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Abstract

This paper reformulates the New Keynesian model to incorporate output adjustments

through the extensive margin. Shifting from adjustments through the intensive to the exten-

sive employment margin, the model introduces predetermined output, altering key prop-

erties of the New Keynesian framework. First, the Taylor principle is inverted: stability

is achieved when nominal rates respond less than one-for-one with inflation. Second, the

model significantly alters the output responses to changes in monetary policy. We argue

that this represents a challenge and an opportunity for the literature. Sticky information

allows the model to correct the sign of impulse responses.
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1 Introduction

The New Keynesian (NK) framework has been a cornerstone of modern monetary policy anal-

ysis. However, its canonical version relies on the intensive margin adjustment of labor (hours),

setting aside that the main margin of output adjustment is the extensive margin of hours (job

flows). This omission leaves that model void of empirical predictions about the unemploy-

ment and vacancy rates and their statistical correlation with inflation and policy interest. Natu-

rally, multiple attempts have been made to marry the New Keynesian model with search-and-

matching (SAM) models within the Diamond-Mortensen-Pissarides tradition, the dominant

modeling device to analyze labor flows. In this paper, we highlight that, like most marriages,

this one faces its difficulties. We also highlight a path toward a permanent reconciliation.

The main challenge in the SAM+NK marriage attempts is an inherent feature of the SAM

model: output is predetermined. This is because labor employment in SAM models is a stock

predetermined by past hires. In turn, predetermined output is problematic for the NK model

because it alters the model’s transmission mechanism: A key property of the NK model that

unleashes its transmission mechanism is the possibility of consumption jumps upon the real-

ization of information. For example, an expansionary monetary policy shock that provokes

persistent low rates induces a period of low consumption growth—dictated by the Euler equa-

tion. For monetary shocks to be expansionary, consumption must jump contemporaneously

with the shock, but that jump is only possible if output can adjust immediately. The inherent

short-run labor capacity constraint SAM models inhibit that jump.

To reconcile SAM and NK models, past attempts assume that hiring happens instanta-

neously: i.e., firms can add job postings, hire workers, and put them to work immediately.

That assumption not only blurs the distinction between flows and stocks, a key motivation for

setting up SAM models but, more importantly, poses several theoretical challenges. In par-

ticular, the common timing convention in SAM+NK models makes the resulting predictions

non-invariant to the choice of the model period, i.e., whether the notion of a period is a year,

quarter, month, or day. This is a problem: Just like we want to write models whose predictions

are invariant to the frequency at which interest rates are compounded, we want to write models

whose conclusions are invariant to whether it takes a month or a year to incorporate workers

or whether the interest is compounded in advance. Put differently, should we be comfortable

with a model whose predictions depend on our choice of model period?

The main insight of this paper is that once we revert to the consistent timing convention of

SAM models, the key predictions of the NK+SAM model are flipped. We open the discussion
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by contrasting the timing convention in the difference equation that governs labor flows in text-

book SAM models, e.g., Mortensen and Pissarides (1994) and Shimer (2005) in which hires take

a period to be ready for production, and the convention in SAM+NK models, i.e. Blanchard

and Gali (2010), in which hires are readily available for production. We then take the limit as

time intervals go to zero and show that the job-flow equations collapse to the same differential

equation. Moreover, under that common differential equation, consumption can jump only if

job postings exhaust all the resources in the economy. Because consumption cannot jump as the

time period shrinks in NK+SAM, there must be a time-period calibration at which the model’s

properties flip. However, predictions under the traditional SAM convention are consistent re-

gardless of the model period, not under the SAM+NK convention.

After setting the stage, the paper presents a continuous-time formulation of the SAM+NK

model that incorporates the continuous-time job-flow equation. Unlike other marriage at-

tempts, our version maintains the tractability of the two-equation system that has made the

canonical NK framework popular. That tractability is obtained only by setting a wage-setting

protocol that delivers a constant labor share. Our continuous-time formulation renders ana-

lytic transparency, provides a clear distinction between job flows and stocks, and is amenable

to analysis as the standard intensive margin NK model.

We formally show that the shift from the intensive to the extensive margin of employment

adjustment dramatically changes the NK model’s properties once the consistent SAM timing

convention is adopted. Because the instantaneous jumps in output that characterize the stan-

dard model are impossible, the reformulation has profound implications for the NK literature.

The first implication is, in principle, a virtue. In our reformulation, the Taylor principle

is inverted: determinacy is obtained when nominal rates respond less than one-for-one to in-

flation. This feature is desirable because it means that determinacy is not achieved through

exuberant off-equilibrium threats (Atkeson, Chari and Kehoe, 2010). Rather, determinacy is

achieved because, unlike the standard NK model, this version does not lack an initial condi-

tion. A second virtue is that this feature allows the model to generate hump-shaped impulse

response functions (IRFs) to monetary shocks without additional frictions such as habit forma-

tion or capital adjustment costs, which have been criticized repeatedly. A third virtue is that,

without the Taylor principle, we can explore shocks in isolation of endogenous monetary policy

responses. This allows the model to isolate the effects of shocks that are otherwise confounded

with endogenous policy responses (Angeletos and Lian, 2023).1

1Take the case of government expenditure shocks, their effects are confounded with the endogenous response
of interest rates via the Taylor rule.
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The second implication is problematic: the signs of the effects of monetary policy and de-

mand shocks are flipped: reductions in policy rates provoke recessions. The key reason is the

short-run labor capacity constraint implicit in the SAM literature. If output is predetermined,

the consumption jump cannot occur. As a result, after reductions in policy rates, output follows

a negative hump-shaped response. This is not true about every shock: for example, the IRF to

TFP or layoff shocks feature the conventional sign. However, this feature leads to completely

different optimal policy responses than in the standard NK model.

Because the marriage of SAM and NK models has virtues we should embrace, we conclude

the paper by offering a possible avenue to resolve the issue with the sign of responses. We

reformulate the Euler equation to correct the sign of the IRFs while maintaining the right virtues

of the model. The key to this extension is that the responses to aggregate consumption are

distributed over time. This extension relies on models that depart from full-information rational

expectations in the Lucas-island models’ original spirit—i.e., models like Mankiw and Reis

(2002, 2007); Reis (2006).

References. Influential attempts to marry the SAM and NK models include Gertler, Sala and

Trigari (2008), Blanchard and Gali (2010), Christiano, Eichenbaum and Trabandt (2016), Ravn

and Sterk (2017), Kekre (2023) and more recent attempts include Benigno and Eggertsson (2023).

Virtually all of these attempts allow for hiring within the period. Michaillat and Saez (2015) in-

troduce a matching approach to the product and labor markets within the framework of Barro

and Grossman (1971), examining how aggregate demand affects unemployment fluctuations.

However, the analysis is restricted to the steady state, where unemployment jumps instan-

taneously in response to shocks. Our paper contributes to these attempts to integrate labor-

market frictions into New Keynesian models.

A virtue is that our approach maintains the analytical tractability of the baseline NK model.

Our reformulation allows for a two-equation system regarding unemployment deviations rather

than the output gap. Few SAM+NK models achieve this tractability. An exception is found

in Michaillat and Saez (2024) who introduces a directed search, a different tradition from the

standard SAM, into the NK model and provides a two-equation system featuring the unem-

ployment and inflation rates.2

The result that labor-search frictions alter the Taylor principle is also found in Kurozumi and

Van Zandweghe (2010). However, that paper studies determinacy under the SAM+NK model

2Since labor flow in each sub-labor market is assumed to be balanced, the unemployment rate and, conse-
quently, output—is a jump variable in their setting.
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timing convention. The paper presents numerical conditions that depend on the firing rate and

the Taylor coefficient. Here, we show that a sufficient condition for determinacy requires setting

the Taylor coefficient to be less than one.

Other work has also shown that the transmission mechanism of the New Keynesian model

is not robust but for different reasons. Dupor (2001) introduces investment into the standard

continuous-time New Keynesian model and shows that an interest rate peg ensures determi-

nacy.3 In turn, Rupert and Šustek (2019) examines how in a NK model with capital consumption

and investment feature the wrong co-movement after monetary policy shocks. These results oc-

cur because the investment share of output is a margin of adjustment in those models. Here,

past hires inhibit consumption jumps as a margin of adjustment.

The remainder of the paper is organized as follows. Section 2 clarifies the timing conven-

tions in the literature. Section 3 presents the continuous-time model and derives the equilib-

rium conditions. Section 4 examines the model’s stability properties, the inversion of the Taylor

principle, and the dynamic responses to various shocks. Finally, Section 5 concludes by offering

a possible avenue for resolution.

2 Timing Conventions in the SAM and NK Literatures

To set the stage, let’s explain why we need a consistent timing convention for job flows. Sup-

pose we have already calibrated a discrete-time model with model period ∆ relative to some

calendar time notion for parameters. For example, we can have an annualized discount rate

target of 4%, a 10% shock mean-reversion rate, and ∆ = 1/12 to think of the period as a month.

We can keep our annualized notions fixed and vary the calibration of the model period.

In NK models, the time zero effects of monetary policy on output are given by a jump in

consumption δC0 and a consumption trajectory δCt for all t ∈ {∆, 2∆, 3∆, ...}. The notation δ

represents the difference relative to a steady state. Of course, the entire sequence can be indexed

by our choice of ∆. Let’s call that sequence δCt(∆). A model where the periodicity is immaterial

is one in which the choice of ∆ is quantitatively irrelevant in shaping the responses.4 Critically,

the conventional response to an expansionary and mean reverting policy shock is to have a jump

δC0(∆) > 0 and then a decreasing sequence δCt(∆) > δCt′(∆) for any t < t′ dictated by the

3On the same vein, Carlstrom and Fuerst (2005) analyze a discrete-time NK model with investment demon-
strates that current-looking interest rate rules ensure determinacy if the policy aggressively responds to current
inflation.

4Mathematically, we would expect the step functions with values δCt(∆) to converge to some limit function,
∆ → 0, but this is a mathematical detail we don’t need to make the point here.

4



Euler equation.

Let’s come to the issue at stake: In discrete time, equation (2.1) represents the labor flow

equation commonly used in the conventional NK models with SAM frictions surveyed above.

In contrast, equation (2.3) describes the labor flow equation employed in SAM models. In both

equations, nt is the available workforce, m(·, ·) is a matching function, Ut is the number of

unemployed workers, and Vt is the number of vacancy postings. The function λ (∆) and Ξ (∆)

and the efficiency of the matching function and the job separation rates, respectively. These

satisfy lim∆→0
λ(∆)

∆ = λ and limΞ→0
λ(∆)

∆ = Ξ. These limits are important to have consistent

hiring and firing rates as we set the model period.

The key distinction between the discrete-time NK convention and the SAM convention is

that matched workers are available for work within the period in the NK model. In SAM,

however, employers must wait a period. Why is this an issue?

Suppose we want to compare a NK model with the said convention across different cali-

brations of the model period ∆. We can do so by analyzing what happens as ∆ → 0. Both

formulations will converge to the same ordinary-differential Equations: (2.2) and (2.4). Because

n0 is known, unless vacancies explode to infinity, the number of matches will be bounded. This

means that nt cannot jump unless vacancy postings vt → ∞. In any equilibrium, this will vio-

late any optimality or goods-market clearing condition.5 In other words, employment cannot

jump in the continuous-time limit.

The above observation is a problem for discrete-time NK models with the hiring-within-

the-period convention: Recall that their standard IRFs feature a jump in δC0(∆) > 0. The

continuous time limit says that as we shrink the model period ∆, the IRFs will start to look more

and more different. This insight indicates that if we want to favor the NK hiring-within-the-

period convention, the specific choice of ∆ should be a calibration target that must be justified.

This inconsistency does not appear if we adopt the SAM convention. However, many things

in the NK with model SAM frictions once we adopt the SAM convention. We investigate that

version next.
5In our setting below, infinite vacancy postings imply infinite household consumption because the cost of post-

ing vacancies is paid to households, while output—determined by employment—remains finite. Alternatively, if
vacancy posting costs are drawn directly from aggregate output rather than paid to households, infinite vacancy
postings imply negative consumption, which is not feasible in general equilibrium.
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Labor Flows and Stocks

NK Convention

Labor flow in discrete time is given by:

nt = m (Ut−∆, Vt) λ (∆)− nt−∆Ξ∆+ nt−∆.

(2.1)

Taking the limit ∆ → 0, we obtain:

ṅt = λm (Ut, Vt)− Ξnt. (2.2)

SAM Convention

Labor flow in discrete time is given by:

nt = m (Ut−∆, Vt−∆) λ (∆)−nt−∆Ξ∆+nt−∆.

(2.3)

Taking the limit ∆ → 0, we obtain:

ṅt = λm (Ut, Vt)− Ξnt. (2.4)

3 Model

Time is indexed by t ∈ [0, ∞) and the economy is deterministic. There is a consumption bundle

whose price index is Pt, and we denote the rate of inflation as πt ≡ Ṗt/Pt.

The economy features a representative household, monopolistically competing retailers,

and competitive intermediate goods firms.

The Demand Side Block: Households. The representative household faces a standard consumption-

saving problem with instantaneous utility U (Ct) ≡
(

C1−σ
t − 1

)
/ (1 − σ) over a bundle of dif-

ferentiated final goods differentiated,
{

yj
t

}
j∈[0,1]

where Ct =

(∫ 1
0

(
yj

t

)1−1/ε
dj
) 1

1−1/ε

.

The individual demand for retail goods follows from the standard cost minimization as-

sumptions:

yi
t =

(
Pt/pi

t

)ε
Ct. (3.1)

where pj
t is the individual price of good j and Pt =

(∫ 1
0

(
pj

t

)1/ε
dj
)ε

and where ϵ > 1.

We assume a representative household that insures its members. Households feature many

members that differ in their employment status, being either employed or unemployed. The

transition rate from employment to unemployment is the exogenously given by Ξt. By con-

trast, the transition rate from unemployment to employment, ζt, is endogenous. The household

pools the income of the employed and unemployed and distributes the same consumption to its

members. The nominal wage of the employed is wt. Aggregate demand satisfies the following

standard Euler equation:
Ċt

Ct
=

it − πt − ρ

σ
.
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where ρ is the discount rate and it is nominal interest rate.

The Supply Side Block: Employment, Production, and Prices. The supply-side block fea-

tures nominal price rigidity combined with search frictions in the labor market. Intermediate

goods firms use labor as their sole input and produce identical intermediate goods sold compet-

itively to retailers. Retailers buy the input and sell the differentiated final goods to households

in a monopolistically competitive setting. Intermediate goods firms and retailers are owned by

households, and their profits are distributed back to the households. Nominal price adjustment

costs arise at the retail level. The labor-search friction arises at the intermediate good sector.

Retailer j purchases intermediate inputs xj
t to produce yj

t:

yj
t = xj

t ∀t. (3.2)

The retailer’s problem is:

Problem 1 [Retailer’s Problem] Retailer j chooses the change in its individual price ṗj
τ to maximize

q
(

pj
t, t
)
= max{

ṗj
τ

}
∫ ∞

t
exp (−rττ)

 pj
τyj

τ − pτxj
τ

Pτ
− Θ

2

(
ṗj

τ

pj
τ

)2

Yτ

 dτ,

subject to its individual demand (3.1) and production function (3.2).

The retailer takes the price of the intermediate good, pt, and the price of the aggregate final

good bundle, Pt, as given. The retailer chooses ṗj,τ to maximize the present discounted value of

real profits minus a Rotemberg price-adjustment cost with coefficient Θ where Yt is aggregate

output. We assume that price adjustment cost is paid as a transfer to the representative house-

hold. The retailer discounts future profits by using real interest rates rτ = iτ − πτ. The state

variable of the retailer is pj
t. The real retailer marginal cost is mct ≡ pt/Pt, measured in terms of

final goods. The marginal cost in real terms appears in the following standard Phillips curve:6

Lemma 1 The path of prices satisfies the following Phillips curve:(
rt −

Ẏt

Yt

)
πt =

ϵ

Θ

(
mct −

ϵ − 1
ϵ

)
+ π̇t. (3.3)

Intermediate goods firms are identical. An intermediate goods firm produces xt employing

nt workers according to:

xt = Atnt ∀t. (3.4)

6See Supplemental Appendix B.1 for the proof.
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where At is productivity. Labor flows at this firm evolve according to:

ṅt = JtVt − Ξtnt, (3.5)

where Ξt is the exogenous job-separation rate, Jt is the job-filling rate per vacancy, and Vt is the

firm’s vacancy postings. Vacancies cost µ in real terms, and the firm takes the hiring rate as

given. We assume that the vacancy cost is paid as a transfer to the representative household.

The Intermediate goods firm’s problem is:

Problem 2 [Intermediate Producer’s Problem] The intermediate goods firm chooses

G (n, t) = max
{Vτ}

∫ ∞

t
exp (−rττ)

[
pτ

Pτ
xτ −

wτ

Pτ
nτ − Vτµ

]
dτ,

subject to its production function (3.4) and its labor flows (3.5).

The intermediate goods firm chooses vacancies to maximize its real operational profits net

of hiring costs. It discounts future profits using real interest rates, given by rτ = iτ − πτ. To

maximize revenues, the firm must post vacancies to offset the loss of workers. The firm’s state

variable is its current number of workers.

In SAM models it is customary to model wage-setting through ex-ante bargaining. Thus,

the value of workers is typically a state variable that pins down wages. This complicates the

analysis because it adds dynamic equations to the system. We can reduce the complexity by

modeling a setting where wages are bargained ex-post. Here, as in the microfoundation in

Caballero and Hammour (1998), workers can abscond the fraction (1 − η) of the intermediate-

good output. If they do so, the firm loses its entire production. To avoid losing its goods, wages

are renegotiated after production, resulting in a labor share of 1 − η. Thus, wt = (1 − η) pt.

Neither workers nor the firm can credibly commit to a compensation package or separations.

The following Lemma characterizes the intermediate goods firm’s problem:7

Lemma 2 The value of the intermediate goods firm is G (n, t) = gt · nt where gt is the value of a worker:

gt = η ×
∫ ∞

t
exp (− (τ − t) (rτ + Ξτ))

(
pτ

Pτ
Aτ −

wτ

Pτ

)
dτ. (3.6)

The wage-setting protocol here does not alter the main message of the paper; we could adopt

the wage setting in SAM models without changing the essence. However, that formulation

would require us also to keep track of an additional variable, the value of unemployment.

7See Supplemental Appendix B.2 for the proof.
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The flow of job matches follows a homogeneous-of-degree-1 matching function, m (Ut, Vt).

It is convenient to define two auxiliary functions:

Φ (x) ≡ m (1, x) and J (x) ≡ m
(

x−1, 1
)

.

Then, the job-filling rates and job-finding rates are given by:

Jt = J
(

Vt

Ut

)
, ζt = Φ

(
Vt

Ut

)
. (3.7)

The job-finding rate is increasing in the vacancy-to-unemployment ratio. In turn, the job-filling

rate decreases in vt. Given these rates, aggregate unemployment evolves according to:

U̇t = Ξt (1 −Ut)− ζt · Ut. (3.8)

Since labor is indivisible, output is Yt ≡ At (1 −Ut). From the intermediate goods firms, we

obtain a relationship between the vacancy-to-unemployment ratio and the value of a worker.

Equilibrium. The monetary authority sets the nominal interest rate according to a Taylor rule:

it = iss + ϕππt + zt,

where iss is the steady-state nominal interest rate and zt is a monetary policy disturbance.

Aggregate output is given by Yt = Atnt, because all retailers and intermediate goods firms

are symmetric. Goods market equilibrium implies: Yt = Ct.

4 Characterization

Next, we investigate the properties of the baseline model. The model’s linearized dynamics are

described by a two-equation system akin to those used in the standard New Keynesian model.

This expression allows us to analytically derive a condition for the model’s determinacy and

evaluate the IRFs.

To simplify our analysis, we make the following assumptions: households have log-utility,

σ = 1, symmetric matching function, m (Ut, Vt) = U 0.5
t V0.5

t , and the monetary authority targets

zero inflation at the steady state, πss = 0. We set Ass = 1 and Ξss = Ξ at the steady state. The

auxiliary variables are defined in Table 1. The full dynamic system is described in Appendix

A.1. We solve the model by log-linearizing it and express all variables, except for inflation, in

log deviations from a steady state. These deviations are denoted with small letters: for example,

ut = logUt − logUss is the log deviation of the unemployment rate and yt = log Yt − log Yss is
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the log deviation of output.

Parameters ODE Representation

Variable Definition Variable Definition

κ ≡ ϵ
Θ

µ
1−η a1 ≡ 1

ι − κ

Jss ≡
µ

1−η (ρ+Ξ)
ϵ−1

ϵ

a2 ≡ φ−ικ(ρ− 1
Jss )

1−ικ

Uss ≡ ΞJss
1+ΞJss

a3 ≡ ικγ(ρ+Ξ)
1−ικ

γ ≡ Ξ + 1
Jss

λ1 ≡ a2+
√

a2
2−4a3

2

ι ≡ ϕπ−1
ΞJss

λ2 ≡ a2−
√

a2
2−4a3

2

φ ≡ ρ − κ
ϕπ−1

Jss
a2,t ≡

ΞJss
1−ϕπ

Ft(2 ft+φFt)+κ(ρ+Ξ−γ)F3
t(

ΞJss
ϕπ−1−κFt

)
F2

t

a3,t ≡
ΞJss

1−ϕπ ( ḟtFt−2 f 2
t −φ ftFt)+κγ(ρ+ξ)F3

t(
ΞJss

ϕπ−1−κFt

)
F2

t

Table 1: Auxiliary Variables

The equilibrium system. Assuming there are no shocks, the equilibrium system of linearized

equations is given by the following equations (4.1) and (4.2).

Equation (4.1) is the NK Phillips curve that links inflation and unemployment, while equa-

tion (4.2) is the linearized Euler equation coupled with the goods clearing conditions and

the job-flows equation. The equilibrium system, which involves a two-equation first-order

ordinary-differential equation system, can be represented as the second-order homogeneous

linear differential equation given by equation (4.3).8

For comparison, we also summarize the equilibrium system of the standard formulation.

Equation (4.4) is the NK Phillips curve and equation (4.5) is the linearized Euler equation from

the conventional NK model.9 The equilibrium system similarly forms a second-order homo-

geneous linear differential equation given by (4.6). The contrast highlights the virtue of the

NK+SAM limit: unemployment is a predetermined state variable, fixing the initial condition at

u0 = 0. In contrast, the conventional NK model leaves the initial condition indeterminate since

inflation is a jump variable. Consequently, determinacy in the conventional NK model relies on

off-equilibrium threats, as discussed by Atkeson et al. (2010) and Angeletos and Lian (2023).

8See Appendix A.1 for details on the derivation.
9κ is the slope of the Phillips curve.
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Characteristic ODE Systems

NK+SAM first-order ODE system representation:

π̇t =

ρ +
κ

Jss

1 − ΞJss
ΞJss

ϕπ−1 − κ

πt +

κγ (ρ + Ξ)

1 − κ
ϕπ−1
ΞJss

 ut, (4.1)

u̇t =

(
1 − ϕπ

ΞJss

)
πt. (4.2)

Second-order representation:

üt − a2u̇t + a3ut = 0. (4.3)

Boundary conditions: {u0, u∞} = {0, 0}.

Conventional NK first-order ODE system representation:

π̇t = ρπt − κct, (4.4)

ċt = (ϕπ − 1)πt. (4.5)

Second-order representation:

π̈t − ρπ̇t + κ (ϕπ − 1)πt = 0. (4.6)

Boundary condition: {π∞} = {0} and one free boundary.

Determinacy. The second-order equation representation allows for a simple determinacy anal-

ysis.10 The following proposition summarizes the main result:

Proposition 1 (Sufficient Condition). Determinacy is achieved if ϕπ < 1 or ϕπ > 1 + ΞJss
κ .

Proof. See Supplemental Appendix B.3.

Unlike the standard New Keynesian model, a sufficient condition for determinacy is that the

Taylor coefficient be less than one. For any ϕπ > 1, there is another region of parameters that

guarantees determinacy and one that does not. Figure 1 numerically illustrates this. For any

ϕπ > 1, the system becomes explosive if the separation rate Ξ is above a threshold.

Unsuccessful attempts to construct self-fulfilling equilibria provide intuition for Proposition

1. Assume households form expectations such that π0 > πss = 0. With ϕπ < 1, this results in a

10The characteristic equation associated with this differential equation is λ2 − a2λ + a3 = 0. The roots of this
equation are given by λ1 and λ2. Since ut is a state variable, the dynamic system requires one positive and one
negative characteristic root to ensure a unique and stable optimal trajectory. If no negative characteristic roots
exist, the system becomes explosive.
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negative real interest rate at t = 0, r0 < 0. Given that consumption is predetermined, this leads

to lower future consumption through the household’s Euler equation. The contraction in future

aggregate demand lowers future inflation—through reduced vacancy postings and wages. As

inflation is forward-looking, the realized inflation at t = 0 falls below zero. Therefore, the case

where ϕπ < 1 precludes self-fulfilling equilibria and secures determinacy.
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Figure 1: Determinacy Regions
Note: We set ρ = 0.05, ϵ = 10, Θ = 100 and µ

1−η = 1
3.7 . The value of µ

1−η is chosen so that the steady-state
unemployment rate is 5.7% when Ξ = 0.42, which corresponds to an annual job separation rate of 34.4%. The
x-axis represents ϕπ (Taylor rule coefficient) ranging from 0 to 3, while the y-axis represents Ξ ranging from 0.05
to 0.5.

To understand why the transition dynamics become explosive when ϕπ > 1 and Ξ is high,

let’s again consider that initial inflation deviates, π0 > πss = 0. With ϕπ > 1, the real interest

rate increases at t = 0. Given that consumption is predetermined, this leads to consumption

growth through the household’s Euler equation. The subsequent rise in aggregate demand

drives up future inflation. Since inflation is forward-looking, this feeds back into higher infla-

tion at t = 0, amplifying the initial deviation and causing the economy to become explosive.

Determinacy can be achieved for values ϕπ > 1 only for low separation rates Ξ. Again, if

π0 > πss due to some shock, consumption increases with real rates. This results in a burst of

employment, but without the offsetting effect of separations, future wages decrease, causing

inflation at t = 0 to decline. This downward pressure on inflation acts as a stabilizing force,

12



and if it is sufficiently strong, the system achieves determinacy.

Impulse Responses. A virtue of the two-equation representation is its tractability which ren-

ders paper-and-pencil formulas for the IRFs to a monetary policy shock, firing shock (ξt ≡
log Ξt − log Ξss), and productivity shock (αt ≡ log At − log Ass).11 When ϕπ < 1 the IRF to

a productivity shock has the conventional sign, so we only report all responses for that case.

All shocks are assumed to be mean-reverting and follow the ordinary differential equations:

ς̇t = −δςt , ξ̇t = −δξt, and α̇t = −δαt where δ > 0 captures its persistence.

Proposition 2. In response to a monetary policy, firing, and productivity shocks, the path of unemploy-

ment is given by:

ut = Λt(δ)θx(x0, δ),

where Λt (δ) ≡ e−δt−eλ2t

a1
1

δ2+δa2+a3
≥ 0, and x ∈ {ς, ξ, α} is an index representing a monetary policy,

firing, and productivity shocks respectively. x0 represents the initial value for the shock.

The functions θx(x0, δ) are defined as:

θς (ς0, δ) = −ς0ρ (δ + ρ) , sign(θς) = −sign(ς0),

θξ (ξ0, δ) = ξ0
κ

Jss
(ρ + 2Ξ + δ) , sign(θξ) = sign(ξ0),

θα (α0, δ) = α0

(
δ

ϕπ − 1
(δ + φ)− ϵ − 1

Θ
1

1 − η

)
, sign(θα) = −sign(α0).

The paths of output, inflation, and vacancy postings are:

yt = −ΞJssut + αt,

πt =
1

ϕπ − 1
(−ΞJssu̇t + α̇t − zt) ,

vt = − (1 + 2ΞJss) ut − 2Jssu̇t + 2ξt.

Proof. See Supplemental Appendix B.4.

The derived unemployment path allows us to compute the paths of other macroeconomic

variables, such as output, inflation, and vacancy postings, since these depend on unemploy-

ment and shocks. We discuss and illustrate the proposition with the aid of Figure 2. The figure

11For a monetary policy shock, given the path of nominal interest rate {it = isseςt}∞
t=0, we find the equilibrium

unemployment and inflation and subsequently construct the underlying policy innovation (zt). The dynamics of
aggregate variables under this shock are recovered by setting ϕt = 0 and zt = issςt.

13



displays the impulse responses of output, inflation rate, vacancy posting, and unemployment

rate in response to three types of shocks: a loosening monetary policy shock, a positive firing

shock and a positive productivity shock. In the simulation, we set ϕπ = 0, meaning the nominal

interest rate does not respond to changes in the inflation rate. For comparison, we also present

the IRFs within the context of a standard two-equation New Keynesian model.

The output responses to a loosening monetary policy is notably different from those in the

standard New Keynesian model. When monetary policy loosens—and the monetary authority

responds passively, ϕπ < 1—the real interest rate decreases. According to the household’s Euler

equation, this decrease in the real interest rate reduces the growth rate of consumption. Since

consumption is predetermined, it cannot adjust instantaneously at time 0, leading to decreased

consumption, output, and inflation in subsequent periods. The reduction in aggregate demand

lowers vacancy postings, which increases the unemployment rate. As time passes, the real

interest rate starts to rise, which increases consumption growth and draws the economy back

to its steady state.

A positive firing shock, reflected in an increase in the job separation rate, raises the unem-

ployment rate and reduces output. To clear the goods market, consumption decreases, driven

by a decline in the real interest rate caused by rising inflation under a fixed nominal interest

rate. As the shock dissipates, the economy returns to the steady state, requiring consumption

to increase. This is achieved through a rise in the real interest rate, driven by a decline in the

inflation rate.

In response to a positive productivity shock, the value of workers rises, prompting interme-

diate goods firms to increase vacancy postings. This reduces unemployment and raises output

through the direct effect of higher productivity and the indirect effect of increased employment.

The rise in productivity lowers the marginal cost of production; however, it simultaneously in-

creases the value of workers and wages. The inflation rate rises as the latter effect dominates.

Taking Stock. We have seen that adopting the SAM timing convention inverts the Taylor

principle. This avoids the reliance on exuberant off-equilibrium threats to obtain determinancy

and, furthermore, enables the analysis of shocks in isolation of monetary policy feedbacks.

These are virtues.

However, the main drawback of adopting the SAM convention is that the conventional ef-

fects of monetary policy are reversed: lower rates can induce recessions due to the predeter-

mined nature of output. These shifts bring different implications for optimal monetary policy.

We could discard the model altogether because of its unconventional sign predictions, but we
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Figure 2: Impulse Response Functions
Note: Panels (A), (B), and (C) show the impulse response functions from our model, while Panels (D), (E), and (F)
show the impulse response functions from the standard New Keynesian model. We set ρ = 0.05, ϵ = 10, Θ = 100,

µ
1−η = 1

3.7 , Ξ = 0.42, η = 0.5, κ = 0.35 and δ = 0.9. In our model, we set ϕπ = 0, while in the standard New
Keynesian model, ϕπ = 1.5 to achieve determinacy. Output, unemployment rate, vacancy posting, firing shock
and productivity shock are expressed as percentage deviations from the steady state, while inflation, demand
shock (shock to discount rate), and monetary policy shock are expressed as percentage point differences from the
steady state.

would miss the opportunity to build on its virtues. Instead, we conclude by offering an avenue

for possible resolutions.
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5 Conclusion: Avenues for Problem Resolutions

Limited attention. Next, we consider an unanticipated loosening monetary policy shock un-

der rational inattention.12 The goal is to correct the problematic signs of the IRFs of monetary

policy shocks. To that end, we follow Mankiw and Reis (2007)13 and let Ft denote the fraction

of households aware of the shock by time t, with ft ≡ dFt
dt as the probability density function.

We assume that all firms are aware of the shock at t = 0. The IS equation is modified to:

u̇t =
1 − ϕπ

ΞJss
πtFt +

ft

Ft
ut. (5.1)

The equilibrium system is characterized by a modified IS equation (5.1) and the NK Phillips

curve (4.1) and also yields a second-order ODE for unemployment:

üt − a2,tu̇t + a3,tut = 0, (5.2)

where the coefficients bt and ct are now time-varying. When all households recognize the shock,

Ft = 1 and ft = 0, the equation collapses to the original IS equation (4.2). The boundary

conditions are again u0 = 0 and u∞ = 0. Because in this version, output is still pre-determined,

we still obtain determinacy without the Taylor principle.

We report the IRFs (numerically) in response to a loosening monetary policy shock in Fig-

ure 3: Under rational inattention, the effects of monetary policy have a conventional shape: in

response to a loosening monetary policy shock, output rises gradually, while inflation and va-

cancy postings exhibit upward jumps. The reason for this suecces is that when households ac-

quire information slowly, their individual consumption IRFs feature jumps and mean-reverting

decaying paths. However, since the fraction aware of the shock is initially zero and growing,

aggregate demand features a positive hump shape in response to a loosening monetary policy

shock (Auclert, Rognlie and Straub, 2020, see also). This path is internally consistent in gen-

eral equilibrium because firms anticipate the rise in consumption and have already increased

vacancy postings at t = 0.

Importantly, the version with rational inattention preserves the virtues of the setting: it gen-

erates hump-shaped responses and achieves determinacy without a Taylor rule, which allows

the isolation of shocks without policy feedback and avoids equilibrium selection based on off-

equilibrium threats.

12The detailed model setup is provided in Appendix A.2
13Also see Gabaix and Laibson (2001), Mankiw and Reis (2002), and Reis (2006).
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Figure 3: Impulse Response Functions
Note: We set ρ = 0.05, ϵ = 10, Θ = 100, µ

1−η = 1
3.7 , Ξ = 0.42, and Ft = 1 − e−4t. Output, unemployment rate,

and vacancy posting are expressed as percentage deviations from the steady state. Inflation and monetary policy
shock are expressed as percentage point differences from the steady state.

Intensive Margin. We deliberately chose to study a New Keynesian model that operates ex-

clusively through the extensive margin of labor adjustment. The key feature that alters the be-

havior of the New Keynesian model is that output is predetermined. A natural reaction to this

paper is to contend that some adjustments must also occur through the intensive margin. Yet,

even if hours can adjust in the short run, how quickly and by how much the intensive margin

can respond to demand conditions is a matter of degree. After all, many labor contracts specify

fixed hours, and management has to program hours even if these are flexible. Moreover, even

if hours can be adjusted immediately, there’s a limit to how much current workers can expand

their working hours. There are likely sectoral differences along adjustment margins, leading to

predictions regarding relative prices. This aspect highlights the importance of understanding

short-run and labor capacity constraints.

To conclude. If hours are hard to adjust, the jump in consumption that characterizes the New

Keynesian model will not occur in equilibrium, leading to very different predictions. The

lessons in the paper are useful for continuing efforts to marry labor-market flows with New

Keynesian models. We think that the marriage offered here is better than others. As in all mar-

riages, it is better not to shove problems under the table. We are confident that the resolutions

offered here will someday produce many offspring.
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A Appendix A

A.1 The Dynamic System

The dynamic system is characterized by:

U̇t = Ξt (1 −Ut)−
Ut

Jt
, (A.1)

Yt = At (1 −Ut) , (A.2)

gt =
µ

Jt
, (A.3)

pt

Pt
=

µ

At − η

(
(it − πt + Ξt)

1
Jt
+

J̇t

J2
t

)
, (A.4)

ρπt =
ϵ

Θ

(
pt

Pt
− ϵ − 1

ϵ

)
+ π̇t, (A.5)

Ċt

Ct
= it − πt − ρ, (A.6)

it = iss + ϕππt + zt, (A.7)

Yt = Ct. (A.8)

Equation (A.1) describes the transition of the unemployment rate, equation (A.2) is the pro-

duction function, equation (A.3) provides the expression for the value per worker, equation

(A.4) arises from the vacancy posting problem of the intermediate goods firm, equation (A.5)

represents the New Keynesian Phillips curve, equation (A.6) is the household’s Euler equa-

tion, equation (A.7) describes monetary policy, and equation (A.8) is the goods market clearing

condition.

The steady states can be calculated as follows: From equation (A.5) and the assumption

of πss = 0, we obtain pss
Pss

= ϵ−1
ϵ . Using equation (A.6), we find iss = ρ. Combining these

expressions with equation (A.4), we derive Jss =
µ

1−η (ρ+Ξ)
ϵ−1

ϵ

. From equation (A.1), we calculate

Uss =
ΞJss

1+ΞJss
. Finally, using equations (A.2) and (A.8), we find Yss = Css = (1 −Uss).

By substituting equations (A.4) and (A.7) into equation (A.5), we obtain:

ρπt =
ϵ

Θ
µ

At − η

(
(ρ + (ϕπ − 1)πt + zt + Ξt)

1
Jt
+

J̇t

J2
t

)
− ϵ

Θ
ϵ − 1

ϵ
+ π̇t. (A.9)

By substituting equations (A.2), (A.7), and (A.8) into equation (A.6), we obtain:

Ȧt

At
− U̇t

1 −Ut
= (ϕπ − 1)πt + zt. (A.10)
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The system is now described by equations (A.1), (A.9), and (A.10). Log-linearization around

the steady state yields the following equations:

jt = (1 + ΞJss) ut + Jssu̇t − ξt, (A.11)

π̇t = φπt +
κ

Jss

(
(ρ + Ξ) jt − j̇t

)
− κ

Jss
(zt + Ξξt) +

ϵ − 1
Θ

αt

1 − η
, (A.12)

πt =
ΞJss

1 − ϕπ
u̇t +

1
1 − ϕπ

(zt − α̇t) . (A.13)

In the absence of shocks (zt = ξt = αt = 0), equation (A.13) simplifies to equation (4.2). Equa-

tion (A.11) demonstrates that jt depends on ut and u̇t, while j̇t depends on u̇t and üt. By substi-

tuting these relationships into equation (A.12), we obtain:

π̇t = φπt + κ {((ρ + Ξ) u̇t − üt) + γ ((ρ + Ξ) ut − u̇t)}

+
κ

Jss

(
−zt − (ρ + 2Ξ) ξt + ξ̇t

)
+

ϵ − 1
Θ

αt

1 − η
. (A.14)

Equation (A.13) shows that πt depends on u̇t, zt, and α̇t, and that π̇t depends on üt, żt,

and α̈t. By substituting these relationships into equation (A.14) and assuming the AR(1) shock

processes, we obtain:

üt − a2u̇t + a3ut =
zt

a1

1
ϕπ − 1

(δ + ρ) +
ξt

a1

κ

Jss
(ρ + 2Ξ + δ) +

αt

a1

(
φ + δ

ϕπ − 1
δ − ϵ − 1

Θ
1

1 − η

)
.

(A.15)

In the absence of shocks, equation (A.15) simplifies to equation (4.3). By substituting equation

(4.2) and its time derivative into equation (4.3), we obtain equation (4.1).

A.2 Extension: Limited Attention

This extension introduces limited attention on the household side, while the supply side of the

model remains unchanged from the benchmark. Households are classified into two groups:

inattentive households, who are unaware of the shock, and attentive households, who have

recognized the shock.

For inattentive households, consumption remains fixed at the steady-state level, as we are

considering an unanticipated shock:

Ct,inattentive = Css. (A.16)

Attentive households adjust their consumption based on the Euler equation and the in-

tertemporal budget constraint:
Ċt,attentive

Ct,attentive
= it − πt − ρ, (A.17)
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∫ ∞

t
Cτ,attentivee−

∫ τ
t rsdsdτ ≤ at + ht, (A.18)

where at represents financial assets, and ht is human wealth, defined as the discounted sum of

future income:

ht =
∫ ∞

t
e−
∫ τ

t rsdsYτdτ. (A.19)

Following Mankiw and Reis (2007), an insurance contract ensures equal financial wealth

across households at the beginning of each period. As a result, attentive households share

identical financial assets and consumption levels, regardless of when they recognize the shock:

Ct,attentive = ρ (at + ht) . (A.20)

Aggregate consumption is given by:

Ct = FtCt,attentive + (1 − Ft)Ct,inattentive. (A.21)

Log-linearizing this expression yields:

ct = Ftct,attentative. (A.22)

Taking the time derivative and using the log-linearized Euler equation (A.17) for attentive

households, we obtain:

ċt =
ft

Ft
ct + Ft (it − πt − ρ) (A.23)

By combining this equation with the log-linearized versions of equations (A.2) and (A.8),

equation (A.7), and assuming no shock, we recover equation (5.1) in the main text.
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B Appendix B (Supplemental Appendix)

B.1 Proof of Lemma 1

The maximization problem is

q
(

pj
t, t
)
= max{

ṗj
τ

}
∫ ∞

t

exp (−rττ)

Pτ

(pj
τ − pt

)
yj,τ − Pτ

Θ
2

(
ṗj

τ

pj
τ

)2

Yτ

 dτ,

s.t. yj
τ =

(
pj

τ

Pτ

)−ϵ

Yτ.

Then, we use the fact that:

Pτ = Pt exp
(∫ τ

t
πsds

)
,

to express the objective as:

q
(

pj
t, t
)

Pt = max{
ṗj

τ

}
∫ ∞

t
exp

(∫ τ

t
(−πs − rτ) ds

)(pj
τ − pt

)
yj,τ − Pτ

Θ
2

(
ṗj

τ

pj
τ

)2

Yτ

 dτ,

s.t. yj
τ =

(
pj

τ

Pτ

)−ϵ

Yτ.

This expression leads to the HJB equation for the nominal value, Q
(

pj
t, t
)
≡ q

(
pj

t, t
)

Pt. The

corresponding HJB equation is:

(rt + πt) Q
(

pj
t, t
)
= max{

ṗj
τ

} (pj
t − pt

)( pj
t

Pt

)−ϵ

Yt − Pt
Θ
2

(
ṗj

τ

pj
τ

)2

Yt + Qp ṗj
t + Q̇.

Next, we obtain the first-order condition:

Qp − Θ
ṗj

t(
pj

t

)2 PtYt = 0. (B.1)

Differentiating this condition with respect to time yields:

Qpp ṗj
t + Q̇p = Θ

 p̈j
t(

pj
t

)2 PtYt − 2

(
ṗj

t

pj
t

)2
Pt

pj
t

Yt

+ Θ
ṗj

t(
pj

t

)2 ṖtYt + Θ
ṗj

t(
pj

t

)2 PtẎt. (B.2)
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Next, we produce the envelope condition. For that, we take the derivative of Q
(

pj
t, t
)

with

respect to the individual price pj
t. We obtain:

(rt + πt) Qp = −ϵ
(

pj
t − pt

) (
pj

t

)−ϵ−1
Pϵ

t Yt +
(

pj
t

)−ϵ
Pϵ

t Yt + Θ

(
ṗj

t

pj
t

)2
Pt

pj
t

Yt + Qpp ṗj
t + Q̇p.

(B.3)

Substituting (B.2) and (B.1) into (B.3), we obtain:

(rt + πt)Θ
ṗj

t(
pj

t

)2 PtYt = −ϵ
(

pj
t − pt

) yj
t

pj
t

+ yj
t + Θ

(
ṗj

t

pj
t

)2
Pt

pj
t

Yt

+ Θ

 p̈j
t(

pj
t

)2 PtYt − 2

(
ṗj

t

pj
t

)2
Pt

pj
t

Yt

+ Θ
ṗj

t(
pj

t

)2 ṖtYt + Θ
ṗj

t(
pj

t

)2 PtẎt.

Simplifying terms, we obtain:

(rt + πt)Θ
ṗj

t(
pj

t

)2 PtYt = −ϵ
(

pj
t − pt

) yj
t

pj
t

+ yj
t

+ Θ

 p̈j
t(

pj
t

)2 PtYt −
(

ṗj
t

pj
t

)2
Pt

pj
t

Yt

+ Θ
ṗj

t(
pj

t

)2 ṖtYt + Θ
ṗj

t(
pj

t

)2 PtẎt.

Now, using that all retailers act identically, we substitute, pj
t = Pt and yj

t = Yt, and obtain:

(rt + πt)Θ
Ṗt

P2
t

PtYt = −ϵ (Pt − pt) P−1
t Yt +Yt +Θ

(
P̈t

P2
t

PtYt −
(

Ṗt

Pt

)2

Yt

)
+Θ

Ṗt

P2
t

ṖtYt +Θ
Ṗt

P2
t

PtẎt.

Recall that inflation and the price acceleration are:

πt =
Ṗt

Pt
,

and

π̇t =
P̈t

Pt
−
(

Ṗt

Pt

)2

.

Replacing these conditions, in the condition above, we arrive that the following condition:

rtΘπtYt + Θπ2
t Yt =

{
1 − ϵ

(
1 − pt

Pt

)}
Yt + Θπ̇tYt + Θπ2

t Yt + ΘπtẎt.

Equivalently

rtπt =
1 − ϵ

(
1 − pt

Pt

)
Θ

+ π̇t + πt
Ẏt

Yt
.
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Denote mct ≡ pt
Pt

which is real marginal cost for retailers. Then, we arrive at the NK Phillips

curve: (
rt −

Ẏt

Yt

)
πt =

ϵ

Θ

(
mct −

ϵ − 1
ϵ

)
+ π̇t.

B.2 Proof of Lemma 2

The maximization problem is

G (n, t) = max
{Vτ}

∫ ∞

t
exp (−rττ)

[
pτ Aτ

Pτ
nτ −

wτ

Pτ
nτ − Vτµ

]
dτ,

s.t. ṅτ = JτVτ − Ξτnτ.

This expression leads to the following HJB equation for the intermediate good firm. The corre-

sponding equation is:

rtG (n, t) = max
{Vt}

pt

Pt
Atnt −

wt

Pt
nt − Vtµ + Gnṅt + Ġ,

s.t. ṅt = JtVt − Ξtnt.

And substituting the law of motion obtains:

rtG (n, t) = max
{Vt}

pt

Pt
Atnt −

wt

Pt
nt − Vtµ + Gn (JtVt − Ξtnt) + Ġ.

The first-order condition with respect to Vt is:

Gn =
µ

Jt
.

We conjecture the value function as follows:

G (n, t) = gtnt.

We verify this guess later. Under this assumption, we have

gt =
µ

Jt
.

This relationship which must hold in a solution with finite vacancies. Then, we replace the

condition into the HJB equation and using our guess obtain:

(rt + Ξt) gtnt =

(
pt

Pt
At −

wt

Pt

)
nt + ġtnt.

Hence, we obtain:

(rt + Ξt) gt =

(
pt

Pt
At −

wt

Pt

)
+ ġt,

which verifies our conjecture. Then, we obtain its integral solution.

gt =
∫ ∞

t
exp (− (τ − t) (rt + Ξt))

(
pτ

Pτ
Aτ −

wτ

Pτ

)
dτ.
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B.3 Proof of Proposition 1

If ϕπ < 1 or ϕπ > 1 + ΞJss
κ , then 4a3 < 0 because κγ (ρ + Ξ) > 0. This ensures that a2 <√

a2
2 − 4a3, leading to one positive and one negative characteristic root.

B.4 Proof of Proposition 2

Loosening Monetary Policy Shock. We consider a loosening monetary policy shock ς0 < 0.

The dynamics of aggregate variables under this shock are recovered by setting ϕπ = 0 and

zt = issςt. Substituting these relationship into equation (A.15) yields the following second-

order non-homogeneous differential equation:

üt − a2u̇t + a3ut = −τt,

where τt = − 1
a1
(−ρ) (δ + ρ) ςt.

The general solution of the differential equation consists of homogeneous and particular

solutions. The homogeneous solution is:

u(h)
t = C1eλ1t + C2eλ2t,

where λ1 =
a2+

√
a2

2−4a3
2 > 0 and λ2 =

a2−
√

a2
2−4a3

2 < 0. The particular solution, derived from τt,

is:

u(p)
t =

1
λ1 − λ2

(∫ ∞

s=t
eλ1(t−s)τs ds +

∫ t

s=−∞
eλ2(t−s)τs ds

)
.

The general solution is the sum of the homogeneous solution and the particular solution:

ut = u(h)
t + u(p)

t = C1eλ1t + C2eλ2t +
1

λ1 − λ2

(∫ ∞

s=t
eλ1(t−s)τs ds +

∫ t

s=−∞
eλ2(t−s)τs ds

)
.

Using ς̇s = −δςs, we have ςs = e−δsς0. Substituting τs into the particular solution yields:

ut = C1eλ1t + C2eλ2t

− 1
λ1 − λ2

1
a1
(−ρ)(δ + ρ)ς0

(
eλ1t

∫ ∞

s=t
e−(λ1+δ)s ds + eλ2t

∫ t

s=−∞
e−(λ2+δ)s ds

)
. (B.4)

The constants C1 and C2 are determined by the initial condition u0 = 0 and the terminal con-

dition u∞ = 0. The terminal condition implies C1 = 0 because λ1 > 0 > λ2. C2 is determined

by satisfying u0 = 0:

C2 =
1

λ1 − λ2

1
a1

(−ρ) (ηϵ + ρ) ς0

(∫ ∞

s=0
e−(λ1+δ)sds +

∫ 0

s=−∞
e−(λ2+δ)sds

)
.

Substituting, we obtain:

ut = −ς0ρ (δ + ρ)
1

λ1 − λ2

1
a1

(
1

λ1 + δ
− 1

λ2 + δ

)(
eλ2t − e−δt

)
.
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We consider two cases to show
(

1
λ1+δ − 1

λ2+δ

) (
eλ2t − e−δt) ≤ 0 where equality holds at

t = 0 or eλ2t − e−δt = 0.

Case (i): −δ < λ2 < 0. In this case, e−δt ≤ eλ2t, implying eλ2t − e−δt ≥ 0. Additionally,

0 < λ2 + δ < λ1 + δ, so 1
(λ1+δ)

− 1
(λ2+δ)

< 0. Therefore,
(

1
λ1+δ − 1

λ2+δ

) (
eλ2t − e−δt) ≤ 0.

Case (ii): λ2 < −δ < 0. In this case, eλ2t ≤ e−δt, which implies eλ2t − e−δt ≤ 0. Also,

λ2 + δ < 0 < λ1 + δ, so 1
λ1+δ − 1

λ2+δ > 0. Therefore,
(

1
λ1+δ − 1

λ2+δ

) (
eλ2t − e−δt) ≤ 0.

Thus, we have

ut = −ς0︸︷︷︸
>0

ρ︸︷︷︸
>0

(δ + ρ)︸ ︷︷ ︸
>0

1
λ1 − λ2︸ ︷︷ ︸

>0

1
a1︸︷︷︸
<0

(
1

λ1 + δ
− 1

λ2 + δ

)(
eλ2t − e−δt

)
︸ ︷︷ ︸

≤0

= −ς0ρ (δ + ρ)︸ ︷︷ ︸
>0

Λt︸︷︷︸
≥0

≥ 0.

where Λt =
1

λ1−λ2
1
a1

(
1

λ1+δ − 1
λ2+δ

) (
eλ2t − e−δt). By using the definitions of λ1 and λ2, Λt can

be simplified as: Λt =
e−δt−eλ2t

a1
1

δ2+δa2+a3
.

The dynamics of output (yt) are derived by log-linearizing equation (A.2). The dynamics of

inflation (πt) follow from the linearized IS equation (A.13). The dynamics of vacancy postings

(vt) are obtained from the definition of the job finding rate combined with equation (A.11),

which is the linearized job flow equation.

Positive Firing Shock and Positive Productivity Shock. The derivation is analogous to the

case of a loosening monetary policy shock. From equation (A.15), for a positive firing shock,

we use the following non-homogeneous second-order differential equation:

üt − a2u̇t + a3ut =
ξt

a1

κ

Jss
(ρ + 2Ξ + δ) . (B.5)

Similarly, for a positive productivity shock, the non-homogeneous second-order differential

equation is:

üt − a2u̇t + a3ut =
αt

a1

(
φ + δ

ϕπ − 1
δ − ϵ − 1

Θ
1

1 − η

)
. (B.6)
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