporary increases in nominal rates aimed at controlling inflation may only be successful
on impact. As long as surpluses do not revert the path of debt, inflation returns with greater
force. Likewise, a policy that aims to stabilize debt permanently leads to an explosion in
inflation and an undesirable overheating of the economy. The three exercises demonstrate
that attempting to stabilize one outcome variable (inflation, output gap, or debt) destabilizes
the other variables.

The policy exercises showcase that when debt levels add inflationary pressure through
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expectations, the effects of interest rates on debt financing affect inflation dynamics. The
feedback from debt to inflation expectations breaks, in an endogenous way, the possibility
of jointly stabilizing output and inflation, the so-called divine coincidence.

Lack of divine coincidence furthermore leads to a non-trivial optimal monetary policy
analysis, which we investigate in Section 4. Under sticky inflation, minimizing the expected
square of inflation and the output gap has an indirect representation in terms of the squared
deviation of debt relative to a “natural debt level”—i.e., an inflation-neutral debt level. Un-
der commitment, we obtain an optimal real-interest path after a fiscal shock. We find that
it is optimal for the central bank to underreact to the fiscal shock, ultimately moving nom-
inal rates less than one-to-one with inflation. We contrast the optimal responses of dovish
and hawkish central banks—who only care about output and inflation stabilization, respec-
tively. A novel finding is that a hawkish central bank should be less responsive in the short
run and allow greater inflation to burst after a fiscal shock: Knowing that debt permanently
impacts inflation, a more hawkish central bank prefers front-loading inflation to flatten the
debt trajectory. Lowering the debt trajectory mitigates the sticky inflation component of
inflation.

Section 5 is where we confront the theory with the data and evaluate counterfactuals
where the Fed would have followed the Taylor principle. We discipline the calibration us-
ing the pass-through of fiscal shocks to inflation expectations. We decompose the recent
inflation surge into shocks associated with primary deficits, supply shocks, bond valuation
shocks, and deviations from the Taylor rule. Contrary to conventional wisdom, we show
that expansionary monetary policy shocks contributed to inflation only for a few quarters,
but by eroding debt, it depressed inflation in the medium term.

Section 6 concludes with a discussion on the importance of the timing of reforms and the
challenge of balancing the sticky inflation mechanism with signals about the central bank’s
anti-inflationary stance.

Literature review. Monetary and fiscal policy interactions have been studied in formal
models since Sargent and Wallace (1981). The topic is now part of textbook material that
studies seigniorage financing and abstracts from nominal rigidities (e.g., Ljungqvist and
Sargent, 2018). Fiscal and monetary interactions were swept aside in the standard ver-
sions of the New Keynesian model, where a combination of Ricardian equivalence and
Taylor rules decouple inflation from the government budget constraint. A separate tra-
dition evolved from the FTPL, the idea that the price level may adjust to erode nominal
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debt, making it sustainable given the present value of real primary surpluses (e.g. Leeper,
1991; Woodford, 1998; Cochrane, 1998). The government budget constraint naturally found
its way back into New Keynesian models through the FTPL (e.g., Sims, 2011; Leeper and
Leith, 2016; Cochrane, 2018a; Caramp and Silva, 2023, among many others). With nominal
rigidities, there is an additional channel of monetary/fiscal interactions that works through
changes in the real interest rate.

The government budget constraint also finds its way into the New Keynesian model in
our paper through expected jumps in inflation upon a reform event, not through the deter-
mination of time-zero inflation. Unlike FTPL, which posits monetary policy as subordinate
to fiscal policy, here, monetary policy remains autonomous, both before and after any poten-
tial fiscal-monetary reform. Thus, the prevalent equilibrium determination of FTPL models
is not present here. However, our analysis does share the FTPL’s recognition of the impor-
tance of fiscal-monetary interactions. Our framework is notably agnostic about the specifics
of a monetary-fiscal reform: it could stem from the monetary authority’s voluntary coopera-
tion with the Treasury, a negotiated compromise, or temporary surrender of autonomy (e.g,
Chung, Davig and Leeper, 2007; Bianchi, Faccini and Melosi, 2023).2 The reform’s exact
nature—or eventual occurrence—is not central. What is central is that the mere anticipation
of a reform will lead to sticky inflation.

The anticipation of a monetary-fiscal reform does bring our work closer to models that
allow switches between regimes where deficits are financed with taxes or inflation, (e.g.
Chung et al., 2007; Bianchi and Ilut, 2017). Relative to this literature, we have in common
that agent’s beliefs about the possibility of inflationary finance have effects in the present.
Our contribution to this literature is that we identify, formalize, and characterize the sticky
inflation phenomenon. We contend that sticky inflation is also present in many of those
models and its presence does not rely on the equilibrium selection germane to the FTPL.
The presence of monetary-fiscal interactions in a setting where the FTPL does not select
equilibrium is also a feature of Angeletos, Lian and Wolf (2024), who emphasize the role of
having non-Ricardian agents.

Related work also includes Bianchi and Melosi (2019), who introduces a monetary au-
thority that commits to accepting sufficient inflation to stabilize the debt-to-output ratio
after exceptionally large shocks. In this model, fiscal expansions can be backed, and paid
for with future revenues, or unbacked, and financed with inflation. Jacobson, Leeper and

2As pointed out by Cochrane (2023), there is an observational equivalence between the fiscal-monetary
reforms here and fiscal shocks in models of the FTPL-tradition.
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Preston (2019) provide evidence that an unbacked fiscal expansion was implemented in
the aftermath of the Great Depression, while Bianchi et al. (2023) present evidence that un-
backed fiscal shocks account for a significant fraction of U.S. inflation dynamics. Crucially,
this work emphasizes the dynamics after the shocks, whereas ours emphasizes their antici-
pation.

On the normative front, our work also relates to Leeper, Leith and Liu (2021), who study
optimal policies in settings with long-term debt, distortionary taxes, and inflationary fi-
nance. Here, the monetary policy must confront the fact that its current effect on real rates
will permanently affect the path of debt and, consequently, future inflation. Key to this fea-
ture is the agents’ expectations that the central bank can only influence through the level of
debt. In this sense, our model is closely related to Caballero and Simsek (2022), who show
that a monetary authority might choose to accommodate the private sector’s beliefs, even if
it disagrees with them.

Notably, the post-COVID-19 inflation surge renewed the interest in understanding the
drivers of inflation from analytic and quantitative standpoints.3 On the quantitative front,
Blanchard and Bernanke (2023), Gagliardone and Gertler (2023), Shapiro (2024), and Gi-
annone and Primiceri (2024) take versions of the New Keynesian model models that de-
compose the drivers of inflation into labor-market shocks and energy shocks. Benigno and
Eggertsson (2023) emphasize the role of the non-linearity of the Phillips curve. This first
wave of decompositions follows the New Keynesian tradition that typically abstracts away
from how debt financing impairs monetary policy, indirectly attributing demand shocks
to fiscal variables. Our study is explicit about fiscal-monetary interactions and shows that
these may also appear as cost-push shocks. Thus, our decomposition is part of a second
wave of studies, including Barro and Bianchi (2024), Angeletos et al. (2024), and Smets and
Wouters (2024), that is explicit about fiscal-monetary interactions.

2. Model

3On the analytical front, recent work has emphasized channels unrelated to fiscal shocks: employer-worker
tensions Lorenzoni and Werning (2023b,a); Guerreiro, Hazell, Lian and Patterson (2024), hiring frictions
Michaillat and Saez (2024), and supply side constraints Comin, Johnson and Jones (2023)
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Figure 1: Timeline of events
Note: Over a small time interval ∆t, the economy switches to the inflationary-finance phase with
probability λ∆t, and stays in the fiscal-expansion phase with the remaining probability.

2.1 Environment

We cast the model in continuous time, t ∈ [0,∞). The economy starts at a fiscal-expansion
phase where the government runs primary deficits. With Poisson intensity λ, the economy
switches to an inflationary-finance phase that lasts for a predetermined amount of time, T ∗.
In the inflationary-finance phase, government debt is reduced through a mix of fiscal and
monetary tools—which we also call fiscal-monetary reform. After the inflationary-finance
phase is over, deficits, debt, output, and inflation are stabilized forever. Figure 1 summarizes
the timeline of events.

The economy is populated by households, firms, and a government. Each group has
views about the fiscal-monetary arrival rates, possibly differing from the objective ones.
Next, we describe the agents’ behavior, relegating derivations to Appendix A. We discuss
the modeling assumptions at the end of the section.

Notation. We index variables in the inflationary-finance phase using an asterisk (∗) super-
script whereas variables during the fiscal-expansion phase do not carry that superscript. For
example, πt represents inflation at time t of the fiscal-expansion phase whereas π∗

t is infla-
tion at time t since the start of the inflationary-finance phase. Variables in the steady state
are denoted by an upper bar. For example, consumption in a steady state is denoted by C.

Government. The government is comprised of fiscal and monetary authorities. The fiscal
authority sends lump-sum transfers Tt—taxes if Tt < 0—to households and issues short-
term real debt Bt. The monetary authority sets the nominal interest rate it.

6



The government’s flow budget constraint is given by

Ḃt = (it − πt)Bt + Tt, (1)

given B0 > 0, where πt denotes the inflation rate and it the nominal interest rate. Fiscal
transfers, which equal primary deficits—or surpluses when negative—satisfy the following
rule:

Tt = −ρBt − γ(Bt −B) + Ψt, (2)

where ρ denotes the interest rate that prevails in a zero-inflation steady state,B is the steady-
state level of debt, and Ψt corresponds to a fiscal shock. Importantly, γ ≥ 0 controls the
strength of fiscal responses—primary surpluses—to the level of government debt. If γ > 0,
debt is mean reverting toB; if γ = 0, transitory fiscal shocks lead debt to stabilize at different
levels.

During the fiscal-expansion phase, there are ongoing fiscal pressures, Ψt > 0. Meanwhile,
the monetary authority’s instrument, the nominal rate it, satisfies a Taylor rule:

it = ρ+ ϕπt + ut. (3)

We focus on the case where the Taylor coefficient ϕ and the fiscal rule coefficient γ are such
that the economy is always in an active monetary regime, following the Leeper (1991) ter-
minology. The disturbance ut allows the monetary authority to respond freely to the fiscal
expansion.4 These choices allow us to analyze an independent monetary authority that
freely chooses interest rates—deviating by ut from the Taylor rule.

When the economy switches to the inflationary-finance phase, the government sets Ψt =

0, and the monetary authority commits to set a constant real interest rate for the duration
of the reform, that is, for a time interval of length T ∗. The rate is set to whatever level
is necessary to bring debt to a target level Bn. Once debt reaches Bn, monetary policy
implements a zero inflation target, and the economy permanently reaches its steady-state
level. T ∗ is fixed regardless of the debt levels. This assumption translates debt levels into a
period of future low policy rates, which, in turn, lead to inflationary bursts.

4The disturbance ut captures the response of the monetary authority to the fiscal expansion, so we refer to it
as a disturbance to the policy rule instead of a shock.
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Households. In the fiscal-expansion phase, households form expectations of the arrival
time of the inflationary-finance phase. The household’s problem is given by

Vt(Bt) = max
[Cs,Ns]s≥t

Eht

[∫ t̃

t

e−ρ(s−t)
(
logCs −

N1+φ
s

1 + φ

)
dt+ e−ρt̃Ṽt̃(Bt̃)

]
,

subject to

Ḃt = rtBt +
Wt

Pt
Nt +Dt + Tt − Ct,

and the No-Ponzi condition limT→∞ Eht [ηTBT ] ≥ 0, given the household’s stochastic discount
factor (SDF) ηt. Bt denotes the real value of bonds held by households, rt = it−πt is the real
interest rate, Wt is the nominal wage, Pt is the price level, and Dt are the firm’s dividends.
The random time t̃ denotes the arrival time of the reform, and Ṽt denotes the value function
after the reform.

Households believe that the monetary-fiscal reform occurs with Poisson intensity λh.
The key object from the demand side is the households’ Euler equation:

Ċt
Ct

= (it − πt − ρ)︸ ︷︷ ︸
standard term

+λh

[
Ct
CJ
t

− 1

]
︸ ︷︷ ︸

reform risk

. (4)

where CJ
t denotes consumption at the instant of a fiscal-monetary reform. This Euler equa-

tion includes a standard term associated with the gap between real interest rates and the
discount rate dictating consumption growth. The second term captures a risk adjustment
for the monetary-fiscal reform. The adjustment is given by the jump in marginal utilities the
instant the economy enters an inflationary-finance phase.5 The expectation of a reform pro-
vokes a change in the household’s discount factor, a central variable in the New Keynesian
model. The usual intra-temporal labor-supply condition holds: Wt/Pt = CtN

φ
t .

Firms. Production follows the structure of the standard New Keynesian model. The econ-
omy has two types of firms: final-goods and intermediate-goods producers index by i ∈
[0, 1]. Final goods are produced by competitive firms using a constant-elasticity of sub-
stitution production function over intermediate inputs. As usual, the demand for inter-

mediate good i is given by Yi,t =
(
Pi,t
Pt

)−ϵ
Yt, where Pi,t is the price of intermediate i,

5Similar terms appear with other forms of uncertainty, such as the uninsurable idiosyncratic income risk of
McKay, Nakamura and Steinsson (2016) or the aggregate disaster risk in Caramp and Silva (2021).
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Pt =
(∫ 1

0
P 1−ϵ
i,t di

) 1
1−ϵ

is the price level, and Yt is the aggregate output.
Intermediate-goods producers operate the technology Yi,t = ANi,t, where Ni,t denotes

labor input and A is a productivity factor. They compete monopolistically, and they are
subject to quadratic price-adjustment costs. The problem of intermediate-goods firm i is

Qi,t(Pi) = max
[πi,s]s≥t

Eft

[∫ t̃

t

ηs
ηt

(
Pi,s
Pi,t

Yi,s −
Ws

Ps

Yi,s
A

− φ

2
π2
i,s

)
ds+

ηt̃
ηt
Q̃i,t̃(Pi,t̃)

]
, (5)

subject to their demand schedule, Yi,t =
(
Pi,t
Pt

)−ϵ
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi, where φ

is a price adjustment cost parameter. As in the household’s problem, t̃ is the random arrival
time of a reform.

Firms have beliefs about the arrival rate of the monetary-fiscal reform, which are po-
tentially different from those of households. Firms believe that the monetary-fiscal reform
occurs with Poisson intensity λf . The key object of this supply-side block is a modified New
Keynesian Phillips curve (NKPC):

π̇t = (it − πt) πt + ϵφ−1

(
(1− ϵ−1)− Wt

Pt

)
Yt︸ ︷︷ ︸

standard term

+λf
ηJt
ηt

(
πt − πJt

)
︸ ︷︷ ︸

reform risk

(6)

Like the Euler equation, the firm’s Phillips curve features a standard term associated with
marginal costs. However, it is also modified by a second term associated with the beliefs
about the reform. Firms anticipate that if a monetary-fiscal reform occurs, inflation will
jump to πJt —which we dub the jump inflation term. The intuition is that because adjusting
prices immediately is costly, firms reduce price-setting costs by raising prices today. The
jump in inflation is adjusted by ηJt , which translates the probability of a reform to a risk-
adjusted probability.

2.2 A 4-equation log-linear representation

Part of the appeal of the standard New Keynesian model is its log-linear representation into
a tractable 3-equation system. Here, we present a tractable 4-equation log-linear represen-
tation that includes the feedback of fiscal variables on inflation expectations—the log-linear
approximation is around the zero-inflation constant-debt steady state.
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Steady state and log-linear deviations. The steady-state corresponds to the case Ψt = 0

and ut = 0, so Bt = B, Ct = C, it = ρ, and πt = 0, where B corresponds to the initial
condition for government debt and C is the steady-state level of consumption.

In this system, lower-case variables denote log-linear deviations. We also define bt ≡
Bt−B
B

, and the output gap xt ≡ Yt−Y
Y

. In turn, ψt ≡ Ψt/B denotes the fiscal shock scaled by
debt.

Dynamics: Inflationary-finance phase. Once the inflationary-finance phase begins, fiscal
shocks ψ∗

t and the parameter controlling the fiscal response γ are set to zero. In turn, the
monetary authority implements a constant real interest rate r∗ for T ∗ periods, as needed to
bring debt to a level that no longer requires a fiscal response to stabilize it. Hence, during
the inflationary-finance phase, debt evolves according to b∗t = b∗0 + (r∗ − ρ)t for t ≤ T ∗. To
ensure that debt reaches the sustainable level after T ∗ periods, monetary policy must set the
real interest rate to:

r∗ = ρ− b∗0 − bn

T ∗ , (7)

where bn ≡ Bn−B
B

denotes the natural or neutral debt level, that is, the debt level for which no
fiscal response is needed to keep debt constant. This is also the debt level at which inflation
and output would jump to zero at the start of an inflationary-finance phase. Once the target
debt level is reached by the end of the reform, the monetary authority implements a zero
inflation target, that is, {x∗T ∗ , π∗

T ∗} = {0, 0}.
Given the terminal condition at the end of the reform, we can roll back the Euler equation

and NKPC to obtain:

x∗t = (r∗ − ρ)(t− T ∗) = (b∗0 − bn)

(
1− t

T ∗

)
, t ∈ [0, T ∗], (8)

and

π∗
t = κ(r∗ − ρ)

∫ T ∗

t

exp(−ρ(s− t))(s− T ∗)ds. (9)

Since at any moment t debt does not jump when the economy switches phases, debt at the
start of an inflationary-finance phase equals debt at the end of the fiscal-expansion phase,
b∗0 = bt. Thus, using the expression for the real rate, given in (7), and using (8) and (9), we
can write inflation and the output gaps at the instant of the fiscal-monetary reform in terms
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of the debt gap bt − bn at the instant of the switch:

π∗(bt) ≡ κΦ(bt − bn) and x∗(bt) ≡ bt − bn, (10)

where

Φ ≡
∫ T ∗

0

exp(−ρs)
(
1− s

T ∗

)
ds > 0.

Inflation and the output gap at the instant of the reform, given by (10), in general will differ
from their values the instant prior to the reform. Thus, these variables jump at the start of
the inflationary-finance phase. The jump size depends on the debt gap. The larger the gap,
the lower the real interest rate and the higher the inflation. The coefficient Φ controls the
pass-through from debt to inflation. It captures the increase in the inflation rate required to
bring debt to its neutral level during an inflationary-finance phase as current debt increases.

Dynamics: fiscal-expansion phase. The system of linearized Euler equation, NKPC, and
government budget constraint is:

ẋt = it − πt − ρ+ λhxt − λh(bt − bn) (11)

π̇t = (ρ+ λf )πt − κxt − λfκΦ(bt − bn) (12)

ḃt = it − πt − ρ− γbt + ψt. (13)

Here, κ > 0 is the slope of the Phillips curve and a function of other parameters. The Taylor
rule (Eq. 3) completes the 4-equation system.

Without beliefs about a monetary-fiscal reform, the model collapses to the standard for-
mulation of the New Keynesian model with monetary dominance: the debt dynamics are
entirely decoupled from the inflationary and the output gap dynamics. Moreover, divine
coincidence holds: {xt, πt, it − ρ} = {0, 0, 0} is a solution to the New Keynesian block.

Determinacy, implementation, and monetary dominance. Next, we provide the condi-
tions for local determinacy.

Proposition 1 (Determinacy and implementability). Consider a given path of monetary distur-
bances ut and fiscal shock ψt. Assume that γ ∈ (0, ρ+ λf + λh). Then,
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I. Determinacy. There exists a unique bounded equilibrium if and only if

[γ − λh (1 + λfΦ)] (ϕ− 1) > −γ ρ+ λf
κ

λh. (14)

II. Implementability. Let ît denote a given path of nominal interest rates and (x̂t, π̂t, b̂t) that
satisfies the Euler equation (11), the NKPC (12), and the government’s flow budget constraint
(13). Suppose that ut = ît − ρ− ϕπ̂t, with ϕ satisfying condition (14), such that we can write
the policy rule as

it = ît + ϕ(πt − π̂t). (15)

Then, the unique solution to the system (11)-(13) and (15) is given by xt = x̂t, πt = π̂t, and
bt = b̂t.

Condition (14) generalizes the Taylor principle to our setting.6 For the rest of the paper,
condition (14) is satisfied during the fiscal-expansion phase. An implication is that monetary
policy is active in the sense of Leeper (1991). Appendix B further shows that fiscal policy
is passive when γ ≥ 0. Because these are the opposite assumptions of fiscally dominant
regimes, the mechanism is not the mechanism that prevails under the FTPL.

The second part of Proposition 1 shows how a time-varying inflation target implements
any allocation satisfying the equilibrium conditions. A similar approach can be used to im-
plement the equilibrium outcomes in the inflationary-finance phase by assuming the mon-
etary authority follows the policy rule: i∗t = ρ + ϕπ∗

t + u∗t , given the same coefficient ϕ.
Moreover, disturbances to the Taylor rule are regime-dependent, but the coefficients are
fixed.7

Integral representation Given an arbitrary path for the real rate rt = it − πt, we can char-
acterize the system in closed form. The path of debt satisfies:

bt = e−γtb0 +

∫ t

0

e−γ(t−s)(ψs + rs − ρ)ds. (16)

Debt accumulates through two forces: fiscal pressures, ψs, and real interest rates that exceed
the natural rate ρ. The parameter γ controls the mean reversion in government debt.

6When λh = 0, we recover the standard Taylor principle: equilibrium determinacy requires ϕ > 1. With
λh > 0, determinacy can be achieved with a relaxed condition: ϕ ≤ 1.

7This feature is in contrast to the literature on regime-dependent rules—see e.g. Davig and Leeper (2007)
and Farmer, Waggoner and Zha (2009).
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Uncertainty about the reform leads to a discounted Euler equation:

xt = −
∫ ∞

t

e−λh(s−t)(rs − (ρ− λh(bt − bn)))ds. (17)

This equation states that changes in future interest rates are discounted by λh. The second
term is an expectation effect. The term captures how the path of debt enters isomorphically
to changes in the natural interest rate.8

Integrating the NKPC forward, we obtain the inflation rate

πt = κ

∫ ∞

t

e−(ρ+λf )(s−t)xsds+ κΦλf

∫ ∞

t

e−(ρ+λf )(s−t)(bs − bn)ds. (18)

As in the standard New Keynesian model, inflation is given by forward-looking compo-
nents. One component equals the expected present value of output gaps in the fiscal-
expansion phase. However, there is a second component associated with the expectation
of a jump in inflation after a reform.

The integral representations in (17) and (18) reveal the key insight of this paper. Recall
that debt appears in the integral formulations because it summarizes the expectations of
jumps in inflation and output conditional on reform. The presence of debt changes the
transmission mechanism of monetary policy relative to the standard New Keynesian model
because, unlike inflation or the output gap, debt is a backward-looking variable.

The appearance of a backward-looking variable in the New Keynesian model has impor-
tant implications for monetary policy analysis. Consider a shock to real rates induced by
monetary policy in the standard New Keynesian model: to compute inflation and output
at any moment, we need only information on rates from that moment onward. Thus, if the
shock vanishes with time, so will its effects. This is not true when the backward-looking
behavior of debt is present. To compute inflation and output at any moment, we need in-
formation on debt every moment onward. However, debt depends on the entire history
of rates, not only rates going forward. As a result, monetary policy in the past can affect
today’s outcomes. The sticky inflation phenomenon we highlight in this paper critically
depends on this feature.

A salient feature of the NKPC, displayed in (18), is its expectation component inherits
some history dependence. Several empirical studies document such effects: Hazell, Her-
reno, Nakamura and Steinsson (2022) estimate a similar NKPC that contains a term captur-

8See e.g. Leeper and Zha (2003) for a definition and discussion of expectation-formation effects.
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ing long-term inflation expectations and find that most of the variation in inflation comes
from that term.9 Likewise, Coibion, Gorodnichenko and Weber (2022) argue that news about
future debt leads households to anticipate higher inflation, both in the short-run and the
long run.10

Discussion: modeling assumptions and outcomes. Two key assumptions merit discus-
sion: the nature of fiscal-monetary reforms and the expectations of economic agents regard-
ing these reforms. The random arrival of inflationary-finance phase reforms reflects the
inherent uncertainty in the political process that determines how the fiscal burden of large
debt levels is resolved. These reforms depend on negotiations, capabilities, and decisions
made by political actors who may seek compromises with monetary policymakers. Reforms
could also be caused by self-fulfilling episodes where the rollover of national debt fails.

For simplicity, we assume a single outcome for any reform. However, in reality, re-
forms are complex, and their outcomes are uncertain. This complexity could be modeled by
adding uncertainty regarding the magnitude of inflationary effects, perhaps through a com-
pound Poisson process. In our framework, this extension would only alter the parameter
Φ.

As in Caballero and Simsek (2022), we allow for the possibility that households’ and
firms’ beliefs differ from the actual probabilities of a reform. Given that fiscal expansions
and subsequent reforms are rare, it can be challenging for any entity—households, firms,
monetary authorities—or even modelers—to accurately assess the likelihood of policy changes.
This justifies allowing differences in beliefs. For much of the analysis, we examine versions
of the model where household beliefs about reforms are “turned off,” creating simplified
cases that clarify the role of household and firm beliefs.

3. Three policy experiments

This section considers three policy experiments. The experiments are designed to show that
once the expectation of a monetary-fiscal reform lurks in the background, monetary policy
can no longer jointly stabilize output and inflation. The meaning of this result is profound:

9Hazell et al. (2022) attribute fluctuations in the expectations component to permanent changes in the con-
duct of monetary policy—permanent changes in output gap targets. Equation (18) shows that temporary fiscal
shocks can rationalize that evidence since they will provoke movements in the expectation component.

10Similarly, Li, Fu and Xie (2022) shows that inflation expectations respond to fiscal shocks and predict
future debt levels, consistent with our mechanism.
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it breaks divine coincidence. Lack of divine coincidence crucially depends on the firms’
expectation: if firms do not expect a reform, it is possible to jointly stabilize the output gap
and inflation even if households do. To focus squarely on the role of firm expectations, most
of the section assumes that λh = 0. We also temporarily focus on the case with a fiscal
stabilizer, γ = 0, for tractability. We dispense these assumptions at the end of the section.

For the rest of the analytical formulations, we assume the fiscal shock is exponentially de-
caying, the continuous-time analog of AR(1) processes in discrete time: hence, ψt = e−θψtψ0.

Policy I: Output gap stabilization. In the first experiment, monetary policy aims to stabi-
lize output during the fiscal-expansion phase. That is, monetary policy implements a zero
output gap, xt = 0.

To stabilize the output gap, the real rate must satisfy rt = ρ. Given the fiscal shock,
government debt is increasing over time: bt = blr − ψt/θψ, where blr ≡ b0 + ψ0/θψ denotes
the long-run debt level in the fiscal-expansion phase.

The proposition below shows that the expectation effects induced by the fiscal shock
lead to an increasing path of inflation over time.

Proposition 2 (Inflation under output gap stabilization). Suppose xt = 0 in the fiscal-expansion
phase. Then, inflation is

πt =
κλΦ

ρ+ λ

[
bt − bn +

ψt
ρ+ λ+ θψ

]
. (19)

Moreover, inflation increases over time, π̇t = κλΦ
ρ+λ+θψ

ψt > 0, and converges to a positive level,
limt→∞ πt =

κλΦ
ρ+λ

(blr − bn) > 0.

Proposition 2 shows that to stabilize output, monetary policy must live with an ever-
growing inflation. Before a reform, inflation increases initially in proportion to the primary
deficits. However, inflation persists even after deficits dissipate. Moreover, inflation lasts
until a reform happens. That is, inflation is sticky. Sticky inflation occurs because the jump
inflation component in the Phillips curve, πJt = κΦ(bt − bn), reflects the expected burst in
inflation that trails the path of debt in a inflationary-finance phase.

Proposition 2 tells us something meaningful: an independent monetary policy focused
on stabilizing output must live with inflation that trails debt, a fiscal variable. That is, the
sole belief, rational or not, of a future compromise to aid debt stabilization is enough to
destabilize inflation in a monetary independent regime.

Figure 2 shows the typical paths of inflation, debt, and the output gap, during the fiscal-
expansion phase and the inflationary-finance phase. In Panel (a), we find an example of
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(a) Inflation (b) Debt (c) Output Gap

Figure 2: Pre and Post Reform Equilibrium Objects

Note: Red dashed lines correspond to reform paths that occur at different points in time.

a path of inflation (solid blue curve) plotted together with its corresponding jump infla-
tion term (blue dotted curve) and the paths that start with different arrival dates of the
inflationary-finance phase (red dashed curves). When the inflationary-finance phase is ini-
tiated, inflation jumps to the jump inflation term. Prior to the reform, inflation increased
steadily because of the present value of all future jump inflation terms. If the reform hap-
pens early, the early resolution of reform uncertainty may lead inflation to drop.11 However,
inflation will jump to a higher level if the reform is postponed past a date. In either case,
inflation is increasingly converging to a higher level until a reform. Panel (b) shows the
corresponding paths of debt. Prior to a reform, the national debt is also growing. Upon
a reform, it trends downwards to its target level in exactly T ∗ time. The speed of the debt
reduction is faster the later the date of a reform. This reflects that since inflation must reduce
debt to the same level during the same time interval, later reforms require greater bursts in
inflation to stabilize debt. Panel (c) shows the output gap. Again, the later the reform, the
greater the overheating needed to stabilize debt. The increasing path of inflation shows that
postponing reforms is increasingly costly.

Policy II: Inflation stabilization. In the previous exercise, monetary policy focuses exclu-
sively on stabilizing output. In the next exercise, it attempts to combat inflation by tem-
porarily raising rates, such that rt − ρ = e−θrt(r0 − ρ), for a given initial rate r0 > ρ and
persistence parameter θr > 0.

It is useful to express results relative to the previous experiment. For that, we use a

11If the reform happens early, inflation drops because the initial jump inflation is lower than the net present
expected discounted value of future jump inflation.
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superscript og to denote the variable paths in the previous exercise. With mean reverting
shocks to rt, the output gap follows:

ẋt = rt − ρ⇒ xt = − 1

θr
(rt − ρ). (20)

As rt > ρ, the output gap is negative during the fiscal-expansion phase.12 In turn, the path
of debt is

bt = bogt +
1− e−θrt

θr
(r0 − ρ), (21)

where bogt = b0 +
1−e−θψt

θψ
ψ0.

We solve for inflation using the NKPC—using equation (18). A policy that fights inflation
deviates from the output-gap stabilization solution through the sum of two effects: a fight-
inflation effect and a jump-inflation effect. Formally:

Lemma 1. Suppose r0 > ρ. With mean-reverting real interest rates ṙt = −θr(rt − ρ), inflation is
given by:

πt − πogt = F π
t + Jπt .

where F π
t and Jπt are, correspondingly, fight and jump inflation components given by:

F π
t = − κ

θr

e−θrt

ρ+ λ+ θr
(r0 − ρ) < 0 and Jπt =

λκΦ

θr

[
1

ρ+ λ
− e−θrt

ρ+ λ+ θr

]
(r0 − ρ) > 0.

The first term, the fight-inflation term F π
t , captures the standard effect of contractionary

policy through aggregate demand. The term is negative since rt > ρ and converges to zero
as the contractionary stimulus vanishes. Thus, the increase in rt above the natural rate ρ has
a mitigating effect on inflation, as in standard versions of the New Keynesian model.

The second term, the jump inflation Jπt , is the expected present value of inflation surges
after possible reforms, which depends on the path of debt, πJt = κΦ(bt− bn). The jump infla-
tion term is always positive and, furthermore, builds up with time. Jump inflation is related
to the increase in the fiscal burden from an increase in the real interest rate. A greater fiscal
burden builds up with time: debt grows with the past accumulation of interests—above the
natural debt level. Hence, the additional fiscal cost is never repaid and, thus, added to the
debt stock. Through debt accumulation, current rate hikes feedback into present inflation by
expecting a greater burst in future inflation. In a nutshell, the debt accumulation resulting

12We used the terminal condition limt→∞ xt = 0, a form of long-run neutrality.
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from higher real rates pressures current prices upward.
Whereas the fight-inflation term pressures prices downward, the jump inflation does the

opposite. The fight-inflation term vanishes over time, but the jump-inflation term continues
to build up. Hence, which effect dominates depends on the persistence of shocks and the
horizon ahead of the stimulus. These observations lead to the following :

Proposition 3 (Stepping on a Rake). Suppose r0 > ρ. The rate increase reduces inflation on
impact, i.e., π0 < πog0 iff:

θr <
ρ+ λ

λΦ
.

However, in that case, there always exists a T̂ > 0 such that πt > πogt for t > T̂ .

The proposition shows two things: First, to be successful in the present, monetary policy
must commit to a sufficiently persistent contractionary policy stance. Indeed, monetary
policy can fight inflation in the short run, provided the policy is sufficiently persistent.

Second, although monetary policy may succeed in fighting inflation in the short run, it
faces an unpleasant “stepping-on-a-rake” result: eventually, inflation will come back and
stronger. Once again, inflation is sticky! The reason is that the contractionary effect on the
output gap eventually fades away, whereas the effect on the government debt builds up
over time.

Figure 3 shows paths of inflation, debt, and the output gap, considering an attempt to
fight inflation in a fiscal-expansion phase. In Panel (a), we find an example of two paths of
inflation: a baseline (dashed)—without a monetary policy disturbance—and a counterfac-
tual (solid) corresponding to a temporary increase in policy rates. The figure shows Propo-
sition 3 at play. While the anti-inflationary strategy is successful early on, inflation returns a
year into the policy. Panel (b) shows why: it plots the fight inflation (solid) and jump infla-
tion (dashed) components. The fight inflation component is initially strong but eventually
fades away with the vanishing impulse on aggregate demand. The jump inflation compo-
nent is initially weaker but builds up. Panel (c) shows the path of debt, which picks up with
the higher real interest rates. Finally, Panel (d) shows the contractionary effect on the output
gap.

All in all, with a lurking expected fiscal-monetary reform, attempts to curtail inflation
have standard short-run effects. Unlike the canonical New Keynesian model, they lead to
higher inflation in the long run. This pattern is similar to the “stepping-on-a-rake” result
in Sims (2011). However, that paper’s pattern follows from changes in the valuation of
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(a) Inflation (b) Decomposition

(c) Debt (d) Output gap

Figure 3: Equilibrium Paths with and without Contractionary Monetary Shock

nominal long-term debt, a feature that plays no role here.13

While monetary policy cannot fully stabilize inflation with temporary movements in
the output gap, it could do so if it were to induce a permanent decline in output. Indeed,
permanent inflation stabilization can be achieved if debt follows an increasing path while
the output gap becomes more and more negative with time.14

Policy III: Debt stabilization. In the third policy experiment, monetary policy attempts
to stabilize debt. Stabilizing debt requires the real rate to neutralize the effects of deficits:
rt − ρ = −ψt, so bt = b0. Thus, the output gap is: xt = ψt/θψ given the terminal condition
limt→∞ xt = 0. In this case, inflation follows:

πt =
κ

θψ

ψt
ρ+ λ+ θψ

.

13As shown by Cochrane (2018b), long-term bonds are strictly necessary to obtain the result.
14In this case, the output gap must offset movements in the government debt, xt = −λΦ(bt − bn). This

condition requires that the real rate be rt−ρ = − λΦ
1+λΦψt, in which case debt is given by bt = b0+

1−e−θψt
θψ

ψ0

1+λΦ .
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All in all, to stabilize the debt, the monetary authority must overheat the economy in pro-
portion to the trajectory of primary deficits.

Debt stabilizers and expected reforms by households. The previous exercises abstract
away from households’ expectation effects, λh = 0, and automatic debt stabilizers, γ = 0.
The point of this subsection is to explain the role of these features. For clarity, we return
to the first exercise and study a monetary policy that stabilizes output, xt = 0, and take
b0 = bn = 0 to simplify expressions.

With households expecting a reform, stabilizing output in the fiscal-expansion phase
requires setting the real rate to rt− ρ = λh(bt− bn). A high interest rate is necessary to offset
the expansionary effects of a positive debt gap. Given this real rate, debt will follow:

ḃt = −(γ − λh)bt + ψt ⇒ bt =
e−(γ−λh)t − e−θψt

θψ + λh − γ
ψ0,

Thus, provided λh < γ, debt eventually reverts to its initial level. In turn, inflation is given
by the net present value of its jump inflation term, which is given by

πt =
ψ0

θψ + λh − γ

[
e−(γ−λh)t

ρ+ λ+ γ − λh
− e−θψt

ρ+ λ+ θψ

]
> 0.

These expressions explain the role of λh and γ. A positive λh leads to real rates that
increase with debt, further increasing debt. A positive γ leads to an offsetting response of
primary surpluses, which reduces debt. When λh < γ, inflation also reverts to its steady
state. In this case, the automatic debt stabilizer is enough to let primary surpluses bring
down debt over time despite the extra fiscal pressures caused by monetary policy setting
the real rate above the discount factor ρ. Figure 4 illustrates this point: a fiscal shock causes
a sharp increase in government debt and an inflation bout. As the fiscal shock dissipates, the
automatic debt stabilizer successfully brings debt down, and inflation recedes. We can also
see the sticky-inflation phenomenon, as the inflationary effects of the fiscal shock persist
even after ψt nearly reaches zero.

When γ = λh, we recover the case of Section 3, where output-gap stabilization leads to an
increasing path of government debt and inflation. This is because despite the debt stabilizer,
households expect the reform, and their beliefs enter as positive demand shocks. The real
rate increase needed to stabilize output offsets the debt stabilizer’s effect. Thus, fiscal shocks
have a permanent effect on debt and inflation. When γ < λh, the feedback between debt and
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(a) Government debt (b) Inflation (c) Fiscal shock

Figure 4: Equilibrium with households’ expectation effects and debt stabilizer

the real rates needed to stabilize output causes debt and inflation to spiral out of control.
Fiscal sustainability requires primary surpluses to react strongly to debt when real rates
move with debt.

This last exercise shows that adding household expectations and an automatic stabilizer
does not change the main message of the output stabilization exercise. This is true for all
experiments in the section. Appendix A.2 actually develops all the experiments in this sec-
tion and shows that the same lessons carry through in general: attempts to stabilize one
variable, the output gap, inflation, or debt, destabilize the other variables in the system.

Taking stock: sticky inflation as endogenous fiscal cost-push shocks. We have seen that
it is impossible to stabilize output and inflation jointly due to a lurking monetary-fiscal
reform. Divine coincidence fails even in the absence of cost-push shocks, in contrast to stan-
dard versions of the New Keynesian model. Indeed, sticky inflation is a form of endogenous
fiscal cost-push shock.15 As with standard cost-push shocks, rate hikes that induce an output
contraction are required to offset the inflationary effects of an anticipated fiscal-monetary
reform. Despite this similarity, sticky inflation brings a greater challenge: The endogenous
nature of the fiscal cost-push shocks means that those rate hikes will return to haunt the
central banker. This complicates the optimal policy analysis of the next section.

15This result is reminiscent of the endogenous cost-push shock in Guerrieri, Lorenzoni, Straub and Werning
(2021). While they rely on asymmetric sectorial shocks, we focus instead on the role of expectation effects.

21



4. Optimal Policy

In this section, we study optimal monetary policy during the fiscal-expansion phase. As
discussed above, the expectation of a reform breaks divine coincidence. Moreover, changes
in current real rates carry permanent effects on real debt. Thus, a benevolent monetary
authority faces a non-trivial trade-off between stabilizing output, inflation, and debt.

4.1 The optimal policy problem

We consider a standard approximation to the household’s welfare function in which the
planner minimizes the expected present value of squared deviations of output and inflation
from their steady-state values. The only policy instrument is the path of nominal interest
rates during the fiscal-expansion phase. The planner commits to a path of interest rates.

We present the optimal policy without automatic debt stabilizers, γ = 0, and no house-
holds’ expectation effects, λh = 0. This is the most tractable version, so we relegate more
general solutions to the appendix. The planner and the firms’ beliefs coincide. Hence, we
write λf = λ.

The planner’s objective. Once an inflationary-finance phase initiates, the planner has no
control over inflation or output, but we can still compute the value of its welfare objective.
Starting with a debt level b∗0, the value of the planner’s objective is proportional to the square
deviation of debt from its neutral level:

P∗(b∗0) =

∫ T ∗

0

e−ρt(αx∗2t + βπ∗2
t )dt = Υ · (b∗0 − bn)2

where16

Υ ≡
(
α + β(κΦ)2

) ∫ T ∗

0

e−ρt
(
1− t

T ∗

)2

dt.

At the beginning of the fiscal-expansion phase, the planner’s objective function can be
written as

P = −1

2
E
[∫ τ

0

e−ρt
(
αx2t + βπ2

t

)
dt+ e−ρτP∗

τ (bτ )

]
,

where τ denotes the random time the economy switches to an inflationary-finance phase.

16We use that x∗t = (b∗0 − bn)
(
1− t

T∗

)
and π∗

t = κΦ(b∗0 − bn)
(
1− t

T∗

)
to obtain P∗(b∗0) = Υ(b∗0 − bn)2.
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Given the arrival time is exponentially distributed, we obtain:

P = −1

2

∫ ∞

0

e−(ρ+λ)t
[
αx2t + βπ2

t + λ ·Υ · (bt − bn)2
]
dt.

This objective tells us that even though only output and inflation directly affect the planner’s
objective, the influence of government debt on the inflationary-finance phase creates an
endogenous debt-stabilization motive. In other words, in addition to inflation and output, the
planner wants to minimize deviations of government debt from its natural level; the weight
on debt does not come from the planner’s concern about budgetary affairs but because debt
will affect inflation once a monetary-fiscal reform starts. Debt will also affect inflation prior
to the reform through expectation effects.

The presence of a debt-stabilization motive distinguishes this problem from the classic
analysis of Barro (1979), or its modern formulations (Aiyagari, Marcet, Sargent and Seppälä,
2002), where the planner uses fluctuations in government debt to smooth variations in dis-
tortionary taxes. In our setting, deviations of the government debt from its natural level are
costly.

Competitive equilibria. The planner’s problem involves choosing a competitive equilib-
rium. A competitive equilibrium corresponds to a bounded solution to the system (11)-(13)
given b0, a path of a path of fiscal shock ψt, and a path of real interest rates.

For any given initial condition for the output gap, inflation satisfies:

π0 = κ
x0 + λΦ(b0 − bn)

ρ+ λ
+

κ

ρ+ λ

∫ ∞

0

e−(ρ+λ)t [(1 + λΦ)(rt − ρ) + λΦψt] dt. (22)

Thus, the set of competitive equilibria can be indexed by a path of real interest rates {rt}∞0
and an initial output gap x0—the monetary authority can implement a particular equilib-
rium using the conditions provided in Proposition 1. While the planner can freely choose
the initial output gap, it cannot independently choose both the output gap and inflation.

Debt expropriation and lack of a classical solution. As often occurs in optimal Ramsey
problems, the planner may have incentives to expropriate private agents at time zero. Debt
is real, and prices are sticky, so expropriation cannot occur through a price level jump. In-
stead, the planner can effectively choose an arbitrarily negative real return rt on debt for an
infinitesimal period, which leads to a downward jump in government debt in period zero.
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This would amount to an instantaneous debt deflation.
The above observation implies that a classical solution to the planner’s problem, one

where states follow a continuous path, does not exist. The possibility of an “expropriation-
like” debt path occurs because the model does not penalize extremely low rates. To avoid
the possibility of expropriation, we introduce penalties on past promises, similar to the ap-
proach in Marcet and Marimon (2019) and Dávila and Schaab (2023).17

Solution without instantaneous debt deflation. Following Dávila and Schaab (2023), we
consider a penalized version of the problem in which the planner faces a penalty associated
with the choice of the initial value for each forward-looking variable, namely x0 and π0. By
appropriately choosing the penalties, we ensure there is no expropriation. The penalty itself
does not affect directly the path of inflation and output. Its effect on the optimal solution
is entirely mediated by the impact on the initial debt level. The planner’s problem can be
written as follows:

Problem 1 (Commitment Problem). The planner’s problem is

max
[xt,πt,bt,rt]∞0

−1

2

∫ ∞

0

e−(ρ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+ ξxx0 + ξππ0, (23)

subject to the equilibrium system conditions (11-13) and the initial condition for inflation, (22), given
b0 and fiscal shock’s path, ψt.

The integral above is the original objective, and the last two terms capture the penalties
on the initial output gap, ξx, and initial inflation, ξπ. Absent the penalties, the initial value
of the co-states for inflation, output gap, and debt are all zero. In that case, there would be
a discontinuous jump in the value of debt at t = 0. We choose the values of ξx and ξπ such
that limt→0 bt = b0, while the initial value of the co-states on the output gap and inflation is
still equal to zero.

The following proposition characterizes interest rates under the optimal policy.

Proposition 4 (Interest rates.). The paths of real and nominal interest rates under the optimal

17We show in the Appendix C.1 that a classical solution with smooth state variables does not exist without
a penalty. Formally, it is optimal to have a Dirac mass on interest rates in period zero, and limt→0 bt ̸= b0. See
Arutyunov, Karamzin and Pereira (2019) for a discussion of control problems lacking classical solutions.
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policy are:

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt and it − ρ =

[
1− β

κ(1 + λΦ)

λΥ+ α

]
πt −

λΥ

λΥ+ α
ψt.

The proposition provides a solution to the optimal path of real rates as a linear rule. An
important implication is that it is optimal to reduce the real interest rate in response to the
fiscal shock. That is, to the extent the shock is inflationary, i.e., if πt ≥ 0, real rates should fall
below the natural rate ρ. Moreover, nominal rates move less than one-to-one with inflation.
This result sharply contrasts with the standard prescription based on the Taylor rule, which
dictates the importance of nominal rates moving more than one-to-one with inflation.18 In
contrast, Proposition 4 shows that it is optimal to underreact to the shock.

To understand the intuition behind this result, consider a change in real rates that raises
both xt and bt by one unit, while keeping their values at other dates constant.19 This reduces
the planners objective by the amount

Ct = αxt + λΥ(bt − bn) + βκ(1 + λΦ)

∫ t

0

πsds.

The first two terms reflect the direct impact of changing xt and bt, while the last term cap-
tures the indirect impact through inflation in all past dates. Under the optimal policy, the
marginal cost of changing xt and bt is equalized across all periods, so Ċt = 0. This implies
that it is optimal to reduce the real rate when inflation is high, so the first two terms offset
the impact on welfare of having high inflation. Therefore, nominal rates must react less than
one-to-one to inflation under the optimal policy.

Dynamics under optimal policy. To characterize the dynamics under the optimal policy,
we use the optimal real interest rule, combined with the fact that xt = x0 + bt − b0 − ψ̂t, and
collapse the solution into a bivariate system in πt and bt:π̇t

ḃt

 =

ρ+ λ −κ(1 + λΦ)

−β̂ 0


 πt

bt − bn

+

κ(ψ̂t + b0 − bn − x0)

α
λΥ+α

ψt

 , (24)

18Of course, in our solution, the planner still uses the threat of reacting to movements in inflation more than
one-to-one off the equilibrium to ensure the equilibrium is locally unique.

19Given x0, and the log utility assumption, an increase in real rates raise the output gap and government
debt by the same amount.
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where β̂ ≡ βκ(1+λΦ)
λΥ+α

and ψ̂t =
1−e−θψt

θψ
ψ0. The eigenvalues of this system are:

ω =
ρ+ λ+

√
(ρ+ λ)2 + 4κ(1 + λΦ)β̂

2
> 0, ω =

ρ+ λ−
√

(ρ+ λ)2 + 4κ(1 + λΦ)β̂

2
< 0.

There is one positive and one negative eigenvalue. Hence, there is a unique bounded solu-
tion for any given x0.

The optimality condition for the initial output gap is:∫ ∞

0

e−(ρ+λ)t

[
αxt +

βκ

ρ+ λ
πt

]
= 0. (25)

This condition says that the planner sets the discounted value of a combination of output
and inflation to zero, depending on the relative weight of output and inflation on welfare.
Therefore, if inflation is on average positive, it is optimal to choose x0 such that the present
value of the output gap is negative, counteracting the inflationary pressures.

4.2 Hawks vs. doves

It is instructive to consider extreme cases where the planner only cares about inflation or
only about output, which we associate with hawkish and dovish central banks. In both cases,
the planner assigns a positive endogenous weight to debt stabilization. To simplify the
message, we set b0 = bn = 0. We characterize optimal policy for generic values of α and β in
Appendix C.2.

Doves. Consider first the case where the central bank does not place a weight on inflation,
so β = 0.

Proposition 5 (Optimal policy: Doves). If β = 0, then,

(i) Inflation:

πt =
κ

ω

αλΦ

α + λΥ

ψ0

ω + θψ
+
κλ(αΦ−Υ)

λΥ+ α

1− e−θψt

θψ(ω + θψ)
ψ0. (26)

where πt > 0 and π̇t > 0.

(ii) Output gap:

xt =
λΥ

λΥ+ α

ψ0

ρ+ λ+ θψ
− λΥ

λΥ+ α

ψ0 − ψt
θψ

. (27)
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(iii) Government debt:
bt =

α

λΥ+ α

ψ0 − ψt
θψ

. (28)

Proposition 5 characterizes the optimal reaction of a dovish central bank to a fiscal shock.
The dovish central bank faces a trade-off between stabilizing the output gap in the fiscal-
expansion phase and stabilizing the output gap in the inflationary-finance phase, which
ultimately requires influencing the government debt. The optimal response of the monetary
authority is to partially offset the effects of the fiscal shock on debt:

rt − ρ = − λΥ

λΥ+ α
ψt.

Intuitively, starting from an equilibrium where rt = ρ and the output gap is constant, a
reduction of real rates has a first-order benefit of reducing debt and only a second-order
cost of distorting the output gap. Hence, the planner has an incentive at the margin to
stabilize debt. The magnitude of the adjustment depends on the relative weight of debt
stabilization on welfare. When λ is close to zero, it is unlikely the economy will switch to
the inflationary-finance phase, and the planner minimally reacts to the shock. In this case,
the output gap is close to zero, and government debt absorbs most of the fiscal shock. When
λ is large, the planner offsets most of the fiscal shock, dampening the debt response. Given
the planner only cares about the output gap, there is no attempt to stabilize inflation, which
ends up being positive and increasing over time.

Hawks. Consider next the case where the planner only cares about inflation, so α = 0.

Proposition 6 (Optimal policy: Hawks). Suppose α = 0. Then,

(i) Inflation:

πt = κ
ψt − ω

ρ+λ+θψ
eωtψ0

(ω + θψ)(ω + θψ)
, (29)

where π0 > 0, π̇0 < 0, and πt < 0 for t sufficiently large.

(ii) Output gap:

xt =
ψ0

ρ+ λ+ θψ

[
ω

ω + θψ
+
ρ+ λ+ θψ
ω + θψ

]
− β

κ(1 + λΦ)

λΥ
pt −

ψ0 − ψt
θψ

, (30)

where pt =
∫ t
0
πsds is the price level at date t.
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(a) Inflation (b) Output gap

(c) Real rates (d) Government debt

Figure 5: Equilibrium dynamics under optimal policy

(iii) Government debt

bt = −βκ(1 + λΦ)

λΥ
pt, (31)

where ḃ0 < 0 and limt→∞ bt > 0.

The hawkish central bank faces a trade-off between stabilizing inflation in the fiscal-
expansion phase and stabilizing it in the inflationary-finance phasethrough its effect on
government debt. Give π0 > 0, it is again optimal to reduce real rates on impact:

rt − ρ = −βκ(1 + λΦ)

λΥ
πt − ψt. (32)

Interestingly, a hawkish central bank initially reduces real rates more aggressively than its
dovish counterpart.20 With lower interest rates, the planner slows down the accumulation
of future debt, which reduces inflation expectations in all previous periods. Therefore, the
sticky-inflation mechanism creates an incentive for the planner to front-load inflation. Low

20Recall that for a dovish central bank r0 − ρ = − λΥ
λΥ+αψ0, which is greater than −β κ(1+λΦ)

λΥ π0 − ψ0.
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(a) Exogenous cost-push shock (b) Fiscal cost-push shock

Figure 6: Price level: exogenous cost-push shock vs fiscal shock

real rates initially raise the output gap, creating some short-run inflationary pressures, but
it slows down debt accumulation and reduce future inflation.

Discussion: Hawks vs. doves. Figure 5 shows the optimal policy for different values of β,
the welfare weight on inflation, for a fixed weight on the output gap, which we normalize to
α = 1. The case β = 1 corresponds to a planner who gives equal weight to inflation and the
output gap, while the case β > 1 (β < 1) corresponds to a planner who gives more weight to
inflation (output gap). A striking feature is that the optimal real interest is below its natural
level, regardless of β. Therefore, the planner always finds optimal to move nominal rates
less than one-to-one with inflation.

Paradoxically, a hawkish central bank achieves lower inflation, despite having lower
real rates and a more overheated economy. By reducing the pace of debt accumulation,
the planner counteracts the inflationary pressures coming from de-anchored expectations
caused by the fiscal shock.

A comparison with textbook cost-push shocks. As we explained above, sticky inflation
takes the form of an endogenous fiscal cost-push shock. However, the dynamics under the
optimal policy differ from the optimal policy with exogenous cost-push.

Figure 6 contrasts both responses. A first difference refers to the behavior of the output
gap. The optimal response to exogenous cost-push shocks is to allow a recession. In con-
trast, the planner engineers a boom in response to the endogenous fiscal cost-push shock
here, as shown in Panel (b) of Figure 5.
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The second difference is the behavior of the price level. In the textbook exercise, it is
optimal to promise a sufficiently long period of deflation that brings the price level back to
its pre-shock level, see Panel (a) of Figure 6. Price-level targeting is optimal in the textbook
exercise, a distinguishing feature of optimal policy under commitment—see, e.g., Woodford
(2010) for a discussion. Price-level targeting is sub-optimal under sticky inflation, as shown
in Panel (b).

4.3 Robustness to commitment assumptions

We have seen that optimal monetary-policy with commitment reduces real rates in responses
to a fiscal shock if sticky-inflation is prevalent. Is this a robust feature or does it depend on
commitment assumptions? To answer this question, we consider two polar opposites of the
time-zero commitment case studied: First, we present the solution under discretion. Second,
we consider optimal policy under the timeless perspective. We show that under both scenar-
ios, it is still optimal to reduce real rates in response to the fiscal shock. This shows that
under-reaction is a robust feature of optimal policies under sticky inflation.

Discretion. To capture the idea of discretion in continuous time, we assume that the plan-
ner has commitment over a random time interval and takes as given the actions of future
planners.21 Formally, assume that with Poisson intensity λ, the monetary control is surren-
dered to a new planner. This implies that, in expectation, the planner has control over 1

λ

periods. We are interested in the limit as λ → ∞.22 The next proposition characterizes the
optimal policy.

Proposition 7 (Discretion). As λ → ∞, the real interest rate under the optimal policy is given by
rt − ρ = −ψt. Moreover, the output gap is xt = 0.

Proposition 7 shows that, under discretion, the real rate is also below its natural level
upon a fiscal shock. With an arbitrarily short planning horizon, the planner cannot directly
control inflation, which depends on future decisions and has no incentive to distort the
output gap. Hence, the planner fully stabilizes debt to influence future decisions. Behind
the scenes, the planner sets the output gap to zero and promises a decline over time, given

21For a similar formulation of a problem with discretion in continuous time, see e.g., Harris and Laibson
(2013) and Dávila and Schaab (2023).

22This corresponds to the continuous-time analog of the case of discretion in discrete time, where the planner
controls policy over a single period.
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the low interest rate. Once a new planner arrives, the planner does not keep this promise,
and sets the output gap again to zero.23

Timeless perspective. Finally, we consider next the case of optimal policy under the time-
less perspective, in the sense of Woodford (1999). When the planner commits to a time-zero
plan, it sets the value of the co-states for the forward-looking variables equal to zero at t = 0.
Under the timeless perspective, the initial value of co-states equal the corresponding value
for a planner who started its planning in the distant past.24 The next proposition shows that
the timeless perspective and commitment solutions actually coincide when b0 = bn.

Proposition 8 (Timeless perspective). Suppose that b0 = bn, such that government debt is at its
natural level when the fiscal shock is announced. Then, the optimal policy when the planner commits
to a time-zero plan coincides with the optimal policy under the timeless perspective.

An implication of Proposition 8 is that the solution to the Ramsey problem satisfies a
self-consistency property: output and inflation can be described by time-invariant functions
of the exogenous shock, ψt, a predetermined variable, bt, and variables describing history-
dependence, the co-states on the forward-looking variables. From the point of view of a
planner who started planning in the distant past, there is no incentive to have output and
inflation deviate from these time-invariant functions.25 Once again, we find that a reduction
in real rates after a fiscal shock is a robust feature of optimal policies under sticky inflation.

5. Staying behind the curve?

In this final study, we compare the observed dynamics of the U.S. economy in the post-
COVID-19 period with the counterfactual scenario where the Fed follows a Taylor rule.
The exercise is motivated by the policy debates ongoing in the aftermath of the COVID-19
pandemic.

23In Appendix D.4, we consider the case of partial commitment, where the planner takes the initial value of
the output gap as given. Optimal policy with partial commitment coincides with the case of full commitment
and a dovish central bank. In this case, it is also optimal for the real rate to be below the natural level.

24For a formal discussion of this procedure, see the discussion in Giannoni and Woodford (2017).
25The assumption that b0 = bn is important, as we would observe dynamics under the solution to the

Ramsey problem even in the absence of shocks, so the optimal policy would be time-dependent and deviate
from the solution under the timeless perspective. This observation motivates our focus on the case b0 = bn
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5.1 The debate

To set the stage, we present some data patterns from the period. In response to the COVID-
19 crisis, the United States implemented an unprecedented fiscal expansion, resulting in
the highest level of government debt (normalized by GDP) in the post-war era. Panel (a)
of Figure 7 shows the large increase in primary deficits in the aftermath of the COVID-19
crisis, reaching 25% of GDP at its peak. Panel (b) shows how large deficits—coupled with
disruptions to production—substantially increased the debt-to-GDP ratio. Panel (c) shows a
burst in inflation that persisted for two years. The increase in inflation was unlike any other
of the last 40 years. An important aspect of this episode was that real interest rates remained
remarkably low; Panel (c) also shows that the 1-year (ex-ante) interest rate was negative for
over two years after the beginning of the fiscal expansion.

Low real rates reflected the Fed’s response to the inflationary pressures: Panel (d) shows
that the Federal Reserve kept its nominal policy rate target low even after the surge in in-
flation. Panel (d) also shows the nominal rates dictated by two versions of a Taylor rule.26

The figure illustrates the extent of the Fed’s underreaction relative to the Taylor rule.27 The
Fed’s underreaction period was also marked by a persistent increase in inflation expecta-
tions, as shown in Panels (e) and (f). In particular, Panel (e) shows the increase in the 5-year
breakeven inflation, the difference between the yield on a nominal bond and the yield on an
inflation-protected bond (TIPS).28 Panel (f) shows that the market-implied inflation-disaster
probability, as measured by Hilscher et al. (2022), also increased substantially during this
period.

The Fed’s underreaction when inflation expectations were rising led many commenta-
tors to state the Fed was staying “behind the curve.” This was a call to a more aggressive
stance for fears that the Fed had lost control over inflation expectations and a subsequent
painful recession would be necessary to get inflation back to target—see e.g. Bordo, Taylor
and Cochrane (2023) for an account of the debate. Evidently, the Fed ignored the advice. Did
it make a mistake by deviating from the Taylor rule? Did it risk triggering an inflationary
spiral? The next exercise investigates whether following the Taylor rule would have been
the correct policy response in the context of our model.

26These two versions of the Taylor exemplify the rules discussed by the Fed’s Monetary Policy Report during
this period. For an assessment of these rules, see Papell and Prodan-Boul (2024).

27Bocola, Dovis, Jørgensen and Kirpalani (2024) provide complementary evidence of the Fed’s underreac-
tion based on movements in bond prices.

28The breakeven inflation is not an unbiased measure of inflation expectation, as it incorporates a risk pre-
mium. Survey-based measures showed patterns similar to the market-based ones.
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(a) Primary surplus (b) Public debt/GDP (c) Inflation and real rates

(d) Taylor rules (e) 5-year breakeven inflation (f) 5-year inflation disaster

Figure 7: Pre- and Post-COVID-19 Data

Note: Panel (a) shows the primary surplus to GDP ratio. Panel (b) shows the market debt held by the public plus central bank reserves

over GDP. Panel (c) shows year-over-year CPI inflation and the Federal Reserve of Cleveland estimate of the 1-year (ex-ante) real rate.

Panel (d shows the lower limit of the Federal Funds target range and the predicted nominal rate for two specifications of inertial Taylor

rules. Panel (e) shows the 5-year breakeven inflation. Panel (f) shows the probability of inflation exceeding 4% on average for the next

five years, a so-called inflation disaster, as estimated by Hilscher et al. (2022) based on inflation option prices.

5.2 Taylor rules vs. realized policies

We use the model to assess the quantitative relevance of our sticky-inflation channel in shap-
ing the dynamics of debt and inflation following the COVID-19 pandemic. To that end, we
provide a historical shock decomposition and counterfactual analysis. We employ a dis-
cretized version of the model which we use to construct a Kalman filter to obtain shocks.
We present the details in Appendix E.

We focus on four shocks: a fiscal shock, which captures the exogenous fiscal expansion;
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Table 1: Calibration of the Model

Parameter Symbol Value Description

Discount rate ρ 0.0022 Real-rate average (1990-2019)

Elasticity of Intertemporal Substitution σ 0.5 Attanasio and Weber (1995)

Slope of the NKPC κ 0.0138 Hazell et al. (2022)

Taylor coefficient ϕπ 1.2 Moderate response calibration

Fiscal rule γ 0.038 Bianchi et al. (2023)

Initial debt to quarterly GDP ratio bn 0.7683*4 Debt to GDP in 2019Q4

Quarters of high inflation in Phase II T ∗ 16 Hazell and Hobler (2024)

Probability of Phase II λf 0.015 Hilscher et al. (2022)

a standard cost-push or markup shock, which reflects the sectorial reallocations and bottle-
necks experienced in this period; a monetary shock, representing the deviations of monetary
policy from our specified rule; and a shock in the government’s budget constraint, captur-
ing unmodeled revaluation effects as in Bianchi and Melosi (2017), or a residual capturing
asset purchases by the fed, other sources of funding, and the approximation error of the
linearization, as in Hall and Sargent (2024). We then use the identified shock to compute the
dynamics of an economy subject to the same fiscal, return, and markup shocks, but where
the monetary authority no longer deviates from the Taylor rule—the “Taylor” scenario.

Calibration. We calibrate the discretized version of the model. We treat variable values
during 2009Q4 as a steady-state target. Table 1 summarizes the calibration. We adopt stan-
dard calibrations for parameters commonly used in the New Keynesian literature. We set
the discount rate, ρ, to reflect the average real interest rate in the U.S. from 1990 to 2019
of 0.88% per year. We set the elasticity of intertemporal substitution, σ, to 0.5, roughly in
line with the evidence by Attanasio and Weber (1995). We set the slope of the NKPC, κ, to
0.0138, which is the value in the empirical work of Hazell et al. (2022). We find a range of
values for the Taylor rule inflation coefficient, ϕπ, in the literature from 1.2 to 1.5. We set
the coefficient to the lower bound of 1.2 to capture a moderate monetary policy response to
inflation deviations from an inflation target. This choice is to bring the actual and realized
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interest-rate path coefficients as close as possible.
The rest of the parameters merit further discussion: We set the fiscal rule coefficient, γ,

to 0.038, following Bianchi et al. (2023). This parameter represents the repayment rate of
deficits, which, in turn, governs the mean reversion in public debt. We set the inflation-
neutral debt level, bn, to 0.7683× 4 so that the debt-to-quarterly-GDP ratio in 2019Q4 was at
its neutral level. Thus, under the calibration the sticky inflation channel was muted before
the pandemic.

We set the probability of a monetary-fiscal reform, λf to 0.015 which translates into an
annual probability of 6% or, equivalently, of observing a monetary-fiscal reform once every
15 years. This choice is consistent with the inflation disaster risk in Hilscher et al. (2022).29

The duration of the fiscal consolidationphase, T ∗, governs the pass-through from the
debt-gap to inflation. We set T ∗ to 16 quarters so that the implied pass-through is consistent
with the empirical impulse responses to fiscal events in Hazell and Hobler (2024).30

Finally, we assume shocks are i.i.d. and set the standard deviation of all shocks to the
same value of 1% per year. This last assumption allows us to remain agnostic about the
likelihood of shocks when we back them out using the Kalman filter. Lowering the variance
of one or the other shocks significantly narrows the likelihood function, biasing the filtering
exercise. Our motivation is that the COVID-19 episode was unique, and thus, we cannot use
past information to infer the dispersion of shocks. Setting a large variance for each shock
and making them i.i.d. allows the episode’s data to “speak for itself.”

Shock decomposition. Next, we conduct a shock decomposition analysis using historical
time series data for the market value of debt to GDP, primary deficits to GDP ratio, inflation,
and nominal policy rates—see Figure 7. The results of the shock decomposition are illus-
trated in Figure 8. Panels (a) through (c) display the contribution of shocks to the paths of
government debt path, inflation, and nominal policy rates, respectively. We report the debt-
to-GDP ratio as deviations from its neutral level (2019Q4), the inflation rate as deviations
from a 2% inflation target, and the nominal rate as deviations from the discount rate plus
the inflation target. Figure 9 presents the identified structural shocks.

29Recall that this parameter represents the likelihood that the economy will experience an inflation burst.
Using inflation swap contracts, Hilscher et al. (2022) report probabilities that inflation will exceed 4% − 6%
thresholds.

30That paper uses electoral outcomes in the senate race in Georgia to proxy for the expectation of the Biden
stimulus plan. Their study shows a pass-through of 0.18% inflation over the next 2 years to a 1% increase in
the deficit-to-GDP ratio.
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(a) Public Debt to GDP (b) Inflation

(c) Federal Funds Rate

Figure 8: COVID-19 Shock Decomposition

Next, we describe what determines the dynamics of each of the main macro variables.
Government Debt: A key feature of the debt-to-GDP path is the sharp increase during

the second quarter of 2020, following the onset of the pandemic. This spike is primarily
driven by abnormally large fiscal shocks, as government spending surged in response to
the crisis (Figure 8, Panel a). Additionally, revaluation shocks, which capture the flatten-
ing of the yield curve, contributed to the increase in market debt. Cost-push shocks had a
smaller impact, predominantly through a reduction in inflation during the early phase of
the pandemic.

Monetary policy played a limited role in the initial stages of the crisis. In 2020Q2, mone-
tary policy was constrained by the zero lower bound in its ability to offset deflationary pres-
sures. As the pandemic progressed, fiscal shocks continued to expand, especially during the
quarters following 2021Q1, which coincided with the fiscal stimulus measures implemented
by the Biden administration. The contribution of fiscal shocks to debt levels remained signif-
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(a) Fiscal Shock (b) Cost-Push Shock

(c) Monetary Shock (d) Government Debt (Term-Premium) Shock

Figure 9: COVID-19 Shock Decomposition: The Shocks

icant throughout this period. By 2021Q3, monetary policy shocks substantially contributed
to reducing government debt. How so becomes clear from the decomposition of inflation
and policy rates.

Inflation: Panel (b) presents the decomposition of inflation. The cost-push shock had
a significant deflationary impact in 2020Q2, resulting in an annualized inflation rate of -
5%. This deflationary trend persisted until the end of 2020. By 2021, the effect of these
shocks reversed, likely arising from supply bottlenecks and the Ukranian war, as suggested
by other studies. By 2023Q4, the cost-push shocks began to dissipate. During this period,
the sticky-inflation component (represented by the backslash bars in the figure) becomes
more prominent. Sticky inflation arose due to the persistent fiscal deficits, contributing to
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(a) Federal Funds Rate (b) Public Debt to GDP (c) Inflation

Figure 10: COVID-19 Counterfactual Monetary Policy

debt accumulation. As debt deviated further from its target, inflation expectations gained
momentum, amplifying inflationary pressures. According to our model, the fiscal shock,
though short-lived, contributed almost 5% to annual inflation throughout the period. That
inflation started to stabilize in 2022 can be attributed to the deviations of monetary policy
from the prescriptions of the Taylor rule.

Monetary Policy Rates: Starting from 2020Q4, the Federal Reserve deviated from the Tay-
lor rule and stayed “behind the curve.” Indeed, Panel (c) indicates that nominal rates should
have been much higher given the cost-push and fiscal shocks. However, the most notable
aspect of the decomposition is that despite the expansionary stance of monetary policy—
see the slash bars in panel c—, the effect on inflation was deflationary (see the slash bars in
Panel b). This apparent paradox is nothing but the sticky inflation channel at work. Because
the lower policy rates eased the debt burden, as shown in Panel (a), the Federal Reserve
indirectly mitigated the sticky-inflation component in the Phillips curve. Lower debt lev-
els helped temper inflation expectations, thus counteracting the inflationary pressures from
fiscal and cost-push shocks.

Counterfactuals. Using the filtered shocks, we simulate a counterfactual scenario in which
the Fed would have followed the Taylor rule. This counterfactual analysis allows us to
explore what would have happened to debt and inflation if the Fed had responded more
aggressively during the inflation surge, as advised by its critics. The results are shown in
Figure 10.

Panel (a) illustrates the actual (solid) and counterfactual (dashed) nominal interest rate
paths. Had the Federal Reserve adhered to the Taylor principle, nominal rates would have
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been reduced more rapidly in the early phases of the pandemic and increased much more
aggressively to rising inflation starting in 2020Q4. This more forceful response, while coun-
tering inflation, would have significantly increased the burden of government debt, as shown
in Panel (b). The more aggressive stance would have led to a more persistent increase in the
debt-to-GDP ratio due to the higher debt servicing cost.

Interestingly, the counterfactual inflation path shows that, despite the more aggressive
anti-inflationary policy, inflation would have actually been significantly higher. Again, the
apparent paradox arises from the interaction of two opposing forces: the reduction in in-
flation through lower demand stimulus and the countervailing effect of the sticky inflation
component, amplified by the larger debt burden. Thus, while the Taylor rule would have
curbed demand-driven inflation, the resulting increase in debt would have fueled infla-
tionary pressures through the fiscal channel, ultimately offsetting the benefits of the rule’s
tighter policy.

Given the optimal policy prescriptions derived in the previous section, we conclude that
the Federal Reserve’s decision to stay “behind the curve” was appropriate. Our counterfac-
tual shows that adhering to the Taylor rule would have resulted in suboptimal outcomes,
with higher debt and moderate inflation. All in all, the exercise shows that admitting the
possibility that inflation expectations can be dragged by debt alters the conventional wis-
dom regarding the optimal response to monetary policy.

It is important to note that the Taylor rule does not necessarily indicate that the Federal
Reserve intentionally acted to ease the debt burden. Rather, the Fed’s gradualism doctrine,
characterized by measured responses to unfolding events, aligned well with the optimal
policy in this context. Our model indicates that the Federal Reserve’s decision to resist calls
for a faster tightening of monetary policy was ultimately the right course of action.

6. Conclusion

This paper offers new insights regarding fiscal-monetary interactions in New Keynesian
models. First, we demonstrated that in an environment where monetary-fiscal reform is
anticipated, attempts to curb inflation can backfire, as expectations of greater inflation upon
reform create ”sticky inflation.” Second, we showed that due to this stickiness, optimal pol-
icy should balance inflation and debt objectives, often keeping real interest rates low after
fiscal shocks.

This analysis suggests additional policy implications. If a fiscal-monetary reform is in-
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evitable, it is preferable to enact it sooner rather than later. We did not explore the possibility
that early anti-inflation efforts signal that monetary policy will resist future inflationary fi-
nancing. However, without signaling effects, such efforts are futile. Understanding how
medium-term inflation expectations respond to signaling, possibly by incorporating policy
stance attention as in Bassetto and Miller (2022), is thus essential.

Signaling effects, a missing feature in this paper, may be particularly important to under-
stand the eventual success of the Volker disinflation. Nevertheless, understanding sticky in-
flation is particularly relevant in today’s high-debt environment. Sticky inflation also ratio-
nalizes the repeated failures to curb inflation in countries like Argentina, Brazil, and Turkey,
where orthodox central bankers often raised real interest rates with limited long-term suc-
cess. Our theory suggests that temporary measures are unlikely to overcome sticky infla-
tion unless expectations of monetary-fiscal reform dissipate. We hope developed economies
heed this lesson.
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A. Derivations

A.1 Derivations for Section 2

Households. The household problem is given by

Vt(Bt) = max
[Cs,Ns]s≥t

Et

[∫ t∗

t
e−ρ(s−t) [u(Cs)− h(Ns)] ds+ e−ρ(t

∗−t)V ∗
t∗(B

∗
t )

]
, (33)

subject to

Ḃt = (it − πt)Bt +
Wt

Pt
Nt +Dt + Tt − Ct, (34)

and a No-Ponzi condition, where t∗ denotes the arrival time for a Poisson process with intensity

λ ≥ 0, Bt denotes the real valued of bonds held by households, Wt is the nominal wage, Pt is the

price level, Dt are dividends payed by firms, Tt denotes fiscal transfers.

The HJB equation for this problem is given by

ρV = u(C)− h(N) + V̇ + VB

[
(i− π)B +

W

P
N + T − C

]
+ λ[V ∗ − V ], (35)

where V̇ denotes the time derivative of the value function conditional on no-switching.

The first-order conditions are given by

u′(C) = VB, h′(N) = VB
W

P
. (36)

The envelope condition is given by

ρVB = VB(i− π) + V̇B + VBB

[
(i− π)B +

W

P
N + T − C

]
+ λ[V ∗

B − VB]. (37)

Combining the envelope condition with the optimality condition for consumption, we obtain

0 = (i− π − ρ) +
u′′(C)C

u′(C)

Ċt
Ct

+ λ

[
u′(C∗)

u′(C)
− 1

]
⇒ Ċ

C
= σ−1(i− π − ρ) +

λ

σ

[
u′(C∗)

u′(C)
− 1

]
, (38)

where σ = −u′′(C)C
u′(C) .

The optimality condition for labor can be written as

h′(N)

u′(C)
=
W

P
. (39)
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Firms. There are two types of firms in the economy: final-goods producers and intermediate-goods

producers. Final goods are produced by competitive firms according to the production function

Yt =
(∫ 1

0 Y
ϵ
ϵ−1

i,t di
) ϵ−1

ϵ
, where Yi,t denotes the output of intermediate i ∈ [0, 1]. The demand for inter-

mediate i is given by Yi,t =
(
Pi,t
Pt

)−ϵ
Yt, where Pi,t is the price of intermediate i, Pt =

(∫ 1
0 P

1−ϵ
i,t di

) 1
1−ϵ

is the price level, and Yt is the aggregate output.

Intermediate-goods producers have monopoly over their variety and operate the technology

Yi,t = AtNi,t, where Ni,t denotes labor input. Firms are subject to quadratic adjustment costs on

price changes, so the problem of intermediate i is given by

Qi,t(Pi) = max
[πi,s]s≥t

Et

[∫ t∗

t

ηs
ηt

(
Pi,s
Pi,t

Yi,s −
Ws

Ps

Yi,s
As

− φ

2
π2i,s

)
ds+

ηt∗

ηt
Q∗
i,t(P

∗
i,t)

]
, (40)

subject to Yi,t =
(
Pi,t
Pt

)−ϵ
Yt and Ṗi,t = πi,tPi,t, given Pi,t = Pi and ηt = e−ρtu′(Ct), where φ is the

adjustment cost parameter.

The HJB equation for this problem is

0 = max
πi,t

ηt

(
Pi,t
Pt

Yi,t −
Wt

Pt

Yi,t
A

− φ

2
π2i,t

)
dt+ Et[d(ηtQi,t)], (41)

where Et[d(ηtQi,t)]
ηtdt

= −(it − πt)Qi,t +
∂Qi,t
∂Pi,t

πi,tPi,t +
∂Qi,t
∂t + λ

η∗t
ηt

[
Q∗
i,t −Qi,t

]
.

The first-order condition is given by

∂Qi,t
∂Pi

Pi,t = φπi,t.

The change in πt conditional on no switching in state is then given by(
∂2Qi,t
∂t∂Pi

+
∂2Qi,t
∂P 2

i

πi,tPi,t

)
Pi,t +

∂Qi,t
∂Pi

πi,tPi,t = φπ̇i,t. (42)

The envelope condition with respect to Pi,t is given by

0 =

(
(1− ϵ)

Pi,t
Pt

+ ϵ
Wt

PtA

)(
Pi,t
Pt

)−ϵ Yt
Pi,t

+
∂2Qi,t
∂t∂Pi

+
∂2Qi,t
∂P 2

i

πi,tPi,t+

∂Qi,t
∂Pi

πi,t − (it − πt)
∂Qi,t
∂Pi

+ λ
η∗t
ηt

(
∂Q∗

i,t

∂Pi
− ∂Qi,t

∂Pi

)
. (43)
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Multiplying the expression above by Pi,t and using Equation (42), we obtain

0 =

(
(1− ϵ)

Pi,t
Pt

+ ϵ
Wt

PtA

)(
Pi,t
Pt

)−ϵ
Yt + φπ̇t − (it − πt)φπi,t + λφ

η∗t
ηt

(
π∗i,t − πi,t

)
.

Rearranging the expression above, we obtain the non-linear New Keynesian Phillips curve

π̇t = (it − πt)πt + λ
η∗

ηt
(πt − π∗t )−

ϵφ−1

A

(
Wt

Pt
− (1− ϵ−1)A

)
Yt.

Government and market clearing. The government flow budget constraint is given by

Ḃg
t = (it − πt)B

g
t + Tt, (44)

whereBg
t denotes the real value of government debt. The government must also satisfy the No-Ponzi

condition limT→∞ Et[ηTBg
T ] = 0.

The market clearing condition is given by

Ct = Yt, Nt =

∫ 1

0
Ni,tdi, Bt = Bg

t . (45)

A.2 Derivations for Section 3

In this section, we revisit our three policy experiments in the context of the more general version of

the model, which includes households’ expectation effects and a debt-stabilization term. In this case,

the dynamic system describing the evolution of output, inflation, and debt is given by

ẋt = rt − ρ+ λhxt − λh(bt − bn) (46)

π̇t = (ρ+ λf )πt − κxt − λfκΦ(bt − bn) (47)

ḃt = rt − ρ− γ(bt − bn) + ψt. (48)

Output gap stabilization. Consider first the case of output-gap stabilization, so xt = 0 for all t.

This requires that the interest rate is given by

rt − ρ = λh(bt − bn). (49)

The law of motion of debt is then given by

ḃt = − (γ − λh) (bt − bn) + ψt. (50)
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Solving the differential equation above, we obtain

bt − bn = e−(γ−λh)t(b0 − bn) +

∫ t

0
e−(γ−λh)(t−s)ψsds. (51)

Assuming ψt = e−θψtψ0, we obtain

bt − bn = e−(γ−λh)t(b0 − bn) +
e−(γ−λh)t − e−θψt

θψ − (γ − λh)
ψ0. (52)

Notice that bt converges back to the steady state if γ > λh.

Inflation is given by

πt = λfκΦ

∫ ∞

t
e−(ρ+λf )(s−t)(bs − bn)ds. (53)

Plugging the value of bt into the expression above, we obtain

πt = λfκΦ

[
e−(γ−λh)t

ρ+ λf + γ − λh

(
b0 − bn +

ψ0

θψ − (γ − λh)

)
− e−θψt

ρ+ λf + θψ

ψ0

θψ − (γ − λh)

]
. (54)

Notice that debt and inflation depend on γ and λh only through their difference. Hence, if we

assume that γ = λh > 0, we obtain the same values of bt and π if we assume γ = λh = 0, which

corresponds to the case in Section 3. If γ > λh, then eventually debt and inflation eventually return

to their steady-state levels.

Inflation stabilization. Next, we will consider the case of inflation stabilization. Suppose the real

rate is given by rt − ρ = e−θrt(r0 − ρ). In this case, debt is given by:

bt − bn = e−γt(b0 − bn) +
e−γt − e−θψt

θψ − γ
ψ0︸ ︷︷ ︸

bpt

+
e−γt − e−θrt

θr − γ
(r0 − ρ)︸ ︷︷ ︸

brt

. (55)

The first term corresponds to the level of debt if the monetary authority implements a passive policy

of setting the real rate equal to its natural level at all periods, rt = ρ, and the second term captures

the impact on debt of changing the real rate.

The output gap is given by

xt = −
∫ ∞

t
e−λh(s−t)(rs − ρ)ds+ λh

∫ ∞

t
e−λh(s−t)(bs − bn)ds. (56)
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The output gap can be expressed as follows

xt = xpt −
rt − ρ

λh + θr
+

λh
θr − γ

[
e−γt

λh + γ
− e−θrt

λh + θr

]
(r0 − ρ), (57)

where

xpt = λh

[
e−γt

λh + γ

(
b0 − bn +

ψ0

θψ − γ

)
− ψt

(λh + θψ)(θψ − γ)

]
. (58)

There are now two opposing effects on the output gap. Higher rates reduce the output gap

through the usual intertemporal substitution channel. However, higher real rates push debt up,

which creates a positive output gap in the inflationary-finance phase. This expectation tends to

increase the output gap today. Therefore, the presence of this expectation attenuates the response of

output to higher real rates.

Inflation is given by

πt = κ

∫ ∞

t
e−(ρ+λf )(s−t)xsds+ λfκΦ

∫ ∞

t
e−(ρ+λf )(s−t)(bs − bn)ds. (59)

Inflation is given by

πt = πpt + Ft + Jxt + Jbt , (60)

where πpt ≡ κ
∫∞
t e−(ρ+λf )(s−t)xpsds+ λfκΦ

∫∞
t e−(ρ+λf )(s−t)bpsds, and

Ft ≡ − κ

λh + θr

rt − ρ

ρ+ λf + θr
< 0 (61)

Jxt ≡ κλh
θr − γ

[
e−γt

(λh + γ)(ρ+ λf + γ)
− e−θrt

(λh + θr)(ρ+ λf + θr)

]
(r0 − ρ) > 0 (62)

Jbt ≡
κλfΦ

θr − γ

[
e−γt

ρ+ λf + γ
− e−θrt

ρ+ λf + θr

]
(r0 − ρ) > 0. (63)

The fight-inflation term dominates at period zero if the following condition is satisfied

1

ρ+ λf + θr
>

λfΦ

ρ+ λf + γ

λh + θr
ρ+ λf + θr

+
λh

θr − γ

[
λh + θr

(λh + γ)(ρ+ λf + γ)
− 1

ρ+ λf + θr

]
. (64)

We can write the expression above as follows

θr <
ρ+ λf + γ − λh

[
λfΦ+

λh−γ+ρ+λf
λh+γ

]
λfΦ+ λh

λh+γ

. (65)

Notice that we recover the condition for the fight inflation to dominate at t = 0 when λh = γ = 0.

If θr > γ, such that the response of taxes to government debt is not too strong, then the jump
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inflation term eventually dominates, consistent with the stepping-on a-rake result.

Debt stabilization. We consider next the case where the monetary authority stabilizes govern-

ment debt, bt = 0. For simplicity, we focus on the case bn = 0. The real interest rate is then given by

rt − ρ = −ψt. This corresponds to the previous case with r0 − ρ = −ψ0 and θr = θψ. Given the low

real rate, for λh sufficiently small, we have a positive output gap and inflation on impact.

B. Proofs

Proof of Proposition 1

Proof. We first show that fiscal policy is passive, that is, for any Lebesgue integrable path
for (xt, πt, it), government debt is bounded if and only if γ ≥ 0. Note that in the fiscal
consolidation phase and the inflationary-finance phase, government debt is bounded by
construction. In the fiscal-expansion phase, from equation (16) we get

lim
t→∞

bt = lim
t→∞

e−γtb0 + lim
t→∞

∫ t

0

e−γ(t−s)(is − πs − ρ+ ψs)ds.

Notice that since γ ≥ 0, e−γt ≤ 1 for all t ≥ 0. Then

lim
t→∞

bt = lim
t→∞

e−γtb0+ lim
t→∞

∫ t

0

e−γ(t−s)(is−πs−ρ+ψs)ds ≤ lim
t→∞

b0+ lim
t→∞

∫ t

0

(is−πs−ρ+ψs)ds <∞,

where the last inequality follows from (it, πt) being Lebesgue integrable.
For I., notice that the dynamic system is given by

π̇t

ẋt

ḃt

 =


(ρ+ λf ) −κ −λfκΦ

(ϕ− 1) λh −λh

(ϕ− 1) 0 − (γ − ρ)




πt

xt

bt

+


λfκΦb

n

ut + λhb
n

ut + ψt

 .

The equilibrium is uniquely determined if the matrix above has two eigenvalues with posi-
tive real components and an eigenvalue with a non-positive real component. The eigenval-
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ues of the system above satisfies the characteristic equation:

f(λ) ≡ λ3 + [γ − (ρ+ λf + λh)]︸ ︷︷ ︸
≡a

λ2 + [(ϕ− 1)κ (1 + λfΦ) + λh (ρ+ λf )− γ (ρ+ λf + λh)]︸ ︷︷ ︸
≡b

λ+

[γ (ρ+ λf )λh + (ϕ− 1)κ [γ − (λh + λhλfΦ)]]︸ ︷︷ ︸
≡c

= 0.

Using Descartes’ rule of signs, we get that c > 0 is a necessary condition for determinacy.
To see this, suppose c < 0. Then, two options exist for the number of sign changes of f(λ):
one and three. This implies that there can be either 1 or 3 roots with a positive real part.
Since we need two roots with positive real part for determinacy, we can rule out those cases.

Next, we show that c > 0 is a sufficient condition for determinacy. Because γ < ρ+λf+λh,
a < 0. Then, we are guaranteed two sign changes. Using the Routh-Hurwitz criterion, not
all roots of f are negative, completing the proof.

Part II. is immediately true by construction.

Proof of Proposition 2

Proof. From equation (18), given xt = 0 and πJt = κΦ(bt − bn), inflation is given by

πt = κλΦ

∫ ∞

t

e−(ρ+λ)(s−t)(bs − bn)ds. (66)

Debt is given by bs = b0 +
1−e−θψs

θψ
ψ0 = bt +

1−e−θψ(s−t)

θψ
ψt. We can then write inflation as

follows:

πt =
κλΦ

ρ+ λ

[
bt − bn +

ψt
ρ+ λ+ θψ

]
. (67)

The limit of the expression above as t → ∞ is limt→∞ πt =
κλΦ
ρ+λ

(blr − bn). Differentiating the
expression above with respect to time, we obtain

π̇t =
κλΦ

ρ+ λ

[
ψt −

θψψt
ρ+ λ+ θψ

]
=

κλΨ

ρ+ λ+ θψ
ψt > 0. (68)

Proof of Lemma 1.
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Proof. From equation (18), inflation is given by

πt = κ

∫ ∞

t

e−(ρ+λ)(s−t)xsds+ λκΦ

∫ ∞

t

e−(ρ+λ)(s−t)(bs − bn)ds, (69)

where xt = − 1
θr
(rt − ρ) and bt = bogt + 1−e−θrt

θr
(r0 − ρ).

We can then write inflation as follows:

πt = πogt − κ(rt − ρ)

θr(ρ+ λ+ θr)︸ ︷︷ ︸
Ft

+
κλΦ

θr

[
1

ρ+ λ
− e−θrt

ρ+ λ+ θr

]
(r0 − ρ)︸ ︷︷ ︸

Jt

, (70)

where πogt = κλΦ
∫∞
t
e−(ρ+λ)(s−t)(bogs − bn)ds.

Proof of Proposition 3.

Proof. The fight-inflation strategy is successful at bringing inflation down at t = 0 if:

−F π
0 > Jπ0 ⇐⇒ κ(r0 − ρ)

θr(ρ+ λ+ θr)
>
κλΦ

θr

[
1

ρ+ λ
− 1

ρ+ λ+ θr

]
(r0 − ρ).

We can write the inequality above as follows:

1 >
λΦ

ρ+ λ
θr ⇐⇒ θr <

ρ+ λ

λΦ
. (71)

Notice that limt→∞ F π
t = 0 and limt→∞ Jπt = κλΦ

θr(ρ+λ)
(r0 − ρ) > 0. Hence, there exits T̂ > 0

such that for t > T̂ the following inequality holds:

−F π
t < Jπt . (72)

Hence, πt > πogt for t > T̂ .

Proof of Proposition 4
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Proof. The Hamiltonian for problem 1 is given by

Ht = −1

2

[
αx2t + βπ2

t + λΥ(bt − bn)2
]
+ µπ,t [(ρ+ λ)πt − κxt − λκΦ(bt − bn)] + µb,t [rt − ρ+ ψt]

+ µx,t[rt − ρ] + (µx,0 + ξx)(ρ+ λ)x0 + (µπ,0 + ξπ)

[
κx0 +

κ(1 + λΦ)

ρ+ λ
(rt − ρ)

]
, (73)

The dynamics of the co-states are given by

µ̇π,t − (ρ+ λ)µπ,t = βπt − µπ,t(ρ+ λ) (74)

µ̇b,t − (ρ+ λ)µb,t = λΥ(bt − bn) + κλΦµπ,t (75)

µ̇x,t − (ρ+ λ)µx,t = αxt + κµπ,t. (76)

The optimality condition for the real interest rate is

µb,t + µx,t = −ξ, (77)

where ξ ≡ κ(1+λΦ)
ρ+λ

(µπ,0 + ξπ).
The optimality condition for the initial output gap:

(ρ+ λ)(µx,0 + ξx) + κ(µπ,0 + ξπ) = 0. (78)

We will choose ξx = −κµπ,0+ξπ
ρ+λ

, such that µx,0 = 0. We show below that we can set µπ,0 = 0

without loss of generality.
The optimality condition for interest rates imply that µ̇b,t + µ̇x,t = 0. From the law of

motion of the co-states, we obtain

αxt + λΥ(bt − bn) = κ(1 + λΦ) (µπ,0 − µπ,t) + (ρ+ λ)ξ. (79)

Differentiating the expression above with respect to time, we obtain

α(rt − ρ) + λΥ(rt − ρ+ ψt) = −κ(1 + λΦ)βπt. (80)

Rearranging the expression above, we obtain the real interest rate

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt, (81)

54



and the nominal interest rate is given by

it = ρ+

[
1− β

κ(1 + λΦ)

λΥ+ α

]
πt −

λΥ

λΥ+ α
ψt. (82)

Proof of Propositions 5 and 6

Proof. The proof of Proposition 9 derives the solution to the optimal policy problem for
arbitrary values of α and β. Here, we specialize the general formulas to the case of doves,
β = 0, and hawks α = 0.

Doves. Suppose β = 0. In this case, initial inflation is given by

π0 =
κ

ω

[
αΦ

α + λΥ

λψ0

ω + θψ
+

λΥ

λΥ+ α

|ω|ψ0

(ρ+ λ+ θψ)(ω + θψ)
+ λΦ(b0 − bn)

]
, (83)

Using the fact that b0 = bn and that ω = 0, the expression above simplifies to

π0 =
κ

ω

αλΦ

α + λΥ

ψ0

ω + θψ
. (84)

Inflation is then given by

πt =
κλ(αΦ−Υ)

λΥ+ α

1− e−θψt

(θψ + ω)θψ
ψ0 + π0. (85)

The initial value of the output gap is given by

x0 =
λΥ

λΥ+ α

ψ0

ρ+ λ+ θψ
. (86)

The real rate is given by rt − ρ = − λΥ
λΥ+α

ψt, then output gap is given by

xt =
λΥ

λΥ+ α

ψ0

ρ+ λ+ θψ
− λΥ

λΥ+ α

ψ0 − ψt
θψ

. (87)
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The government debt is given by

bt =
α

λΥ+ α

ψ0 − ψt
θψ

. (88)

Hawks. Suppose α = 0. In this case, initial inflation is given by

π0 =
κ

θψ + ω

ψ0

ρ+ λ+ θψ
> 0. (89)

Inflation at t is given by

πt = −κ eωt − e−θψt

(θψ + ω)(θψ + ω)
ψ0 + eωtπ0. (90)

Combining the previous two expressions, we obtain

πt = κ
ψt − ω

ρ+λ+θψ
eωtψ0

(θψ + ω)(θψ + ω)
. (91)

Suppose θψ > |ω|, then the numerator is negative for t sufficiently large, and the denomina-
tor is positive, so limt→∞ < 0. If θψ < |ω|, then the numerator is positive for t sufficiently
large, and the denominator is negative, so again limt→∞ < 0.

The derivative of inflation with respect to time is given by

π̇t = −κ ωeωt + θψe
−θψt

(θψ + ω)(θψ + ω)
ψ0 + eωt

κ

θψ + ω

ωψ0

ρ+ λ+ θψ
(92)

= − κ

θψ + ω

[
θψ

θψ + ω
ψt −

|ω|
θψ + ω

ωeωtψ0

ρ+ λ+ θψ

]
. (93)

The term in brackets is always positive, so π̇0 < 0. Notice that inflation is decreasing at t = 0.
If θψ < |ω|, so the fiscal shock is very persistent, then inflation is eventually increasing. If
θψ > |ω, then inflation is decreasing even for large t.

The initial output gap

x0 =
ω

θψ + ω

[
1

ρ+ λ+ θψ
+

1

ω

]
ψ0. (94)
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The real interest rate is given by rt − ρ = − β
λΥ
κ(1 + λΦ)πt − ψt. Output gap is given by

xt = x0 − β
κ(1 + λΦ)

λΥ
pt −

ψ0 − ψt
θψ

. (95)

The government debt is given by

bt = −βκ(1 + λΦ)

λΥ
pt. (96)

Debt is initially decreasing, as ḃt = −β κ(1+λΦ)
λΥ

π0 < 0. The price level is given by

pt = κ

ψ0−ψt
θψ

− ω
ρ+λ+θψ

1−eωt
|ω| ψ0

(θψ + ω)(θψ + ω)
. (97)

Taking the limit as t→ ∞, we obtain

lim
t→∞

pt = κ

1
θψ

+ ω
ρ+λ+θψ

1
ω

(θψ + ω)(θψ + ω)
= κ

ρ+ λ

(θψ + ω)(θψ + ρ+ λ)θψ

1

ω
< 0. (98)

Therefore, limt→∞ bt > 0.

Proof of Proposition 7.

Proof. The planner’s objective is given by

P0(b0) = −1

2

∫ ∞

0

e−(ρ+λ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+

∫ ∞

0

e−(ρ+λ+λ)tλPt(bt)dt. (99)

The planner’s problem consists of maximizing the objective above subject to the constraints

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn), ḃt = rt − ρ+ ψt, ẋt = rt − ρ.

We also include a penalty on π0 and x0, as in the case with full commitment.
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Optimality conditions The optimality conditions are given by

µ̇π,t − (ρ+ λ+ λ)µπ,t = βπt − (ρ+ λ)µπ,t (100)

µ̇b,t − (ρ+ λ+ λ)µb,t = λΥ(bt − bn)− λPb,t(bt) + λκΦµπ,t (101)

µ̇x,t − (ρ+ λ+ λ)µx,t = αxt + κµπ,t, (102)

where Pb,t(bt) denotes the partial derivative of Pt(bt) with respect to debt.
The optimality condition for the interest rate is given by

µx,t + µb,t = −ξ, (103)

where ξ ≡ κ(1+λΦ)
ρ+θ

ξπ.
The optimality condition for x0 is given by

µx,0 = 0. (104)

Standard envelope arguments imply that

µb,t = Pb,t(bt). (105)

The discretion limit. Consider the limit as λ→ ∞, so each planner has commitment only
over an infinitesimal amount of time. In the limit, the co-states on πt and xt are given by

µπ,t = 0, µx,t = 0. (106)

Integrating the expression for µx,t forward, we obtain

µx,t = −
∫ ∞

t

e−(ρ+λ+λ)(s−t) [αxs + κµπ,s] ds⇒ lim
λ→∞

λµx,t = −αxt, (107)

using the fact that limλ→∞ µπ,t = 0. Hence, from the optimality condition for x0, we obtain
x0 = 0. Differentiating the optimality condition for the interest rate with respect to time, we
obtain

(ρ+ λ+ λ)ξ = αxt + λΥ(bt − bn)− λµb,t + κ(1 + λΦ)µπ,t, (108)

where we used the envelope condition for bt
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Given µb,t = −ξ − µx,t, and combining the previous two expressions, we obtain

(ρ+ λ)ξ = λΥ(bt − bn). (109)

Therefore, the interest rate is given by

rt − ρ = −ψt. (110)

Proof of Proposition 8.

Proof. The dynamics under the optimal policy are characterized by the conditions:

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn) (111)

ḃt = rt − ρ− γ(bt − bn) + ψt (112)

ẋt = rt − ρ+ θhxt − θ∗h(bt − bn) (113)

µ̇π,t = βπt (114)

µ̇b,t = (ρ+ λ)µb,t + λΥ(bt − bn) + κλΦµπ,t (115)

µ̇x,t = (ρ+ λ)µx,t + αxt + κµπ,t, (116)

where the real rate is given by

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt, (117)

given the initial value of debt, b0, and the boundary conditions µx,0 = µπ,0 = 0.
Consider the case without a fiscal shock, ψt = 0, and denote the co-states in this case with

no shocks by µnsx,t and µnsπ,t. The optimal policy under the timeless perspective corresponds
to the solution to the system above when we replace the initial conditions by the long-run
values of these multipliers: µx,0 = limt→∞ µnsx,t and µπ,0 = limt→∞ µnsπ,t (see Giannoni and
Woodford (2017) for a discussion in the context a general model). This is equivalent to the
problem of a planner who started its planning in a distant past, so the multipliers had time
to converge to their long-run values.

Even without shocks, the limits limt→∞ µnsx,t and limt→∞ µnsπ,t will not be equal to zero,
provided that b0 ̸= bn. However, in the case b0 = bn, the solution to the system above in
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the absence of shocks is simply πt = xt = bt = µπ,t = µx,t = µb,t = 0. Hence, we have that
limt→∞ µnsx,t = 0 and limt→∞ µnsπ,t = 0, so the boundary conditions for the problem under the
timeless perspective coincide with the time-zero commitment solution.

Proof of Proposition 9.

Proof. The matrix of eigenvectors and its inverse are given by

V =

κ(1+λΦ)
ω

κ(1+λΦ)
ω

1 1

 , V −1 =
ω|ω|

(ω − ω)κ(1 + λΦ)

−1 κ(1+λΦ)
ω

1 κ(1+λΦ)
|ω|

 . (118)

Let Zt = [πt, bt]
′ denote the vector of endogenous variables, A the matrix of coefficients,

and Ut the vector of coefficients. We can then write the dynamic system as Żt = AZt + Ut.
We can write the matrix of coefficients as A = V ΛV −1, where Λ is a diagonal matrix with
the eigenvalues. Using the matrix eigendecomposition, we can decouple the system using
the transformation: zt ≡ V −1Zt and ut ≡ V −1Ut. This gives us the system of decoupled
differential equations:

ż1,t = ωz1,t + u1,t, ż2,t = ωz2,t + u2,t. (119)

Integrating the first equation forward and the second backwards, we obtain

z1,t = −
∫ ∞

t

e−ω(s−t)u1,sds, z2,t = eωtz2,0 +

∫ t

0

eω(t−s)u2,sds. (120)

Rotating the system back to its original coordinates, we obtain

πt =
κ(1 + λΦ)

|ω|

∫ ∞

t

e−ω(s−t)u1,sds+
κ(1 + λΦ)

ω

[
eωtz2,0 +

∫ t

0

eω(t−s)u2,sds

]
, (121)

and

bt − bn = −
∫ ∞

t

e−ω(s−t)u1,sds+ eωtz2,0 +

∫ t

0

eω(t−s)u2,sds. (122)
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The disturbances u1,t and u2,t are given by

u1,t =
|ω|

ω − ω

[
α

λΥ+ α
ψt −

ω

(1 + λΦ)
(ψ̂t + b0 − bn − x0)

]
(123)

u2,t =
ω

ω − ω

[
α

λΥ+ α
ψt +

|ω|
(1 + λΦ)

(ψ̂t + b0 − bn − x0)

]
, (124)

where ψ̂t = 1−e−θψt
θψ

ψ0 if θψ > 0 and ψ̂t = ψ0t if θψ = 0.
The forward integral of u1,t is given by

∫ ∞

t

e−ω(s−t)u1,sds =
|ω|

ω − ω

[(
α

λΥ+ α
− ω

(1 + λΦ)

1

θψ

)
ψt

ω + θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + λΦ

]
. (125)

The backward integral of u2,t is given by∫ t

0
eω(t−s)u2,sds =

ω

ω − ω

[(
α

λΥ+ α
− |ω|

(1 + λΦ)

1

θψ

)
eωt − e−θψt

θψ + ω
ψ0 +

|ω|
(1 + λΦ)

(
ψ0

θψ
+ b0 − bn − x0)

1− eωt

|ω|

]
(126)

From the expression for z1,0, we obtain

π0 =
κ(1 + λΦ)

ω

[
(b0 − bn) +

ω − ω

|ω|

∫ ∞

0

e−ωtu1,tdt

]
=

κ(1 + λΦ)

ω

[
(b0 − bn) +

(
α

λΥ+ α
+

ω

(1 + λΦ)

1

θψ

)
ψ0

ω + θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + λΦ

]
.(127)

We can then write initial inflation as follows:

π0 =
κ

ω

[
λΦ(b0 − bn) + x0 +

αΦ−Υ

α + λΥ

λψ0

ω + θψ

]
.

The initial value for z2,t is given by

z2,0 =
ω

ω − ω

[
|ω|

κ(1 + λΦ)
π0 + b0 − bn

]
.
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Inflation is then given by

πt =
κ(1 + λΦ)

ω − ω

[(
α

λΥ+ α
+

ω

(1 + λΦ)

1

θψ

)
ψt

ω + θψ
−

ψ0

θψ
+ b0 − bn − x0

1 + λΦ

]
(128)

+
κ(1 + λΦ)

ω − ω

[
eωt

[
|ω|

κ(1 + λΦ)
π0 + b0 − bn

]
+

(
α

λΥ+ α
− |ω|

(1 + λΦ)

1

θψ

)
eωt − e−θψt

θψ + ω
ψ0

]
(129)

+
κ(1 + λΦ)

ω − ω

[
1− eωt

(1 + λΦ)
(
ψ0

θψ
+ b0 − bn − x0)

]
. (130)

After some rearrangement, we obtain

πt =
κλ(αΦ−Υ)

λΥ+ α

eωt − e−θψt

(θψ + ω)(θψ + ω)
ψ0 + eωtπ0. (131)

Boundary conditions. The optimality condition for x0 involves the co-states for x and π.
Solving the equation for µπ,t backward, we obtain

µπ,t = µπ,0 + β

∫ t

0

πsds. (132)

Solving the equation for µx,t forward, we obtain

µx,0 = −
∫ ∞

0

e−(ρ+θ)t [κµπ,t + αxt] dt (133)

= − κ

ρ+ θ
µπ,0 −

κβ

ρ+ θ

∫ ∞

0

e−(ρ+θ)tπtdt−
∫ ∞

0

e−(ρ+θ)tαxtdt. (134)

The optimality condition for x0 is given by

0 = µx,0 +
κ

ρ+ θ
µπ,0 = −

∫ ∞

0

e−(ρ+θ)t

[
β

ρ+ θ
πt + αxt

]
. (135)

Using the fact that xt = x0 + r̂t, we obtain∫ ∞

0

e−(ρ+θ)txtdt =
x0
ρ+ θ

+
1

ρ+ θ

∫ ∞

0

e−(ρ+θ)t(rt − ρ)dt. (136)
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The optimality condition for x0 can then be written as

0 =
α

ρ+ θ
x0 +

1

ρ+ θ

∫ ∞

0

e−(ρ+θ)t

[
κβπt + α

(
−βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt

)]
dt. (137)

Rearranging the expression above, we obtain

αx0 = β
κλ(αΦ−Υ)

λΥ+ α

∫ ∞

0

e−(ρ+θ)tπtdt+
αλΥ

λΥ+ α

∫ ∞

0

e−(ρ+θ)tψtdt. (138)

The present discounted value of inflation is given by∫ ∞

0

e−(ρ+θ)tπtdt =
κλ(αΦ−Υ)

(λΥ+ α)(θψ + ω)

ψ0

(ρ+ θ + |λ|)(ρ+ θ + θψ)
+

π0
ρ+ θ + |ω|

. (139)

Combining the previous two equations, we obtain

αx0 =
β

θψ + ω

(
κλ(αΦ−Υ)

λΥ+ α

)2
ψ0

(ρ+ θ + |λ|)(ρ+ θ + θψ)
+ β

κλ(αΦ−Υ)

λΥ+ α

π0
ρ+ θ + |ω|

(140)

+
αλΥ

λΥ+ α

ψ0

ρ+ θ + θψ
. (141)

Using the fact that π0 = κ
ω

[
λΦ(b0 − bn) + x0 +

αΦ−Υ
α+λΥ

λψ0

ω+θψ

]
, we obtain

x0 =

β
θψ+ω

(
κλ(αΦ−Υ)
λΥ+α

)2
ψ0

(ρ+θ+|ω|)

[
1

ρ+θ+θψ
+ 1

ω

]
+ αλΥ

λΥ+α
ψ0

ρ+θ+θψ
+ β κλ(αΦ−Υ)

λΥ+α
κλΦ(b0−bn)
ω(ρ+θ+|ω|)

α− κβ
ω(ρ+θ+|ω|)

κλ(αΦ−Υ)
λΥ+α

. (142)

Initial inflation is then given by

π0 =
κ

ω

 β
θψ+ω

(
κλ(αΦ−Υ)
λΥ+α

)2
ψ0

(ρ+θ+|ω|)
1

ρ+θ+θψ
+ α2Φ

α+λΥ
λψ0

ω+θψ
+ αλΥ

λΥ+α
|ω|ψ0

(ρ+θ+θψ)(ω+θψ)
+ αλΦ(b0 − bn)

α− κβ
ω(ρ+θ+|ω|)

κλ(αΦ−Υ)
λΥ+α

 .
(143)

Notice that the numerator is positive. The denominator is positive for α large or β large. In
these cases, a fiscal shock leads to more inflation and higher output gap.

63



Output gap. The output gap is given by

xt = x0 − β
κ(1 + λΦ)

λΥ+ α
pt −

λΥ

λΥ+ α

ψ0 − ψt
θψ

, (144)

where pt =
∫ t
0
πsds.

Government debt. Government debt is given by

bt = −βκ(1 + λΦ)

λΥ+ α
pt +

α

λΥ+ α

ψ0 − ψt
θψ

. (145)
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C. Optimal policy

C.1 The planner’s problem

Planner’s problem. We can write the planner’s problem as follows:

max
{[xt,πt,bt,rt]∞0 }

−1

2

∫ ∞

0

e−(ρ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt, (146)

subject to

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn) (147)

ḃt = rt − ρ+ ψt (148)

ẋt = rt − ρ, (149)

given b0 and the initial value for inflation.

The lack of a classical solution. It turns out that a classical solution, where the states are
continuous functions of time, does not exist. The issue of non-existence of a solution can be
seen more clearly in the case β = 0, where inflation drops out of the problem. For simplicity,
assume that b0 = bn = 0. The optimality condition for rt is given by

αxt + λΥbt = 0, (150)

for all t ≥ 0. The optimality condition for x0 is given by

µx,0 = 0 ⇐⇒ −α
∫ ∞

0

e−(ρ+λ)txtdt = 0. (151)

Let (x∗t , b∗t ) denote a candidate solution, where b∗t is a differentiable function of time sat-
isfying b∗0 = 0. Differentiating the optimality condition for rt with respect to time, we obtain

rt − ρ = − λΥ

α + λΥ
ψt ⇒ r̂t = − λΥ

α + λΥ
ψ̂t. (152)

As xt = x0 + r̂t, the optimality condition for x0 implies that the following condition must
hold:

x0
ρ+ λ

+

∫ ∞

0

e−(ρ+λ)tr̂tdt = 0 ⇒ x0 =
λΥ

α + λΥ

∫ ∞

0

e−(ρ+λ)tψtdt > 0. (153)

65



However, from the optimality condition for the interest rate at t = 0, we obtain:31

αx0 + λΥb0 = 0 ⇒ x0 = 0, (154)

which contradicts the fact that x0 > 0.

Incentive for expropriation. While a classical solution to this problem does not exist, a
generalized solution with discontinuous states exists. In a classical solution, bt is given by

bt =

∫ t

0

(rs − ρ+ ψs)ds (155)

The integral above is equal to zero at t = 0, so b0 = 0. Following the approach in optimal
impulsive control, consider the following generalization:32

bt =

∫ t

0

(rs − ρ+ ψs)ds+

∫
[0,t]

rsdµ, (156)

where µ denotes a Borel measure on R+. For example, if µ is a Dirac measure with weight
on zero, then bt is given by

bt =

∫ t

0

(rs − ρ+ ψs)ds+ r0. (157)

In this case, government debt can immediately jump at zero, provided r0 ̸= 0.

Define r̂t ≡
∫∞
0
(rs−ρ)ds+

∫
[0,t]

rsdµ, so xt = x0+r̂t and bt = r̂t+ψ̂t. In a classical solution, r̂t
must be an absolutely continuous function satisfying r̂0 = 0, while it is a bounded variation
function in the context of optimal impulsive control, where r̂0 can take any value. Without
the constraint that r̂0 = 0, the planner’s problem becomes particularly simple:

max
{x0,[r̂t]∞0 }

−1

2

∫ ∞

0

e−(ρ+λ)t

[
α (x0 + r̂t)

2 + λΥ
(
r̂t + ψ̂t

)2
]
dt, (158)

with optimality conditions

αxt + λΥbt = 0, −α
∫ ∞

0

e−(ρ+λ)txtdt = 0. (159)

31Notice that the optimality condition for the interest rate must hold at t = 0. From continuity of xt and bt,
if αxt+λΥbt > 0 for t = 0, there exists t1 > 0 such that this inequality holds for t ∈ [0, t1). By reducing interest
rates in this interval, we can improve the planner’s objective.

32See Arutyunov et al. (2019) for a discussion of optimal impulsive control theory.
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The solution in this case takes the form:

rt − ρ = − λΥ

α + λΥ
ψt, x0 =

λΥ

α + λΥ

∫ ∞

0

e−(ρ+λ)tψtdt, b0 = − α

λΥ
x0. (160)

Hence, government debt jumps immediately down on impact, which requires r0 = − α
λΥ
x0

and µ to be a Dirac measure with weight in zero. Intuitively, the planner has an incentive
to expropriate part of the debt by having the real interest rate be very negative over a small
period (the impulse from the Dirac measure).

C.2 Characterization of the optimal policy

The penalized planner’s problem. To deal with the incentive to expropriate, we introduce
a penalty associated with the initial value of each forward-looking variable:

max
{[πt,bt,xt,rt]∞0 }

−1

2

∫ ∞

0

e−(ρ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+ ξxx0 + ξππ0, (161)

subject to

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn), ḃt = rt − ρ+ ψt, ẋt = rt − ρ, (162)

given b0 and the initial value for inflation. We will choose the penalty ξx and ξπ such that
there is no discontinuity in bt at t = 0, and the co-state for the output gap is equal to zero at
t = 0.

Optimality conditions. The Hamiltonian to this problem is given by

Ht = −1

2

[
αx2t + βπ2t + λΥ(bt − bn)2

]
+ µπ,t [(ρ+ λ)πt − κxt − λκΦ(bt − bn)] + µb,t [rt − ρ+ ψt]

+ µx,t[rt − ρ] + (µx,0 + ξx)(ρ+ λ)x0 + (µπ,0 + ξπ)

[
κx0 +

κ(1 + λΦ)

ρ+ λ
(rt − ρ)

]
, (163)

The dynamics of the co-states are given by

µ̇π,t − (ρ+ λ)µπ,t = βπt − µπ,t(ρ+ λ) (164)

µ̇b,t − (ρ+ λ)µb,t = λΥ(bt − bn) + κλΦµπ,t (165)

µ̇x,t − (ρ+ λ)µx,t = αxt + κµπ,t. (166)
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The optimality condition for the real interest rate is

µb,t + µx,t = −ξ, (167)

where ξ ≡ κ(1+λΦ)
ρ+λ

(µπ,0 + ξπ).
The optimality condition for the initial output gap:

(ρ+ λ)(µx,0 + ξx) + κ(µπ,0 + ξπ) = 0. (168)

We will choose ξx = −κµπ,0+ξπ
ρ+λ

, such that µx,0 = 0. We show below that we can set µπ,0 = 0

without loss of generality.

Real and nominal rates. The optimality condition for interest rates imply that µ̇b,t+ µ̇x,t =

0. From the law of motion of the co-states, we obtain

αxt + λΥ(bt − bn) = κ(1 + λΦ) (µπ,0 − µπ,t) + (ρ+ λ)ξ. (169)

Differentiating the expression above with respect to time, we obtain

α(rt − ρ) + λΥ(rt − ρ+ ψt) = −κ(1 + λΦ)βπt. (170)

Rearranging the expression above, we obtain the real interest rate

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt, (171)

and the nominal interest rate is given by

it = ρ+

[
1− β

κ(1 + λΦ)

λΥ+ α

]
πt −

λΥ

λΥ+ α
ψt. (172)

Dynamics under the optimal policy. Using the expression for xt = x0 + bt − b0 − ψ̂t, we
can write a dynamic system for πt and btπ̇t

ḃt

 =

ρ+ λ −κ(1 + λΦ)

−β̂ 0


 πt

bt − bn

+

κ(ψ̂t + b0 − bn − x0)

α
λΥ+α

ψt

 , (173)
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where β̂ ≡ βκ(1+λΦ)
λΥ+α

and ψ̂t =
1−e−θψt

θψ
ψ0. As b0 is given and π0 can jump, there is a unique

bounded solution to the system above if the system has a positive eigenvalue and a negative
eigenvalue. The eigenvalues of the system satisfy the condition

(ρ+ λ− ω)(−ω)− β̂κ(1 + λΦ) = 0 ⇒ ω2 − [ρ+ λ]ω − κ(1 + λΦ)β̂ = 0.

Denote the eigenvalues of the system by ω > 0 and ω < 0, where

ω =
ρ+ λ+

√
(ρ+ λ)2 + 4κ(1 + λΦ)β̂

2
, ω =

ρ+ λ−
√

(ρ+ λ)2 + 4κ(1 + λΦ)β̂

2
. (174)

We provide next a characterization of inflation and output gap under the optimal policy.

Proposition 9 (Optimal policy: general case). Suppose the planner implements the optimal policy
given welfare weights α ≥ 0 and β ≥ 0. Then,

1. Inflation is given by

πt =
κλ(αΦ−Υ)

λΥ+ α

eωt − e−θψt

(θψ + ω)(θψ + ω)
ψ0 + eωtπ0, (175)

where initial inflation is given by

π0 =
κ

ω

 β
θψ+ω

(
κλ(αΦ−Υ)
λΥ+α

)2
ψ0

(ρ+θ+|ω|)
1

ρ+θ+θψ
+ α2Φ

α+λΥ
λψ0

ω+θψ
+ αλΥ

λΥ+α
|ω|ψ0

(ρ+θ+θψ)(ω+θψ)
+ αλΦ(b0 − bn)

α− κβ
ω(ρ+θ+|ω|)

κλ(αΦ−Υ)
λΥ+α

 .
(176)

2. Output gap is given by

xt = x0 − β
κ(1 + λΦ)

λΥ+ α
pt −

λΥ

λΥ+ α

ψ0 − ψt
θψ

, (177)

where pt =
∫ t
0
πsds, and the initial output gap is given by

αx0 =
β

θψ + ω

(
κλ(αΦ−Υ)

λΥ+ α

)2
ψ0

(ρ+ θ + |λ|)(ρ+ θ + θψ)

+ β
κλ(αΦ−Υ)

λΥ+ α

π0
ρ+ θ + |ω|

+
αλΥ

λΥ+ α

ψ0

ρ+ θ + θψ
. (178)
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3. The government debt is given by

bt = −βκ(1 + λΦ)

λΥ+ α
pt +

α

λΥ+ α

ψ0 − ψt
θψ

. (179)

D. Optimal policy with expectation effects and cost-push

shocks

D.1 Implementability

Suppose that θh = 0, so the equilibrium dynamics is described by the dynamic system:

π̇t = (ρ+ θ)πt − κxt − κΦθ∗bt − vt, ẋt = rt − ρ, ḃt = rt − ρ− γbt + ψt, (180)

for a given path of real rates, the initial condition for the output gap x0, the evolution of the
fiscal shock ψt, and a cost-push shock vt.

Proposition 10 (Implementability). Given a path of real rates [rt]
∞
0 and an initial condition for

the output gap, x0, and for government debt, b0, then initial inflation is given by

π0 = κ

[
x0
ρ+ θ

+
θ∗Φb0

ρ+ θ + γ
+

∫ ∞

0

e−(ρ+θ)t

(
rt − ρ

ρ+ θ
+

θ∗Φ

ρ+ θ + γ
(rt − ρ+ ψt) + vt

)
dt

]
. (181)

Proof. Integrating the law of motion of debt, we obtain

bt = e−γtb0 + r̂γ,t + ψ̂γ,t, (182)

where r̂γ,t ≡
∫ t
0
e−γ(t−s)(rs − ρ)ds and ψ̂γ,t ≡

∫ t
0
e−γ(t−s)ψsds.

Output gap is given by
xt = x0 + r̂t, (183)

where r̂t ≡ r̂0,t. Initial inflation is given by

π0 = κ

[
x0
ρ+ θ

+
θ∗Φb0

ρ+ θ + γ
+

∫ ∞

0

e−(ρ+θ)t
(
r̂t + θ∗Φ(r̂γ,t + ψ̂γ,t) + vt

)
dt

]
. (184)

Applying integration by parts, we obtain the expression for initial inflation.
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D.2 Optimal policy

The optimal policy problem is given by

max
[πt,bt,xt,rt]∞0

−1

2

∫ ∞

0

e−(ρ+θ)t
[
α(xt − x∗)2 + βπ2

t + θ∗Υ(bt − bn)2
]
dt+ ξxx0 + ξππ0. (185)

subject to

π̇t = (ρ+ θ)πt−κxt−κΦθ∗(bt− bn)−vt, ẋt = rt−ρ, ḃt = rt−ρ−γbt+ψt, (186)

given the initial condition for inflation, where ξx and ξπ denote the penalty on the initial
value of output and inflation.

The Hamiltonian for this problem is given by

Ht = −1

2

[
α(xt − x∗)2 + βπ2t + θ∗Υ(bt − bn)2

]
+ (ρ+ θ)ξxx0 + µx,t [rt − ρ] + µx,0(ρ+ θ)x0 + µb,t [rt − ρ− γbt + ψt]

+ µπ,t [(ρ+ θ)πt − κxt − θ∗κΦ(bt − bn)− vt] + (µπ,0 + ξπ)κ

[
x0 +

(
1 +

(ρ+ θ)θ∗Φ

ρ+ θ + γ

)
rt − ρ

ρ+ θ

]
. (187)

Optimality conditions. The dynamics of the co-states are given by

µ̇π,t − (ρ+ θ)µπ,t = βπt − (ρ+ θ)µπ,t (188)

µ̇b,t − (ρ+ θ)µb,t = θ∗Υ(bt − bn) + θ∗κΦµπ,t + γµb,t (189)

µ̇x,t − (ρ+ θ)µx,t = α(xt − x∗) + κµπ,t. (190)

The optimality condition for the interest rate is given by

µx,t + µb,t = −κ [µπ,0 + ξπ]

ρ+ θ

(
1 +

(ρ+ θ)θ∗Φ

ρ+ θ + γ

)
. (191)

The optimality condition for the initial value of the output gap is given by

(ρ+ θ)(µx,0 + ξx) + κ(µπ,0 + ξπ) = 0. (192)

Real interest rates. The next proposition gives the real interest rate.
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Proposition 11 (Real interest rate). The real interest rate is given by

rt− ρ = −βκ(1 + θ∗Φ)

θ∗Υ+ α
πt−

θ∗Υ

θ∗Υ+ α
ψt−

γ

θ∗Υ+ α
[(ρ+ θ + γ)µb,t + θ∗κΦµπ,t − θ∗Υbn] . (193)

Proof. The optimality condition for the interest rate implies that µ̇b,t+ µ̇x,t = 0. From the law
of motion of the co-states, we obtain

α(xt − x∗) + θ∗Υ(bt − bn) = −κ(1 + θ∗Φ)µπ,t − γµb,t + κ

(
1 +

(ρ+ θ)θ∗Φ

ρ+ θ + γ

)
(µπ,0 + ξπ). (194)

Rearranging the expression above, we obtain

α(xt−x∗)+θ∗Υ(bt−bn) = κ(1+θ∗Φ) (µπ,0 − µπ,t)−γ
[
µb,t +

κθ∗Φ

ρ+ θ + γ
µπ,0

]
+κ

(
1 +

(ρ+ θ)θ∗Φ

ρ+ θ + γ

)
ξπ.

(195)

Differentiating the expression above, we obtain

α(rt − ρ) + θ∗Υ(rt − ρ+ ψt − γbt) = −βκ(1 + θ∗Φ)πt − γµ̇b,t. (196)

Rearranging the expression above, and using the dynamics for µb,t, we obtain the real inter-
est rate.

Dynamic system. Equilibrium dynamics under the optimal policy satisfies the dynamic
system:

π̇t

ẋt

ḃt

µ̇b,t

µ̇π,t


=



ρ+ θ −κ −κΦθ∗ 0 0

−β̂ 0 0 −γ(ρ+θ+γ)
θ∗Υ+α − γκθ∗Φ

θ∗Υ+α

−β̂ 0 −γ −γ(ρ+θ+γ)
θ∗Υ+α − γκθ∗Φ

θ∗Υ+α

0 0 θ∗Υ ρ+ θ + γ κθ∗Φ

β 0 0 0 0





πt

xt

bt

µb,t

µπ,t


+



0.0

− θ∗Υ
θ∗Υ+α

α
θ∗Υ+α

0.0

0.0


ψt+



−1

0

0

0

0


vt+



κθ∗Φ

γθ∗Υ
θ∗Υ+α

γθ∗Υ
θ∗Υ+α

−θ∗Υ

0


bn,

(197)

where β̂ ≡ β κ(1+θ
∗Φ)

θ∗Υ+α
, given the boundary conditions:

µx,0 + ξx = − κ

ρ+ θ
(µπ,0 + ξπ), µb,0 − ξx = − κθ∗Φ

ρ+ θ + γ
(µπ,0 + ξπ). (198)

72



Proposition 12 (Dynamic system). Let V and Λ denote the matrix of eigenvectors and a diag-
onal matrix with the eigenvalues of the dynamic system (197), respectively, and denote the vector
of endogenous variables by Zt = [πt, xt, bt, µb,t, µπ,t]

′. Assume that V is diagonalizable with real
eigenvalues. Then, Zt is given by

Zt = V1z1,t + V2z2,t, (199)

where V = [V1 V2], Λ = diag(Λ1,Λ2), Λ1 is a diagonal matrix with positive eigenvalues, Λ2 is a
diagonal matrix with non-positive eigenvalues, and

z1,t = −
∫ ∞

t

exp (−Λ1(s− t))
[
uψ1ψs + uv1vs + un1b

n
]
ds, (200)

and

z2,t = exp (Λ2t) z2,0 +

∫ t

0

exp (Λ2(t− s))
[
uψ2ψs + uv2vs + un2b

n
]
ds. (201)

Proof. Let Zt = [πt, xt, bt, µb,t, µπ,t]
′, so we can write the system above in matrix form:

Żt = AZt + Uψψt + U vvt + Unbn. (202)

Assuming the matrixA is diagonalizable, we can write the eigendecompositionA = V ΛV −1

and obtain a decoupled system under new coordinates:

żt = Λzt + uψψt + uvvt + unbn, (203)

where zt = V −1Zt and uj = V −1U j , for j ∈ {ψ, v, n}. Let zt = [z′1,t, z
′
2,t]

′, where z1,t is associ-
ated with the positive eigenvalues, and z2,t is associated with the non-positive eigenvalues
(assuming the eigenvalues are real-valued). Solving forward the differential equation for
z1,t, we obtain

z1,t = −
∫ ∞

t

exp (−Λ1(s− t))
[
uψ1ψs + uv1vs + un1b

n
]
ds. (204)

When ψt is exponentially decaying, we obtain

z1,t = − [Λ1 + θψI]
−1 uψ1ψt − [Λ1 + θvI]

−1 uv1vt − Λ−1
1 un1b

n. (205)

Solving backward the differential equation for z2,t, we obtain

z2,t = exp (Λ2t) z2,0 +

∫ t

0

exp (Λ2(t− s))
[
uψ2ψs + uv2vs + un2b

n
]
ds. (206)
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When ψt is exponentially decaying, we obtain

z2,t = exp (Λ2t) z2,0 + [Λ2 + θψI]
−1 [exp (Λ2t)− exp (−θψIt)]uψ2ψ0

+ [Λ2 + θvI]
−1 [exp (Λ2t)− exp (−θvIt)]uv2v0 + Λ−1

2 [exp (Λ2t)− I]un2b
n. (207)

Rotating the system back to the original coordinates, we obtain

Zt = V1z1,t + V2z2,t. (208)

The vector z1,t captures the dependence on the exogenous shocks, while z2,0 captures the
effect of past promises.

Boundary conditions. The next proposition characterizes the boundary conditions

Proposition 13 (Boundary conditions). The optimality condition for x0 and for the interest rate
evaluated at zero are given:

κξπ
ρ+ θ

+ ξx =

∫ ∞

0

e−(ρ+θ)t

[
α(xt − x∗) +

κβ

ρ+ θ
πt

]
dt, (209)

κθ∗Φξπ
ρ+ θ + γ

− ξx =

∫ ∞

0

e−(ρ+θ+γ)t

[
θ∗Υ(bt − bn) +

κθ∗Φβπt
ρ+ θ + γ

]
dt. (210)

Proof. The boundary conditions can be written as

κ

ρ+ θ
(µπ,0 + ξπ) + ξx =

∫ ∞

0

e−(ρ+θ)t [α(xt − x∗) + κµπ,t] dt = −µx,0 (211)

κθ∗Φ

ρ+ θ + γ
(µπ,0 + ξπ)− ξx =

∫ ∞

0

e−(ρ+θ+γ)t [θ∗Υ(bt − bn) + κθ∗Φµπ,t] dt = −µb,0, (212)

Using the fact that µπ,t = µπ,0 +
∫ t
0
βπsds, we obtain the two boundary conditions.

To obtain µx,0 = 0, the value of the co-state in the timeless perspective, the following
condition must be satisfied:

ξx = − κξπ
ρ+ θ

. (213)
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This implies that −µb,0 is given by[
κθ∗Φ

ρ+ θ + γ
+

κ

ρ+ θ

]
ξπ =

∫ ∞

0

e−(ρ+θ+γ)t

[
θ∗Υ(bt − bn) +

κθ∗Φβπt
ρ+ θ + γ

]
dt. (214)

Irrelevance of µπ,0. We show next that the system is independent of µπ,0, which will allow
us to normalize it to zero. Define the adjusted co-states:

µ̃π,t ≡ µπ,t − µπ,0, µ̃x,t ≡ µx,t +
κ

ρ+ θ
µπ,0, µ̃b,t ≡ µb,t +

κθ∗Φ

ρ+ θ + γ
µπ,0. (215)

The law of motion of the adjusted co-states is given by

˙̃µπ,t = βπt (216)
˙̃µb,t − (ρ+ θ + γ)µ̃b,t = θ∗Υ(bt − bn) + θ∗κΦµ̃π,t (217)

˙̃µx,t − (ρ+ θ)µ̃x,t = α(xt − x∗) + κµ̃π,t. (218)

The optimality condition for the interest rate is then given by

µ̃x,t + µ̃b,t = − κξπ
ρ+ θ

(
1 +

(ρ+ θ)θ∗Φ

ρ+ θ + γ

)
. (219)

The optimality condition for the initial value of the output gap is given by

(ρ+ θ)(µ̃x,0 + ξx) + κ(µ̃π,0 + ξπ) = 0. (220)

The dynamic system for the equilibrium variables can be equivalently written in terms
of the adjusted co-states (µ̃π,t, µ̃x,t, µ̃b,t). As µ̃π,0 = 0, we can assume that µπ,0 = 0 without
loss of generality.

Determination of initial conditions. We have three initial conditions for the system above:
µx,0 = 0, µπ,0 = 0, and the initial value of debt b0. it remains to write µx,0 in terms of the
remaining variables. The output gap can be written as

xt = Vx,1z1,t + Vx,2z2,t (221)
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The average value of z1,t is given by

z1 = (ρ+θ)

∫ ∞

0
e−(ρ+θ)tz1,tdt = − [Λ1 + θψI]

−1 uψ1
(ρ+ θ)ψ0

ρ+ θ + θψ
− [Λ1 + θvI]

−1 uv1
(ρ+ θ)vt
ρ+ θ + θv

−Λ−1
1 un1b

n.

(222)

The average value of z2,t is given by

z2 = (ρ+ θ)

∫ ∞

0

e−(ρ+θ)tz2,tdt =

[
I − 1

ρ+ θ
Λ2

]−1

z2,0 + z̃2, (223)

where

z̃2,0 = [Λ2 + θψI]
−1

[[
I − 1

ρ+ θ
Λ2

]−1

− ρ+ θ

ρ+ θ + θψ
I

]
uψ2ψ0

+ [Λ2 + θvI]
−1

[[
I − 1

ρ+ θ
Λ2

]−1

− ρ+ θ

ρ+ θ + θv
I

]
uv2v0 + Λ−1

2

[[
I − 1

ρ+ θ
Λ2

]−1

− I

]
un2b

n

(224)

The optimality condition for x0 can be written as follows:

0 = α(x− x∗) +
κβ

ρ+ θ
π, (225)

where x = (ρ + θ)
∫∞
0
e−(ρ+θ)txtdt and π = (ρ + θ)

∫∞
0
e−(ρ+θ)tπtdt. The other boundary

conditions can be written as

0 = Vµπ1z1,0 + Vµπ2z2,0, b0 = Vb1z1,0 + Vb2z2,0. (226)

Let’s assume that the system has two positive eigenvalues and three non-positive eigen-
values. Then, the z2,0 is a three-dimensional vector that can be determined using the initial
conditions for µx,t, µπ,t, and bt:

αx∗

0

b0


︸ ︷︷ ︸

d0

=


(
αVx2 +

κβ
ρ+θ

Vπ2

) [
I − 1

ρ+θ
Λ2

]−1

Vµπ2

Vb2


︸ ︷︷ ︸

D

z2,0 + d1, (227)
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where

d1 =


αVx1 +

κβ
ρ+θ

Vπ1

Vµπ1

Vb1

 z1,0 +

(
αVx2 +

κβ
ρ+θ

Vπ2

)
z̃2,0

0

0

 . (228)

The initial condition for z2,t is then given by

z2,0 = D−1 [d0 − d1] . (229)

D.3 Perturbation solution

Let r = {rt ∈ R : t ≥ 0} denote the path of real interest rates. Define wt = (πt, xt, bt) as the
vector of non-policy variables and w = {wt ∈ R3 : t ≥ 0} as the path of wt. We say that a
path of non-policy variables w is feasible if there exists a path of real interest rates r such
that w is a bounded solution to the system of differential equations:

π̇t = (ρ+ λf )πt − κxt − λfκΦ(bt − bn) ≡ gπ(wt, rt, ψt) (230)

ḃt = rt − ρ+ ψt ≡ gx(wt, rt, ψt) (231)

ẋt = rt − ρ ≡ gb(wt, rt, ψt), (232)

given the initial condition b0 and the process for the fiscal shock ψt = e−θψtψ0.
Denote the set of feasible w by F . The optimal policy problem is then given by:

max
w∈F

∫ ∞

0

e−(ρ+θ)tf(wt)dt, (233)

where f(wt) ≡ −1
2
[αx2t + βπ2

t + λΥ(bt − bn)2].
Let w∗ denote a candidate solution at the interior of the feasible set F . Given a scalar

ϵ > 0, consider the perturbation ŵt = w∗
t + ϵηt. We say that the deviation η = {ηt ∈ R : t ≥ 0}

is feasible if the path of w∗
t + ϵηt belongs to the feasible set.

Fixing a given deviation η and a candidate solution w∗, the value of a perturbed solution
is a function of ϵ:

W(ϵ) =

∫ ∞

0

e−(ρ+θ)tf(w∗
t + ϵηt)dt. (234)
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Given functions (µπ,t, µx,t, µb,t), we can write the value of the perturbation as follows:

W(ϵ) =

∫ ∞

0

e−(ρ+θ)t

f(ŵt) + ∑
z∈{π,x,b}

µz,t

(
gz(ŵt, r̂t, ψt)− ˙̂zt

) dt, (235)

where r̂ corresponds to the path of real interest rates associated with the perturbed solution
ŵ. Notice that gz(ŵt, r̂t, ψt) − żt = 0 for all t ≥ 0, as ŵ is feasible, so the value of W(ϵ) is
independent of the functions (µπ,t, µx,t, µb,t).

We can use integration by parts to express the following integral in a more convenient
form:∫ ∞

0

e−(ρ+θ)tµz,t ˙̂ztdt = lim
t→∞

e−(ρ+θ)tµz,tẑt − µz,0ẑ0 −
∫ ∞

0

e−(ρ+θ)t [µ̇z,t − (ρ+ θ)µz,t] ẑtdt, (236)

for z ∈ {π, x, b}. Combining the previous two expressions, we obtain

W(ϵ) =

∫ ∞

0

e−(ρ+θ)t

f(ŵt) + ∑
z∈{π,x,b}

µz,tgz(ŵt, r̂t, ψt) +
∑
z

(µ̇z,t − (ρ+ θ)µz,t) zt

 dt
+
∑
z

[
µz,0z0 − lim

t→∞
e−(ρ+θ)tµz,tzt

]
, (237)

Notice that b0 is fixed, x0 is free to be chosen by the planner, but π0 is determined by the
choice of r and x0. It is useful to eliminate π0 from the expression above. First, notice that π0
can be written as

π0 =

∫ ∞

0

e−(ρ+θ)th0(rt, ψt;x0, b0)dt, (238)

where h0(rt, ψt;x0, b0) ≡ κ
[
x0 + λΦb0 +

1+λΦ
ρ+θ

(rt − ρ) + λΦ
ρ+θ

ψt

]
.

We can then write the W(ϵ) in terms of a Hamiltonian, properly modified to incorporate
the effect of the initial conditions:

W(ϵ) =

∫ ∞

0

e−(ρ+θ)t

H(ŵt, r̂t, ψt; b0, x̂0) +
∑

z∈{π,x,b}

(µ̇z,t − (ρ+ θ)µz,t) zt

 dt
−

∑
z∈{π,x,b}

lim
t→∞

e−(ρ+θ)tµz,tzt, (239)
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whereH(ŵt, r̂t, ψt) ≡ f(ŵt)+
∑

z∈{π,x,b} µz,tgz(ŵt, r̂t, ψt)+(ρ+θ) [µb,0b0 + µx,0x0]+µπ,0h0(r̂t, ψt; b0, x̂0).
A necessary condition for w∗ to be an interior solution of the optimal policy problem is

that
W ′(ϵ) = 0. (240)

Let r̂ = r∗+ϵηr,t and x̂0 = x∗0+ϵηx,0 denote the path of real interest rates and initial output
gap associated with the perturbation ŵ. We can then write the derivative with respect to ϵ
as follows:

W ′(0) =

∫ ∞

0
e−(ρ+θ)t

[∑
z

(Hz(w
∗
t , r

∗
t , ψt) + µ̇z,t − (ρ+ θ)µz,t) ηz,t

]
dt−

∑
z

[
lim
t→∞

e−(ρ+θ)tµz,tηz,t

]
+

∫ ∞

0
e−(ρ+θ)tHr(w

∗
t , r

∗
t , ψt)ηr,tdt. (241)

The functions µz,t are arbitrary, so we can choose them to satisfy the condition:

µ̇z,t − (ρ+ θ)µz,t = −Hz(w
∗
t , r

∗
t , ψt), (242)

subject to the boundary condition limt→∞ e−(ρ+θ)tµz,t = 0. As any feasible perturbation is
bounded, this ensures that the term limt→∞ e−(ρ+θ)tµz,tηz,t is equal to zero.

As the perturbation ηr,t is arbitrary, the following condition must be satisfied:

Hr(w
∗
t , r

∗
t , ψt) = 0. (243)

Finally, the optimality condition for x0 is given by

(ρ+ θ)µx,0 + µπ,0κ = 0. (244)

The general case. Suppose that equilibrium variables evolve according to the more gen-
eral dynamics:

π̇t = (ρ+ λf )πt − κxt − λfκΦ(bt − bn) (245)

ḃt = rt − ρ− γ(bt − bn) + ψt (246)

ẋt = rt − ρ+ θhxt − θ∗h(bt − bn), (247)

We are interested in the effect of the initial conditions, so let’s set rt = ρ and ψt = 0. In
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this case, the evolution of bt and xt is given by
π̇t

ẋt

ḃt

 =


ρ+ λf −κ −κλfΦ

−1 θh −θ∗h

−1 0 −γ




πt

xt

bt − bn

 . (248)

The homogeneous solution is given by

bt− bn = e−γt(b0− bn), xt =
θ∗h

γ + θh
(bt− bn), πt =

[
θ∗h

γ + θh
+ λfΦ

]
κ

ρ+ λf + γ
(bt− bn).

(249)

D.4 Optimal policy with discretion

Optimal policy with finite planning horizon. Consider a planning with a finite planning
horizon. We assume that a new planner takes over with a Poisson intensity λ. The current
planner takes the actions of future decision-makers as given. This ensures that the Euler
equation is satisfied even after a new planner takes over. Let Pt(bt) denote the value of a
planner at period t with a given level of government debt, and P∗(b∗) denotes the value of
a planner in the inflationary-finance phase. The planner’s objective is given by

P0(b0) = E0

[
−1

2

∫ τ

0

e−ρt
[
αx2t + βπ2

t

]
dt+ e−ρτ P̃τ (bτ )

]
, (250)

where τ denotes the random time the economy switches to either the inflationary-finance
phase, so the planner’s value becomes P̃τ (bτ ) = P∗(bτ ), or a new planner’s take over, so
the planner’s value is P̃τ (bτ ) = Pτ (bτ ). The density of τ is given by (λ + λ)e−(λ+λ)t and,
conditional on switching, the probability of moving to the inflationary-finance phase is λ

λ+λ
,

while the probability of a new planner taking over is given by λ
λ+λ

(see e.g. Cox and Miller
(1977) for a derivation).

Using the density of τ , we can then express P0(x0, b0) as follows:

P0(b0) = −1

2

∫ ∞

0

e−(ρ+λ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+

∫ ∞

0

e−(ρ+λ+λ)tλPt(bt)dt. (251)
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The planner’s problem consists of maximizing the objective above subject to the constraints

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn), ḃt = rt − ρ+ ψt, ẋt = rt − ρ.

We also include a penalty on π0 and x0, as in the case with full commitment.

Optimality conditions The optimality conditions are given by

µ̇π,t − (ρ+ λ+ λ)µπ,t = βπt − (ρ+ λ)µπ,t (252)

µ̇b,t − (ρ+ λ+ λ)µb,t = λΥ(bt − bn)− λPb,t(bt) + λκΦµπ,t (253)

µ̇x,t − (ρ+ λ+ λ)µx,t = αxt + κµπ,t, (254)

where Pb,t(bt) denotes the partial derivative of Pt(bt) with respect to debt.
The optimality condition for the interest rate is given by

µx,t + µb,t = −ξ, (255)

where ξ ≡ κ(1+λΦ)
ρ+θ

ξπ.
The optimality condition for x0 is given by

µx,0 = 0. (256)

Standard envelope arguments imply that

µb,t = Pb,t(bt). (257)

The discretion limit. Consider the limit as λ→ ∞, so each planner has commitment only
over an infinitesimal amount of time. In the limit, the co-states on πt and xt are given by

µπ,t = 0, µx,t = 0. (258)

Integrating the expression for µx,t forward, we obtain

µx,t = −
∫ ∞

t

e−(ρ+λ+λ)(s−t) [αxs + κµπ,s] ds⇒ lim
λ→∞

λµx,t = −αxt, (259)

using the fact that limλ→∞ µπ,t = 0. Hence, from the optimality condition for x0, we obtain
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x0 = 0. Differentiating the optimality condition for the interest rate with respect to time, we
obtain

(ρ+ λ+ λ)ξ = αxt + λΥ(bt − bn)− λµb,t + κ(1 + λΦ)µπ,t, (260)

where we used the envelope condition for bt
Given µb,t = −ξ − µx,t, and combining the previous two expressions, we obtain

(ρ+ λ)ξ = λΥ(bt − bn). (261)

Therefore, the interest rate is given by

rt − ρ = −ψt. (262)

The case of partial commitment. In the case of discretion, planner’s do not take into ac-
count promises made by prior planners. Hence, each planner sets a new value of xt as they
take control, and promise that output gap will evolve according to the Euler equation in
the future. As we reduce the planning horizon to zero, each planner chooses the value of
the output gap regardless of the path of interest rates. We consider next the case of partial
commitment, where the planner has to respect past promises made about the output gap.
In this case, the output gap must satisfy the Euler equation at every point in time, except at
t = 0 when news about the shock arrives.

In this case, the planner’s objective is given by

P0(x0, b0) = −1

2

∫ ∞

0

e−(ρ+λ+λ)t
[
αx2t + βπ2

t + λΥ(bt − bn)2
]
dt+

∫ ∞

0

e−(ρ+λ+λ)tλPt(xt, bt)dt,

(263)
and we impose a penalty on π0, but not on x0, as the initial output gap is not free.

The optmality conditions are now given by

µ̇π,t − (ρ+ λ+ λ)µπ,t = βπt − (ρ+ λ)µπ,t (264)

µ̇b,t − (ρ+ λ+ λ)µb,t = λΥ(bt − bn)− λPb,t(xt, bt) + λκΦµπ,t (265)

µ̇x,t − (ρ+ λ+ λ)µx,t = αxt + κµπ,t − λPx,t(xt, bt). (266)

The optimality condition for the interest rate is the same as under discretion, and the enve-
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lope conditions for output gap and debt are given by

µx,t = Px,t(xt, bt), µb,t = Pb,t(xt, bt). (267)

Differentiating the optimality condition for the interest rate with respect to time, we
obtain

(ρ+ λ+ λ)ξ = αxt + λΥ(bt − bn)− λ(µb,t + µx,t) + κ(1 + λΦ)µπ,t, (268)

where we used the envelope conditions.
Taking the limit as λ→ ∞, we obtain

(ρ+ λ)ξ = αxt + λΥ(bt − bn) ⇒ rt − ρ = − λΥ

λΥ+ α
ψt. (269)

In period t = 0, the planner is allowed to choose x0, which must satisfy the condition:

µx,0 = 0 ⇒ 0 =

∫ ∞

0

e−(ρ+λ)tαxtdt = 0, (270)

where we used the fact that µπ,t = 0 as λ → ∞. Therefore, optimal policy with partial
commitment coincides with the optimal policy with commitment for a dovish central bank,
that is, when β = 0.

Taking the limit of a discrete-time economy. Welfare is measured by

∞∑
t=0

(
e−ρ∆t

)t [
αx2t + βπ2

t

]
∆t. (271)

The NKPC is given by
πt = e−ρ∆tEt [πt+∆t] + (κxt + ut)∆t. (272)

Under discretion, the planner’s problem is given by

max
xt,πt

−1

2

[
αx2t + βπ2

t

]
∆t, (273)

subject to
πt = e−ρ∆tEt [πt+∆t] + (κxt + ut)∆t, (274)

taking as given Etπt+∆t.
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The optimal solution is given by

xt = −κβ
α
πt∆t. (275)

D.5 Optimal policy under the timeless perspective

The dynamics under the optimal policy are characterized by the conditions:

π̇t = (ρ+ λ)πt − κxt − λκΦ(bt − bn) (276)

ḃt = rt − ρ− γ(bt − bn) + ψt (277)

ẋt = rt − ρ+ θhxt − θ∗h(bt − bn) (278)

µ̇π,t = βπt (279)

µ̇b,t = (ρ+ λ)µb,t + λΥ(bt − bn) + κλΦµπ,t (280)

µ̇x,t = (ρ+ λ)µx,t + αxt + κµπ,t, (281)

where the real rate is given by

rt − ρ = −βκ(1 + λΦ)

λΥ+ α
πt −

λΥ

λΥ+ α
ψt, (282)

given the initial value of debt, b0, and the boundary conditions µx,0 = µπ,0 = 0.
Consider the case without a fiscal shock, ψt = 0, and denote the co-states in this case with

no shocks by µnsx,t and µnsπ,t. The optimal policy under the timeless perspective corresponds
to the solution to the system above when we replace the initial conditions by the long-run
values of these multipliers: µx,0 = limt→∞ µnsx,t and µπ,0 = limt→∞ µnsπ,t (see Giannoni and
Woodford (2017) for a discussion in the context a general model). This is equivalent to the
problem of a planner who started its planning in a distant past, so the multipliers had time
to converge to their long-run values.

Even without shocks, the limits limt→∞ µnsx,t and limt→∞ µnsπ,t will not be equal to zero,
provided that b0 ̸= bn. However, in the case b0 = bn, the solution to the system above in
the absence of shocks is simply πt = xt = bt = µπ,t = µx,t = µb,t = 0. Hence, we have that
limt→∞ µnsx,t = 0 and limt→∞ µnsπ,t = 0, so the boundary conditions for the problem under the
timeless perspective coincide with the time-zero commitment solution.
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E. Historical Shock Decomposition and Taylor

Counterfactual

For the historical shock decomposition, we build the discrete version analogue of the model
in Section 2. Moreover, we add three more shocks besides the fiscal shock already analyzed.
First, we include a monetary shock that allows the monetary authority to deviate from the
prescriptions of the interest rate rule. We calibrate the Taylor coefficient on the lower end of
its plausible range to minimize the importance of these shocks in the conclusion. Second,
we include a standard-cost push shock, to capture movements in the inflation rate that are
orthogonal to the evolution of debt. It represents sectoral reallocations and supply bottle-
necks, as experienced during the pandemic. This shock is identified through the Phillips
curve implied by the model. Third, we add a “term premium” shock to the return on gov-
ernment debt. This shock is meant to capture the effect on the one-period holding return
on government debt of revaluation effects, risk premium movements, or changes in the ma-
turity structure. The shock is directly extracted from the government debt path, given the
fiscal rule, the primary deficits and the path of nominal rates. This type shock appears,
e.g., in Bianchi and Melosi (2017). Since shocks are inferred directly from the data series, the
Kalman filter optimizes the initial conditions to best fit the shock decomposition—the initial
conditions’ quantitative contribution is minor.

E.1 The Model

The model can be characterized by the following equations:

1. IS curve
xt = xt+1 − σ (it − πt+1 − ρ)

2. New Keynesian Phillips Curve (NKPC)

πt = β [(1− θf ) πt+1 + λfκΦbt+1] + κxt + µt

3. Interest rate rule
it = ρ+ ϕππt + umt
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4. Government debt evolution

bt = (1− γ) bt−1 + rtbn + uft

5. Primary surplus
ψt = uft − (ρ+ γ) bt−1

6. One-period holding return on government debt

rt = (it − πt − ρ) + urt ,

where µt denotes the cost-push shock, umt denotes the monetary shock, uft denotes the fiscal
shock, and urt denotes the term-premium shock. Note that in the data we do not observe the
fiscal shock directly but through its effect on the primary surplus. Thus, we denote ψt the
primary surplus, which includes the fiscal shock and the automatic adjustment of transfers
to changes in the stock of debt. Finally, we assume that all disturbances are white noise
processes with standard deviation of 1% (annualized).

E.2 The Data

For the exercise, we take the dynamics of inflation, the primary surplus, the stock of debt,
and the nominal rate as observables. The inflation rate is measured as the growth rate of
the GDP deflator (NIPA Table 1.1.7 line 1). The primary surplus is the difference between
government receipts (NIPA Table 3.1 line 1) and total expenditures (NIPA Table 3.1 line 20)
net of interest payments (NIPA Table 3.1 line 12 - NIPA Table 3.1 line 27), divided by nominal
GDP (NIPA Table 1.1.5 line 1). The stock of debt is the market value of government debt
held by the private sector from Hall, Payne and Sargent (2018) plus reserves of depository
institutions (Fred TOTRESNS). Finally, the nominal rate is the federal funds effective rate
(Fred DFF).

Since our model does not incorporate growth, we need to make an adjustment to the
evolution of the fiscal shock. In the data, the primary surplus over GDP moves both be-
cause of the fiscal shock and GDP growth. To account for this, we combine the growth
component of GDP into the purely fiscal component. Thus, our fiscal shock is a composite
of an exogenous transfer shock and the contribution of growth to the debt-to-GDP ratio.
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Formally, we have that the government’s budget constraint is given by

Ḃt = (it − πt)Bt − (ρ+ γ)Bt +Ψt.

Dividing by quarterly output, we get

Ḃt

Xt

− Bt

Xt

Ẋt

Xt︸ ︷︷ ︸
=ḃt

+
Bt

Xt

Ẋt

Xt

= (it − πt)
Bt

Xt

− (ρ+ γ)
Bt

Xt

+
Ψt

Xt

.

Let bt ≡ Bt
Xt

and gt ≡ Ẋt
Xt

, to get

ḃt = (it − πt) bt − (ρ+ γ) bt +

(
Ψt

Xt

− btgt

)
︸ ︷︷ ︸

≡ψt

.

Let b̂t ≡ bt − bn and ψ̂t ≡ ψt − ψ. We assume that γ is such that γ = ψ
bn

. Then

˙̂
bt = (it − πt − ρ) b̂t︸ ︷︷ ︸

=O(||ψt||2)

+(it − πt − ρ) bn − γb̂t + ψ̂t,

or
˙̂
bt ≈ (it − πt − ρ) bn − γb̂t + ψ̂t.

E.3 The Shocks

Figure 9 shows the identified time series of the shocks.
Panel (a) depicts the fiscal shock. The fiscal shock presents a massive increase in spend-

ing in 2020Q2 and then minor increases in 2021. Interestingly, and despite being short-lived,
the shock has a persistent effect on debt and inflation, as shown in Figure 8. As explained,
this is because our model’s dynamics is governed by the stock of debt, rather than the flow of
government spending. While the spending shock is short-lived, there was almost no time in
this period where the government run surpluses to pay for the increase in debt (the negative
value of the shock in 2020Q3 is driven by the rebound in economic activity). Thus, absent
inflation, debt and inflation would have remained higher for longer.

The model also identifies an important role for the exogenous cost-push shock, as shown
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in Panel (b). The model interprets the low inflation of 2020 as a negative cost-push shock
in this period, and the high inflation of 2022 as a positive shock. These dynamics can be
attributed first to the lock-down in 2020, and then to the reopening in 2022, which affected
the services sector in particular. Guerrieri, Lorenzoni, Straub and Werning (2022) show that
shocks that affect different sector asymmetrically can show as cost-push shocks in the New
Keynesian model.

Finally, we have the monetary shock and the term-premium shock. The monetary shock
exhibits the pattern we identified in Figure 7 Panel (d), that is, the under-reaction relative
to a Taylor rule in 2021 and 2022. As shown in Figures 8 and 10, this under-reaction was
crucial to keep the inflation rate lower, since, absent primary surplus, it was the low real
rates the financed the increase in government debt. The term-premium shock is a amplified
version of the monetary shock, which suggests that the term-premium amplified the effect
of short-rates on yields.

E.4 Connection to the Textbook Model

The system of equations characterizing the equilibrium of our economy is isomorphic to the
system in the textbook model, with the difference that the expectations include the possibil-
ity of a monetary-fiscal reform. To see this, assume that the economy starts in Phase I. The
system of equations characterizing the equilibrium is given by

xIt = Eh
t [xt+∆t]− (it − Eh

t [πt+1]− ρ)∆t

πIt = βEf
t [πt+∆t] + κxIt∆t

it = ρ+ ϕππ
I
t + ut

bt = bt−∆t + (it−∆t − πIt − ρ)bn − γbt−∆t∆t+ ψt,

where {xIt , πIt } denote the output gap and inflation in Phase I, respectively, {Eh
t , E

f
t } de-

note the households’ and firms’ expectation operator, respectively, {xt+∆t, πt+∆t} are ran-
dom variables representing the output gap and inflation in period t + ∆t, and the time
period is of length ∆t.

If λh = λf = 0, then xt+∆t = xIt+∆t and πt+∆t = πIt+∆t, and the system becomes the
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textbook system of difference equations when ∆t = 1. In contrast, with λh, λf > 0 we have

Eh
t [xt+∆t] = (1− λh∆t)x

I
t+∆t + λh∆tx

II
t+∆t,

Ej
t [πt+∆t] = (1− λj∆t)π

I
t+∆t + λjπ

II
t+∆t, for j ∈ {h, f},

where {xIIt+∆t, π
II
t+∆t} denote the output gap and inflation in Phase II, respectively. Removing

the superscript I , and using that xIIt+∆t = bt+∆t − bn and πIIt+∆t = κΦ(bt+∆t − bn), the system
becomes

xt = (1− λh∆t)xt+∆t − (it − ((1− λh∆t)πt+∆t + λh∆tκΦ)(bt+∆t − bn))− ρ)∆t+ λh∆t(bt+∆t − bn)

πt = β(1− λf∆t)πt+∆t + [κxt + βλfκΦ(bt+∆t − bn)]∆t

it = ρ+ ϕππt + ut

bt = bt−∆t + [(it−∆t − πt − ρ)bn − γbt−∆t + ψt] ∆t,

In the limit as ∆t→ 0, it simplifies to

ẋt = it − πt − rnt + λhxt

π̇t = (ρ+ λf )πt − κxt − µt

it = ρ+ ϕππt + ut

ḃt = (it − πt − ρ)bn − γbt + ψt,

where rnt ≡ ρ + λh(bt − bn) and µt ≡ βλfκΦ(bt − bn), and we used that β = 1
1+ρ∆t

. These
expressions make it clear that, through the expectation of a reform, the system of equations
characterizing equilibrium changes in the following ways: i) the Euler equation features
“discounting,” ii) the natural rate is endogenous and depends on the level of debt, iii) the
NKPC also features “discounting,” iv) the NKPC features a cost-push shock that depends
on the stock of debt.
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