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Abstract

Uncertainty can affect monetary policy through its influence on macroeco-
nomic variables. In this paper, we examine the extent to which economic policy
uncertainty influences the effectiveness of monetary policy in the 1965:1-2023:12
period for the U.S. economy. Using a threshold regression model, we find evi-
dence of threshold effects where an uncertainty threshold of around 145 of the
economic policy uncertainty variable is estimated –the 62th percentile of the eco-
nomic policy uncertainty variable distribution–, which defines two regimes: high
and low uncertainty. By estimating a Structural Vector Autoregression (SVAR)
model with sign and zero restrictions in each uncertainty regime, we find that
the monetary policy is effective during low-uncertainty periods but loses its effec-
tiveness during high-uncertainty ones. These results are robust to the addition
of more restrictions.
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1 Introduction

In the last decade, a growing literature has stated the importance of uncertainty on
macroeconomic variables. Uncertainty can influence aggregate saving and investment
since it produces a partial irreversibility of investments in high uncertainty periods (see
Bernanke, 1983; Bloom, 2009; Dixit and Pindyck, 1994); that is, as greater uncertainty
increases the real option value of postponing non-reversible investment (Bloom et al.,
2018) as well as increasing precautionary saving. In other words, uncertainty moti-
vates agents to postpone decisions, awaiting more precise information or more pressing
needs, and this cautiousness makes them less responsive to changes in the interest rate
(Aastveit et al., 2017).

Uncertainty can also influence financial and credit market conditions and currency
risk. Specifically, financial market liquidity as portfolio rebalances and funds move
internationally, there is evidence that periods of heightened uncertainty are associ-
ated with lower asset trade volumes (Rehse et al., 2019); uncertainty has detrimental
effects on market functioning since it hurts credit growth (Bordo et al., 2016); and
increased uncertainty is associated with higher excess returns to the currency carry
trade operations (Husted et al., 2018; Berg and Mark, 2018).

On the other hand, there is a large literature on the identification of the monetary
policy (see Bernanke and Blinder, 1992; Christiano et al., 1996; Leeper et al., 1996;
Bernanke and Mihov, 1998; Smets and Wouters, 2007, among others). Most of the
literature uses Structural Vector Autoregression (SVAR) models, where identification
of the monetary policy shock plays a key role. The identification scheme restricts only
the monetary policy equation; thus the structural parameters are not fully identified.
Identifying only one shock or subset of shocks follows the work of Bernanke and Mihov
(1998), Christiano et al. (1999), Uhlig (2005), Arias et al. (2019) among others.

In related literature, Vavra (2014) constructs price-setting models with CPI mi-
crodata, and then shows that these models imply output responds less to monetary
policy during times of high volatility; whereas, Tillmann (2020) shows that a policy
tightening leads to a weaker reaction of long-term interest rates when uncertainty is
high; while, Aastveit et al. (2017) show that policy uncertainty reduces the transmis-
sion of Fed monetary policy on investment and consumption; similarly, Castelnuovo
and Pellegrino (2018) find that monetary policy exerts a substantially milder impact
in presence of high uncertainty for the US economy, and Pellegrino (2018) for the Euro
area; likewise, Mehmet et al. (2016) find that both price and output reacting more sig-
nificantly to monetary policy shocks when the level of U.S. policy uncertainty is low.
Nonetheless, Blot et al. (2020) do not find any significant difference in the response
function of inflation to monetary policy in low and high uncertainty periods for the
Euro area.

Those papers that used an SVAR framework fix a certain ad hoc percentile of the
historical distribution for the uncertainty measure to define high uncertainty; nonethe-
less, two drawbacks arise: first, when a very high threshold is imposed (for instance
the 90th percentile), the number of observations in the high uncertainty regime is sig-
nificantly reduced; and thus, in Bayesian methods, the confidence bands tend to be
wide; second, Donayre (2014) shows that if the uncertainty threshold is misspecified
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by imposing an ad hoc definition, tests for asymmetry have low power, leading to an
inability to reject the null hypothesis of linearity; that is, there is no difference on the
monetary policy effects under the high and low uncertainty regimes.

Our framework differs from these previous works. First, we postulate that economic
policy uncertainty affects the effectiveness of the U.S. monetary policy by splitting
the sample following a threshold regression model (Hansen, 2000), where economic
uncertainty is a threshold variable that endogenously splits the sample into two or
more regimes. That is, the economic uncertainty threshold parameter is estimated
within the model, in contrast to the exogenous sample split following ad hoc rules. In
addition, in our framework, the number of regimes in which the sample could be split
might exceed two -as dictated by the sample.

Second, we estimate an SVAR model in each economic uncertainty regime by using
the recent algorithms on sign and zero restrictions and identification scheme of the
monetary policy shock developed by Arias et al. (2018) and Arias et al. (2019). That
is, once the economic uncertainty threshold is estimated by splitting the sample into
high and low economic uncertainty regimes, we estimate the effectiveness of the U.S.
monetary policy in each economic uncertainty regime, where the U.S. monetary policy
shock is identified by imposing sign and zero restrictions on the systematic component
of monetary policy (Taylor rule equation) as in Arias et al. (2019).

Unlike Arias et al. (2019), we use the two-year Treasury bond yield to identify mon-
etary policy shocks as it captures the market’s immediate reactions to monetary policy
announcements and reflects expectations about the near future; contrary to longer-
term yields, which long-term growth expectations or risk premiums can influence, the
two-year Treasury bond yield is more directly tied to monetary policy actions (Gürkay-
nak et al., 2006; Kuttner, 2001);1 and, therefore, this measure is effective in isolating
the impact of unexpected policy changes, as they react sharply to actual policy rate
adjustments and shifts in forward guidance (Campbell et al., 2012). Moreover, their
higher variability compared to short-term rates (such as the overnight rate) allows for
more accurate identification of monetary policy shocks, as highlighted in studies such
as Gertler and Karadi (2015) and Bernanke et al. (2005).2

We find strong evidence of economic policy uncertainty threshold effects; that is, in
a threshold model of the monetary policy equation, the economic policy uncertainty
measure splits the sample into two regimes -which we will call “low-uncertainty” and
“high-uncertainty”. The U.S. monetary policy is effective in the low-uncertainty regime
since it drops economic activity and inflation. In contrast, in a high uncertainty regime,
the U.S. monetary policy becomes less effective because it has no or minor effect on
economic activity and inflation.

The remainder of this paper is organized as follows. In Section 2, we discuss the
methodology and dataset we use in this study. In Section 3, we estimate a threshold
regression model where economic policy uncertainty is the threshold variable, then we
estimate an SVAR model in the high and low economic policy uncertainty regimes. In

1We found quite similar results when we used the one-year Treasury bond yield to measure mone-
tary policy shock.

2Following the global financial crisis and the COVID-19 pandemic, both the overnight rate and the
effective federal funds rate displayed limited variability over the zero lower bound period.
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Section 4, we add a further restriction as a robustness exercise. Finally, in Section 5,
we conclude.

2 Methodology and data

In this section, we briefly discuss our methodology and database. We postulate that
economic policy uncertainty affects the effectiveness of the U.S. monetary policy by
separating the sample into two or more regimes. In particular, we embed the Taylor
rule equation within a threshold regression model, whereby economic policy uncertainty
is the threshold variable that splits the sample into uncertainty regimes; later on, we
estimate a Structural Vector Autoregression (SVAR) model in each regime to see the
effectiveness of the U.S. monetary policy. The dataset comprises monthly information
for the U.S. economy over the period 1965:1-2023:12. The data are retrieved from the
Federal Reserve Bank of St. Louis database (FRED), the Global Financial Database
(GFD) and the Economic Policy Uncertainty website.

2.1 U.S. economy SVAR

As in Arias et al. (2018) we begin with an SVAR model which takes the form

y′
tA0 =

v∑
ℓ=1

y′
t−ℓAℓ + c+ ε′t for 1 ≤ t ≤ T, (1)

where yt is an n× 1 vector of endogenous variables of the U.S. economy, εt is an n× 1
vector of structural shocks and Aℓ is an n × n matrix of structural parameters for
0 ≤ ℓ ≤ v with A0 invertible, c is a 1×n vector of parameters, v is the lag length, and
T is the sample size. The vector εt is Gaussian with mean zero and covariance matrix
In, conditional in y0, . . . ,yt−v.

The SVAR described in equation (1) can be written as

y′
tA0 = x′

tA+ + ε′t for 1 ≤ t ≤ T, (2)

where A′
+ =

[
A′

1 . . . A′
v c′

]
and x′

t =
[
y′
t−1 . . . y′

t−v 1
]
for 1 ≤ t ≤ T . The

dimension of A′
+ is m × n, where m = nv + 1. We call A0 and A+ the structural

parameters. The reduce form vector autoregression (VAR) implied by equation (2) is

y′
t = x′

tB+ u′
t for 1 ≤ t ≤ T, (3)

where B = A+A
−1
0 ,u′

t = ε′tA
−1
0 , and E [utu

′
t] = Σ = (A0A

′
0)

−1.
The impulse response function (IRF) of the variable i to the structural shock j in

the horizon k correspond to the element (i, j) of the matrix L0 (A0,A+), where Lk is
recursively defined by

L0 =
(
A−1

0

)′
, (4)

Lk =
k∑

ℓ=1

(
AℓA

−1
0

)′
Lk−ℓ for 1 ≤ k ≤ v, (5)
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Lk =
v∑

ℓ=1

(
AℓA

−1
0

)′
Lk−ℓ for v < k <∞. (6)

As in Arias et al. (2019), we impose sign and zero restrictions directly on the struc-
tural coefficients. Since the identification scheme restricts only the monetary policy
equation and less than n − 1 zero restrictions, the structural parameters are not ex-
actly identified. Identifying only one shock or subset of shocks follows the work of
Bernanke and Mihov (1998), Christiano et al. (1999) and Uhlig (2005). Similarly, the
specification of the systematic component of monetary policy is consistent with the
works of Leeper et al. (1996), Leeper and Zha (2003), and Sims and Zha (2006). With-
out loss of generality, we let the first shock be the monetary policy shocks. Thus, the
first equation of the SVAR

y′
ta0,1 =

v∑
ℓ=1

y′
t−ℓaℓ,1 + ε1,t for 1 ≤ t ≤ T (7)

is the monetary policy equation, where ε1t denotes the first entry of εt, aℓ,1 denotes the
first column of Aℓ for 0 ≤ ℓ ≤ v, and aℓ,ij denotes the (i, j) entry of Aℓ and describes
the systematic component of the monetary policy. The restrictions are impose on aℓ,1

for 0 ≤ ℓ ≤ v.
The identification scheme is motivated by Taylor-type monetary policy rules iden-

tical to Arias et al. (2019). The reduced-form VAR specification consists of six en-
dogenous variables ordered in the following form: output, yt; prices, pt; commodity
prices, pc,t; total reserves, trt; nonborrowed reserves, nbrt; and the federal funds rate,
rt. These variables have been used by, among others, Christiano et al. (1996), Bernanke
and Mihov (1998), Uhlig (2005) and Arias et al. (2019). The following two restrictions
are imposed:
Restriction 1. The federal funds rate is the monetary policy instrument and it only
reacts contemporaneously to output, prices, and commodity prices; and
Restriction 2. The contemporaneous reaction of the federal funds rate to output and
prices is positive.

Restriction 1 implies that the Fed’s interest rate does not react to changes in re-
serves. The second restriction is on the qualitative response of the Fed’s interest rate
to economic conditions. Restriction 2 implies that the central bank contemporaneously
increases the federal funds rate in response to a contemporaneous increase in output
and prices while leaving the response to commodity prices unrestricted as in Christiano
et al. (1996).

As in Arias et al. (2019), it is assumed that the central bank has access to an
enormous amount of real-time indicators to learn about the current state of real activity
and prices. So we can rewrite equation (7), abstracting from lag variables, as

rt = ψyyt + ψppt + ψpcpc,t + ψtrtrt + ψnbrnbrt + σε1,t, (8)

where ψy = −a−1
0,61a0,11, ψp = −a−1

0,61a0,21, ψpc = −a−1
0,61a0,31, ψtr = −a−1

0,61a0,41, ψnbr =

−a−1
0,61a0,51 and σ = a−1

0,61. Therefore, the Restriction 1 implies that ψtr = ψnbr = 0 and
the Restriction 2 implies that ψy, ψp > 0. At the same time, the coefficient ψpc remains
unrestricted.
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Algorithm

For the estimation of the model, we use a uniform-normal-inverse-Wishart distribu-
tion for the priors over the orthogonal reduced-form, that is characterized by four
parameters: UNIW (v, ϕ, ψ,Ω), with v = 0, ϕ = 0n×n, ψ = 0nv×n,Ω

−1 = 0nv×nv. This
parameterization results in prior densities that are equivalent to those in Uhlig (2005),
as shown in Arias et al. (2018).

The algorithm described in Arias et al. (2018) is used to make independent draws
subject to zero and sign constraints. This algorithm has two main advantages. The
first is that it ensures that draws are subject only to the desired restrictions. This is
important because other methods, such as the popular penalty function algorithm in
Mountford and Uhlig (2009), introduce additional zero constraints and the identifica-
tion does not come only from the desired constraints (Arias et al., 2018).

The second important advantage is that this algorithm offers greater computational
efficiency compared to other methods, such as Baumeister and Hamilton (2015), which
uses Metropolis-Hastings sampling to draw directly in the structural parameterization.
It is also important to note that the results obtained by this algorithm are invariant
to the ordering of the variables.

The following algorithm makes independent draws from the normal-generalized-
normal NGN(v, ϕ, ψ,Ω) distribution over the structural parameterization conditional
on the zero and sign constraints:

1. Draw (B, Σ), which are the parameters of the reduced orthogonal form from the
UNIW(v, ϕ,Ψ,Ω) distribution.

2. Draw an orthogonal matrix Q such that (A0,A+) = f−1
h (B,Σ,Q) satisfies the

zero constraints.

3. If (A0,A+) satisfies the sign constraints, then set its importance weight to:

NGN(v,Φ,ψ,Ω) (A0,A+)

NIW(v,Φ,ψ,Ω)(B,Σ)v(g◦fh)|z (A0,A+)
∝ |det (A0)|−(2n+m+1)

v(gofh)|z (A0,A+)

where the denominator is the density over the conditional structural parameter-
ization on the zero constraints. Otherwise, set its importance weight to zero.

4. Return to step 1 until the required number of draws has been obtained.

5. Re-sample with replacement with the importance weights and keep with the
desired number of draws.

To ensure that we have a large enough sample size relative to the desired number of
independent draws. First, we take 100,000 parameters that satisfy the zero constraints
and then we hold 10,000 after resampling the draws that satisfy the sign constraints.
Then the IRFs for the U.S. economy are calculated and saved.
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2.2 Threshold Equation

The first equation, the monetary policy equation, of the SVAR (7) in its reduced form
is given by

y1t =
v∑

ℓ=1

y′
t−ℓbℓ,1 + u1t for 1 ≤ t ≤ T, (9)

where y1t and u1t denote the first entry. Equation (9) describes our specification for
the Taylor rule as a time series regression, where y1t is the federal funds rate, yt is a
vector which contains the intercept and lags of the six variables, u1t is the error term of
the Taylor rule equation, and t indexes periods (months). The variables in yt are the
federal funds rate, output, prices, commodity prices, total reserves, and nonborrowed
reserves. bℓ,1 are the parameters to be estimated.

To assess whether or not economic policy uncertainty can affect the monetary policy
equation, we estimate the following time series regression with a threshold variable as
in Hansen (2000)

y1t =
v∑

ℓ=1

y′
t−ℓb1ℓ,11(qt−ℓ ≤ γ) +

v∑
ℓ=1

y′
t−ℓb2ℓ,11(qt−ℓ > γ) + u1,t for 1 ≤ t ≤ T, (10)

where qt is the economic policy uncertainty of the U.S. economy, and 1(.) is an indicator
variable that takes the value of 1 if the economic policy uncertainty level is lower (or
greater) than a threshold parameter and 0 otherwise. γ is the economic policy uncer-
tainty threshold parameter to be estimated. b1ℓ,1 and b2ℓ,1 are the slope coefficients;
that is, in this specification the effects of the lags of the six variables mentioned above
on the monetary policy depend on the uncertainty regime.

The empirical analysis of these models involves estimation, inference, and testing for
threshold effects (or testing for non-linearity). The theory for these models is developed
in Hansen (2000). In particular, he proposes a method to construct confidence intervals
for the threshold parameter, γ, in a simple closed-form expression. After estimating
model (10), we need to test whether the threshold parameter is statistically significant,
whether b1ℓ,1 = b2ℓ,1 which is the hypothesis of no threshold effect. We expect that
the monetary policy is effective in the low economic policy uncertainty regime when
qt−ℓ ≤ γ, than in the high economic policy uncertainty regime when qt−ℓ > γ.

Parameters estimation

Using the notation of equation (3), (10) is equivalent to

y1t = x′
tB11(qt−ℓ ≤ γ) + x′

tB21(qt−ℓ > γ) + u1,t for 1 ≤ t ≤ T, (11)

and let xt(γ)
′ = [x′

t1(qt−ℓ ≤ γ) x′
t1(qt−ℓ > γ)] and B = [B1 B2]. Thus, with this

notation (11) can be written in vector notation stacked over time as

Y1 = X(γ)′B+U. (12)
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The estimation procedure starts considering a given γ, within the empirical support
of the threshold variable -in our case the uncertainty variable. The coefficients B1 and
B2 can then be estimated using ordinary least squares, conditional on the given value
for γ

B̂(γ) = (X(γ)′X(γ))−1X(γ)′Y1, (13)

and the regression residuals are given by

Û(γ) = Y1 −X(γ)′B̂(γ); (14)

finally, the sum of squared errors to be minimized is

S(γ) = Û(γ)′Û(γ). (15)

The criterion function (15) is not smooth, so conventional gradient algorithms are
not suitable for its maximization. Following Hansen (2000), the minimization of this
sum of squared errors is carried out using a grid search over the threshold variable
space. This involves constructing an evenly spaced grid on the empirical support of
uncertainty, qt, and minimizing the concentrated sum of squared errors (15). Finally,
once γ̂ the uncertainty threshold parameter is estimated, the slope coefficient estimates
are B̂1 = B̂1(γ̂), and B̂2 = B̂2(γ̂).

Inference

When there is a threshold effect (B1 ̸= B2), then the threshold estimate γ̂ is a consistent
estimator for γ0 (the true value of γ), and it has an asymptotic distribution, which is
nonstandard (Hansen, 2000). Thus, the best way to produce confidence intervals for
the threshold parameter is to form the no-rejection region using the likelihood ratio
statistic for the test on γ̂ (Hansen, 2000). To test the null hypothesis H0: γ = γ0, the
likelihood ratio test is to reject large values of LR(γ0) where

LR(γ) = T
S(γ)− S(γ̂)

S(γ̂)
, (16)

where S(γ) is defined in (15), and T is the sample size.
The LR test converges in distribution as T → ∞ to a random variable ξ with

distribution function P (ξ ≤ z) = (1 − exp(−z/2))2. Furthermore, the distribution
function ξ has the inverse

c(ρ) = −2ln(1−
√
1− ρ), (17)

where ρ is the significance level. The “no-rejection region” for a confidence level 1− ρ
is the set of values of γ such that LR(γ) ≤ c(ρ). This is found by plotting LR(γ)
against γ and drawing a flat line at c(ρ).

Regarding the estimates of the slope parameters B̂1 and B̂2, the threshold regression
model conditional on a given threshold parameter is a linear regression model. Further-
more, the asymptotic distribution of the estimates of the slope parameters converges
to the traditional normal distribution as T → ∞.
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Testing for threshold effects

It is critical to determine whether the threshold effect is statistically significant or not.
The null hypothesis of no threshold effects in (11) can be represented by the linear
constraint H0 : B1 = B2. Nonetheless, under the null hypothesis, H0, the threshold
γ is not identified, so classical tests have non-standard distributions. For this reason
Hansen (2000) suggests a bootstrap to simulate the asymptotic distribution of the
likelihood ratio test for this model so that the p-values constructed from the bootstrap
procedure are asymptotically valid.

Therefore, under the null hypothesis of no threshold, the time series model is

y1t = x′
tB1 + u1,t for 1 ≤ t ≤ T, (18)

or in a vector form

Y1 = X′B1 +U, (19)

where the parameter B1 can be estimated using ordinary least squares, yielding an
estimate of B̂1, and residuals Û. Let S0 = Û′Û be the sum of squared residuals of the
linear time series model. In this case, the likelihood ratio test of H0 is based on

F = T
S0 − S(γ̂)

S(γ̂)
; (20)

moreover, the null hypothesis is rejected if the percentage of draws for which the
simulated statistic exceeds the actual value is less than a given critical value.

2.3 Data

As mentioned above, our dataset contains monthly U.S. data for the following variables:
real Gross Domestic Product (GDP), the GDP deflator, a commodity price index, total
reserves, nonborrowed reserves and the two-year Treasury bond yield. The monthly
time series for real GDP and the GDP deflator are constructed using interpolation of
the corresponding quarterly time series, as in Bernanke and Mihov (1998) and Mönch
and Uhlig (2005). Real GDP is interpolated using the industrial production index,
while the GDP deflator is interpolated using the consumer price index.

All the variables are retrieved from FRED (except the Treasury bond yield), Federal
Reserve Bank of St. Louis, using the following mnemonics: NONBORRES (nonbor-
rowed reserves of depository institution), CPIAUCSL (consumer price index), GDPC1
(real GDP), GDPDEF (GDP deflator), INDPRO (industrial production index), PPI-
ACO (producer price index by commodity) and TOTRESNS (total reserves of deposi-
tory institutions). The two-year Treasury bond yield (IGUSA2D) is from GFD, Global
Financial Database. All variables are seasonally adjusted except for the commodity
price index, reserves and the Treasury bond yield. Also, all the variables except the
Treasury bond yield are expressed in logarithms.

The sample starts in January 1965 and ends in December 2023. This sample was
chosen following and extending Arias et al. (2019). For the monthly uncertainty level
of the U.S. economy, we used the News-Based Economic Policy Uncertainty Index and
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the News-Based Historical Economic Policy Uncertainty, which are constructed from
newspaper coverage of policy-related economic uncertainty. Specifically, for the period
from January 1965 to October 2010, we used the News-Based Historical Economic
Policy Uncertainty and then we spliced the series using the News-Based Economic
Policy Uncertainty Index, from November 2010 to December 2023.3

3 Estimation results

In this section, we discuss our main empirical findings on the relationship between
economic policy uncertainty and the effectiveness of the U.S. monetary policy. That is,
it contains the resulting economic policy uncertainty threshold estimation, and IRFs to
a contractionary monetary policy for the U.S. economy under low and high economic
policy uncertainty regimes, and compares them with findings from previous research.

3.1 Threshold estimation results

Are there economic policy uncertainty threshold effects in the Taylor rule (monetary
policy) regression equation? To address this question, we need to test for the existence
of an uncertainty threshold effect in the Taylor rule regression equation using the F
test given in equation (20). This step typically involves estimating equation (11) and
computing the residual sum of squares for the different uncertainty values. As it was
mentioned before, the test has non-standard distributions, to this end we use 2,000
bootstrap replications to perform the threshold effects test.

The bootstrap p-value of the test is 0.000.4 Thus, the null hypothesis of no uncer-
tainty threshold effect (linear model) against a single uncertainty threshold model is
rejected at the one percent significance level. Therefore, there is strong evidence that
economic policy uncertainty affects the Taylor rule equation by splitting the regression
sample into two regimes. In addition, we perform tests for the existence of two or more
uncertainty threshold effects (more than two uncertainty regimes), but we do not find
evidence of more than two economic policy uncertainty regimes.

Figure 1 shows a renormalization of the objective function (concentrated likelihood
ratio function LR(γ)) on the space of the economic policy uncertainty threshold pa-
rameter, where the function is minimized at zero when the estimated threshold is
γ̂ = 145.017 (the 62th percentile of the economic policy uncertainty variable distribu-
tion). Thus, the two regimes separated by the threshold estimate are denoted as low
and high uncertainty regimes, respectively. Note that, most of the periods above the
economic policy uncertainty estimated threshold are after the financial crisis of 2008
(see Figure 2).

How precise is this uncertainty threshold estimate? To answer this question, we
construct a confidence interval for the estimated uncertainty threshold. The estimation

3Note that the correlation between the two indices in the common sample from 1985:01 to 2014:10
is 0.98.

4The null test that the model is linear, where uncertainty plays no role, against the alternative
of a single uncertainty threshold model was performed by allowing heteroskedastic errors (White
corrected).
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Figure 1: Confidence interval construction for threshold
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Figure 2: Economic Policy Uncertainty Index (1985-2020)

1970 1980 1990 2000 2010 2020

Dates

0

100

200

300

400

500

600

700

News-Based Economic Policy Uncertainty Index

Estimated threshold

95% confidence interval

precision is high because the 95 percent confidence interval, the set of values below
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precision in the uncertainty threshold estimation.5 Note that the threshold estimate is
placed at the 62th percentile of the economic policy uncertainty variable distribution,
this estimate and its corresponding confidence interval are much smaller than those
obtained under the ad hoc rule of the 75th or 90th percentile, which suggests the
unfitness of the later.

3.2 SVAR results

Figure 3 shows the posterior-wise median IRFs of the endogenous variables to a con-
tractionary policy shock in the entire sample, while the blue-shaded bands represent the
corresponding 68 and 95 percent posterior probability bands. A contractionary mone-
tary policy shock leads to an immediate median increase in the two-year Treasury bond
yield of around 17 basis points. The significant tightening in monetary policy leads to
an immediate drop in output of around 5 basis points with a high posterior probability
and a zero response with a 95 percent posterior probability for all periods. After the
first month, the output shows a zero response with a high posterior probability for
five months. Subsequently, it exhibits a negative response for nearly one and a half
years. While the median response of output is negative for the five years. The rest
of the variables have a zero response with a high posterior probability and 95 percent
posterior probability.

Figure 3: Impulse responses to a monetary policy shock

Note: IRFs to a one standard deviation contractionary monetary policy shock identified using
Restrictions 1 and 2. The solid lines depict the point-wise posterior medians and the shaded
bands represent the 68 and 95 percent equal-tailed point-wise posterior probability bands.

These results are quite similar to the estimates of Arias et al. (2019) in the sense
that monetary policy is effective in bringing down economic activity at a 68 percent

5Note that the upper quota of the 95 percent confidence interval coincides with the estimated
threshold, because the asymptotic distribution of the estimated threshold is asymmetric.
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confidence level, but there is no effect on GDP deflator; note that Arias et al. (2019)
use data from 1965 to 2007 in their estimation results. Nonetheless, the result for the
entire sample indicates that the effectiveness of U.S. monetary policy is lost at the 95
percent confidence level; we argue that this could be due to the inclusion of periods of
high uncertainty (see Figure 2).

Monetary policy under low uncertainty regime

Figure 4 shows the IRFs to a contractionary monetary policy shock for months where
the level of economic policy uncertainty is below the threshold previously found. This
shock leads to an immediate median increase in the two-year Treasury bond yield of
around 15 basis points that is then corrected. In this case, the significant tightening
in monetary policy leads to a more pronounced immediate median drop in output
of around 13 basis points and also this fall is persistent for the rest of the period.
The response of output is negative with a high posterior probability for the first forty
months after the shock, except for months 1 to 3.

Figure 4: Impulse responses to a monetary policy shock - low uncertainty regime

Note: IRFs to a one standard deviation contractionary monetary policy shock identified using
Restrictions 1 and 2. The solid lines depict the point-wise posterior medians and the shaded
bands represent the 68 and 95 percent equal-tailed point-wise posterior probability bands.

Furthermore, Figure 4 shows a protracted median decline in prices, and the response
of commodity prices is close to zero and not precisely estimated. On the reserves side,
the response of total reserves is virtually zero with a high posterior probability and
with 95 percent posterior probability. The nonborrowed reserves show an immediate
decrease with a high posterior probability, which extends over the next nine months.

The contractive response of output is consistent with the findings of Bernanke and
Blinder (1992), Christiano et al. (1996), Leeper et al. (1996), Bernanke and Mihov
(1998) and Smets and Wouters (2007). In particular, the form of the output response
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and the undershooting of the monetary policy rate (two-year Treasury bond yield) is
similar to those obtained by Smets and Wouters (2007), who estimated a Bayesian
DSGE with various restrictions.

Monetary policy under high uncertainty regime

Figure 5 shows the IRFs to a contractionary monetary policy shock for months where
the level of economic policy uncertainty is above the threshold previously found. In this
case, the monetary policy shock leads to an immediate median increase in the two-year
Treasury bond yield of around 8 basis points. Similar to the case where we use the
entire sample, the significant tightening in monetary policy leads only to an immediate
median drop in output of around 20 basis points, and a zero response with 95 percent
posterior probability for all periods. Furthermore, we observe a less pronounced drop
in output with a high posterior probability; whereas prices, commodity prices, and
reserves have a zero response.

Figure 5: Impulse responses to a monetary policy shock - high uncertainty regime

Note: IRFs to a one standard deviation contractionary monetary policy shock identified using
Restrictions 1 and 2. The solid lines depict the point-wise posterior medians and the shaded
bands represent the 68 and 95 percent equal-tailed point-wise posterior probability bands.

When a very high uncertainty threshold is imposed –for instance, the 90th percentile
of the economic policy uncertainty variable distribution–, the number of observations
that the SVAR method will use to analyze the high uncertainty regime is reduced.
Therefore, the confidence bands of the IRFs in this case end up being very wide. This
leads to monetary policy being ineffective; which might be due to the few observations
that exist in such a regime and not because of the level of uncertainty itself.

The main result of declining output with a posterior probability of 95 percent in
periods of low uncertainty, but not in periods of high uncertainty is consistent with
previous literature. For instance, Pellegrino (2018), Castelnuovo and Pellegrino (2018),
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Aastveit et al. (2017), Mehmet et al. (2016), and Blot et al. (2020) study the responses
of a monetary shock contingent to the low and high uncertainty regimes; all of them
find differentiated effects except Blot et al. (2020). In this matter, Aastveit et al.
(2017) argue that this result is consistent with the “cautiousness” effects suggested by
economic theory, where there is more cautiousness when deciding whether to invest or
not when uncertainty is high; therefore, a marginal change in investment incentives
induced by a change in interest rate has a smaller impact.

Consistent with the drop in output under the low uncertainty regime, there is also
a slight fall in prices, and no response in the high uncertainty regime; this result is in
line with Arias et al. (2019), whose analysis goes up to 2007, after which uncertainty
has been quite high. On the contrary, Castelnuovo and Pellegrino (2018) find that
inflation rises quicker when uncertainty is high, while there is no significant response
of inflation when uncertainty is low; Aastveit et al. (2017) find that in both the high
and low volatility regimes, the prices initially increase in response to the monetary
tightening, and decline only several periods later; while Mehmet et al. (2016) do not
observe a significant difference in the impulse responses of prices under high and low
uncertainty environments; however they observe a larger impact when uncertainty is
low.

For its part, the interest rate has a weaker reaction and is less persistent in high
uncertainty periods than in low uncertainty ones; in this regard, Castelnuovo and
Pellegrino (2018) find that the interest rate response is less persistent during uncertain
times; in the same manner, Tillmann (2020) finds that a policy tightening leads to
a significantly smaller increase in long-term bond yields if policy uncertainty is high,
where this weaker response is driven by the fall in term premia, which fall more strongly
if uncertainty is high. Tillmann (2020) argues that a higher uncertainty about monetary
policy tends to make securities with longer maturities relatively more attractive to
investors; as a consequence, investors demand even lower term premia.

4 Restriction on commodity prices

In this section, we check the robustness of the results reported in Section 3 by using
another specification following Arias et al. (2019). In particular, we will focus on the
case when we add a further restriction for commodity prices to our identification. This
is a zero restriction for commodity prices, ψpc = 0 (Restriction 3). Since we are not
changing any variables in the identification strategy, we maintain the economic policy
uncertainty threshold estimated for this case.

Similar to the baseline case, Figure 6 displays the results of contractionary monetary
policy shock for the entire sample. We observe greater effects, such as an immediate
median increase of approximately 22 basis points in the two-year Treasury bond yield,
an immediate output decrease of 8 basis points, and a prolonged negative output
response with a high posterior probability. Other important results include a decrease
in commodity prices throughout the entire period with a high posterior probability,
an immediate price decrease of 2 basis points with a high posterior probability, and a
negative long-term response of total reserves, also with a high posterior probability.
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Figure 6: Impulse responses to a monetary policy shock

Note: IRFs to a one standard deviation contractionary monetary policy shock identified using
Restrictions 1, 2 and 3. The solid lines depict the point-wise posterior medians and the shaded
bands represent the 68 and 95 percent equal-tailed point-wise posterior probability bands.

In Figure 7, we observe an immediate median increase of approximately 18 basis
points in the federal funds rate in response to a contractionary monetary policy shock
when the uncertainty level is low. Additionally, the output response to this shock is
negative with a high posterior probability for most of the entire period and with a 95
percent posterior probability for most of the first three years. We also find a long-term
negative response in prices and commodity prices with a high posterior probability,
and similar results for reserves as in the baseline case. Consequently, this drop is more
persistent than in the case described in Section 3.2.

Figure 8 shows that when the uncertainty level is high, the output experiences a
significant drop for the first two months with a high posterior probability, but then
exhibits a near-zero response with both high and 95 percent posterior probability.
Additionally, we observe a decrease in prices for the first five months and in commodity
prices for the entire period, both with a high posterior probability. Meanwhile, the
federal funds rate experiences an immediate median increase of approximately 10 basis
points in response to this shock. As we can see, most of these results are in line with
those described in the baseline case.

One could continue to add more constraints to the structural parameters or IRFs,
but at the cost of further justification of each added constraint; which casts doubts on
how agnostic and theory-driven the subsequent identification schemes are. Given that
the methods used require large samples to obtain consistent results, no other uncer-
tainty measures are available for large samples (the longest ones have been available
since 1985); however, in the common sample, most uncertainty measures are highly
correlated. Therefore, we expected similar results when using other measures of uncer-
tainty.
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Figure 7: Impulse responses to a monetary policy shock - low uncertainty regime

Note: IRFs to a one standard deviation contractionary monetary policy shock identified using
Restrictions 1, 2 and 3. The solid lines depict the point-wise posterior medians and the shaded
bands represent the 68 and 95 percent equal-tailed point-wise posterior probability bands.

Figure 8: Impulse responses to a monetary policy shock - high uncertainty regime

Note: IRFs to a one standard deviation contractionary monetary policy shock identified using
Restrictions 1, 2 and 3. The solid lines depict the point-wise posterior medians and the shaded
bands represent the 68 and 95 percent equal-tailed point-wise posterior probability bands.
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5 Conclusion

In this paper, we study whether economic policy uncertainty matters for the effective-
ness of monetary policy. We postulate that the link between economic uncertainty and
the Taylor rule equation could be modeled using a threshold regression model, where
economic uncertainty is the threshold variable, and then we modeled the U.S. economy
into an SVAR model in each economic uncertainty regime.

Using times series data for the U.S. economy, we find that there is a statistically sig-
nificant uncertainty threshold that splits the sample into two regimes: a low-uncertainty
and a high-uncertainty regime. More importantly, the SVAR analysis in each economic
uncertainty regime finds that the monetary policy shock declines the economic activity
in the low-uncertainty regime but does not in the high-uncertainty one with 95 percent
posterior probability, that is the monetary policy shock loses its power in high uncer-
tainty periods. Our findings are robust to the addition of further restriction and the
use of the one-year Treasury bond yield.

Other measures of uncertainty or volatility used in the literature can be used as ro-
bustness analyses; however, these measures are not available for a long period; however,
Bayesian methods for SVAR estimation and, mainly, threshold models require many
observations. Likewise, the analysis of sub-periods (before and after the global finan-
cial crisis or the pandemic) can be interesting, but at the cost of fewer observations.
Therefore, other estimation methods such as local projections may be more suitable for
short samples. Also, the analysis of other policies such as unconventional policies and
reserve requirements in periods of high and low uncertainty would be relevant. These
issues would be fruitful areas for future research.
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