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Abstract

We examine how exchange traded funds (ETFs) affect asset pricing, volatility

and trade volume in a laboratory asset market. We consider markets with zero

or negative correlations in asset returns and the presence or absence of composite

ETF assets. We find that when the returns on assets are negatively correlated,

the presence of an ETF asset reduces mispricing and price volatility without

decreasing trading volume. In the case where returns have zero correlation, the

ETF asset has no impact. Thus, our findings suggest that ETFs do not harm,

and may in fact improve, price discovery and liquidity in asset markets.
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1 Introduction

Exchange traded funds, or ETFs, currently represent 35 percent (Ben-David et al.,

2018) of all equity trades in the United States. Their meteoric rise in popularity as an

investment vehicle has democratized investing, providing retail investors with access

to products which were once available only to institutional investors 20 years ago (Hill,

2016). ETFs are investment products which aim to track a particular index, and

may be one of the most important financial innovations in recent history (Lettau and

Madhavan, 2018). The advantages of these investment products are easy to appreciate:

(i) they help diversify market risk by allowing investors to hold a bundle of assets (the

index or ETF), (ii) they have lower associated management fees, and (iii) they are

traded continuously on an exchange, making them more liquid than mutual funds. In

addition, ETFs are appealing to institutional investors who are looking to turn a profit

by engaging in arbitrage.

However, the appeal and ubiquity of ETFs might have a destabilizing role for

markets if they also attract speculators who add noise to the price discovery process,

or who generate excessive volatility in asset prices. According to Bogle (2016), “Most

of today’s 1,800 ETFs are less diversified, carry greater risk, and are used largely for

rapid-fire trading —speculation, pure and simple.” In this paper, we provide evidence

relevant to the debate about the impact of ETFs in asset markets by conducting a

laboratory experiment where subjects trade assets either in the presence or in the

absence of an ETF asset, so that we can understand the impact of ETFs on asset

pricing, volatility and trading volume. In the experimental literature, there are a some

studies that examine trading in multiple assets, but there are no studies we are aware

of that address the role of composite, tradeable assets.

Our laboratory market builds on the seminal design of Smith et al. (1988) (hereafter

SSW) and extends it to two assets, A and B. The asset returns are either (i) perfectly

negatively correlated, as in our 2N treatment, or have (ii) zero correlation, as in our

2Z treatment. The dividend process for asset A has an expected value of zero in every

period, while the dividend process for asset B has a structural break: for the first t

periods, it follows the same dividend process as asset A so that its expected value is

zero, and beginning in period t + 1, the expected value of the dividend process jumps

to one until the terminal period T . These two dividend processes generate either flat or

declining paths for the fundamental values of the assets, which correspond to the two

most commonly studied fundamental paths in the experimental asset pricing literature.
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Our second design innovation concerns the number of assets in the market, which may

be two or three. The two asset markets involve trading of assets A and B. In the three

asset market, a composite ETF asset, referred to as asset C, also exists and can be

traded. This ETF asset is a claim to one unit of asset A and one unit of asset B and

so its fundamental value is the equal-weighted fundamental values of assets A and B.

In addition to determining and seeing the price of ETF asset C, market participants

also learn its net asset value (NAV), the sum of the market price of one unit of asset

A and one unit of asset B in each period to facilitate arbitrage.

To preview our results, we find that in the negative correlation treatment, price

volatility and mispricing are significantly reduced with the introduction of the ETF

asset. Thus, the ETF asset provides an important benchmark to help traders properly

price the underlying assets. Indeed, we find that ETF prices are close to the NAV and

get even closer with experience in the negative correlation treatment. By contrast, in

the zero correlation environment, we do not find significant differences in price volatility

and mispricing between markets with and without the ETF asset, though the ETF asset

continues to closely follow the NAV. In our design, the ETF asset represents 50 percent

of total assets,1 and yet we do not find any effect from the introduction of the ETF

asset on trading volume in the underlying assets in either correlation case. In fact,

traders actively participate in markets for all assets across all four of our experimental

treatments.

Our motivation for introducing assets with perfectly negatively correlated returns

is to highlight the insurance value of the ETF asset to subjects, since holding the ETF

asset in the negative correlation case provides perfect insurance against aggregate risk.

One possible interpretation of this perfectly negative correlated case is that investors

hold a portfolio which consists of two assets with perfectly correlated returns, where

the investor takes a long position in one asset and a short position in the other asset.

In addition to the three advantages of ETFs mentioned earlier, ETFs also have

some important institutional characteristics that should be considered. For example,

the majority of ETFs are composed of equities which seek to track large cap indices,

sector indices or other indices.2 These investment products are then traded in two

separate markets: (i) the primary market, where Authorized Participants (APs), or

1The supply of assets in our laboratory markets is fixed.
2According to the Wall Street Journal, bond ETFs, have passed 1 trillion in assets in July 2019, a

market that did not exist 20 years ago (https://www.wsj.com/articles/bond-exchange-traded-funds-
pass-1-trillion-in-assets-11561986396).
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large financial institutions, issue and redeem ETF shares, and (ii) the secondary market,

where ETF shares are traded by the public. APs help ensure that the ETF price closely

tracks the basket of underlying securities, as measured by the Net Asset Value (NAV),

by taking advantage of any arising arbitrage opportunities. Our experimental design

simplifies a number of these institutional characteristics since our goal is to isolate

the effect of ETFs on asset prices, volatility and volume. Consequently, in this paper

we focus on the secondary market, which represents about 90 percent of daily ETF

activity (ICI, 2019),3 and we provide asset market participants with information on

the NAV of the ETF in every period.

While there is an empirical literature exploring the impact of ETFs on financial

markets that we discuss in the next section, we resort to a laboratory experiment for

several reasons. First, the laboratory provides us with control over the fundamental

value of the assets under study so that we can accurately assess the extent to which

agents are able to correctly price individual assets as well as composite assets such as

ETFs. Second, we consider laboratory environments with and without ETF assets in

order to clearly identify the impact of ETF assets on asset prices, volatility and trading

volume. In the field, ETFs are now ubiquitous in all markets and so it would be more

difficult to identify their impact. Finally, we can change other variables, such as the

correlation in asset returns that might matter for the impact of ETFs on financial

markets.

2 Related literature

The existing literature on the effects of ETFs on price discovery, volatility and liquidity

of the underlying assets is mixed.4 There is some evidence that ETFs can improve intra-

day price discovery of securities (Hasbrouck, 2003, Yu, 2005; Chen and Strother, 2008;

Fang and Sanger, 2011; Ivanov et al., 2013), particularly if the individual securities

are less liquid than the ETF. The improvement in price discovery comes from faster

response time to new information on earnings (especially the macro-related component)

and the subsequent trading of the lower cost ETFs. The fluctuations in ETF prices

can help guide the prices of the underlying securities to integrate new information.

3For a detailed overview of ETFs, see, e.g., Lettau and Madhavan (2018).
4At the macro level, Converse et al. (2018) find that total cross-border equity flows and prices are

significantly more sensitive to global financial conditions in countries where ETFs hold a larger share
of financial assets.
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Hasbrouck (2003) provides some empirical evidence for this phenomenon using index

futures. Similar results are also found by Glosten et al. (2016) who document how ETFs

positively affect informational efficiency at the individual stock level, in particular with

respect to information on earnings. Huang et al. (2018) show similar positive effects

for industry level ETFs, while Bhojraj et al. (2018) find a positive effect on efficiency

for sector level funds, and a negative a effect for non-sector level funds. Agapova and

Volkov (n.d.) determine that when corporate bonds are included in ETFs, the returns

are less volatile than for bonds which are not included. Lastly, there is also some

evidence that market liquidity of the underlying assets improves with the introduction

of ETFs (Hegde and McDermott, 2004; Nam, 2017). On the other hand, Hamm (2014)

finds that when lower quality individual stocks are included in ETFs, the market can

become less liquid as uninformed investors move away from investing in these stocks

in favor of the ETF, where asymmetric information problems are mitigated. Since

evidence suggests that ETFs affect the prices of underlying assets, ETFs may also lead

to price volatility and affect market efficiency. For example, a positive change in an

asset’s fundamental value, perhaps due to favorable news, should lead to an upward

price adjustment. However, if the movement is instead driven by noisy ETF traders,

then one would expect a price reversal in the near future, thus increasing the volatility

of the underlying assets.

Arbitrage can also transmit pressure to the underlying assets as mispricing of the

ETFs is passed through to the basket of individual securities. This can occur due to

(i) trades by uninformed investors, and/or (ii) traders who participate in long-short

strategies involving other mispriced securities. Ben-David et al. (2018) find that ETF

arbitrage activity increases non-fundamental volatility of underlying stocks due to noisy

traders. Madhavan and Sobczyk (2016) decompose the price of the ETF relative to its

NAV (ETF premium) into two components, one corresponding to price discovery and

the other to transitory liquidity. They find that an ETF-led price discovery following

a change in fundamentals can lead to excess volatility when the composite assets are

illiquid. Baltussen et al. (2019) also provide evidence of price reversals and noisy shocks

to index products.

ETF assets also have some features in common with derivative assets such as futures

which track an index. However, unlike futures, ETFs do not have a maturity date,

which can erode performance for investors with broader horizons, and ETFs are not

derivative assets since they can be directly traded. Noussair and Tucker (2006) studied
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the impact of futures in an SSW laboratory environment with a single asset and found

that a complete set of futures markets, where one matures every period, can correct

spot market price bubbles. They also observe widespread mispricing in the futures

markets. In a follow-up study, Noussair et al. (2016) constrain the number of futures

contracts to one and find that a longer maturity can help reduce mispricing, despite an

increase in price volatility observed in some sessions. Porter and Smith (1995) find a

very modest mispricing correction in the spot market when the single contract matures

half-way through the life of the asset.

The dividend process we use in our experimental design is based on the previous

experimental asset pricing literature. Similar dividend processes have been studied for

a single asset in Kirchler et al. (2012) and Breaban and Noussair (2015). Kirchler et

al. (2012) find that a constant fundamental value, (i.e., the case where the expected

dividend value is 0 and there is some final, positive terminal value), facilitates price

discovery, while Breaban and Noussair (2015) show that a constant fundamental value

followed by a decreasing trend can also reduce mispricing relative to an environment

with a constant fundamental value followed by an increasing trend.5 A two-asset SSW

market also appears in a recent study by Charness and Neugebauer (2019). They find

that the law of one price holds when asset returns have a perfectly positive correlation,

and fails to hold when the correlation is zero. The structure of dividends in Charness

and Neugebauer (2019) follows the classical SSW environment with decreasing funda-

mentals, which tends to generate larger price deviations relative to the fundamental

values. As pointed out by Kirchler et al. (2012), if the structure of the fundamental

process is rather flat, then one should expect prices closer to fundamental values, and

convergence to the law of one price.

3 The environment

Our experimental design builds upon the seminal work of SSW where market partic-

ipants trade an asset with a common dividend process and a decreasing fundamental

value for a finite number of periods. We extend the SSW environment to two and

three asset markets, where assets are subject to different dividend processes, utilizing

a 2 × 2 experimental design. The first treatment variable pertains to the number of

5The mispricing in bearish markets disappears in Marquardt et al. (2019) where the earnings are
subject to a trend shock, and there are no interim dividends.
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assets traded in the market. A market can have either (i) two assets A and B, or (ii)

three assets, which includes an ETF asset C, a composite asset of A and B using equal

weights. The second treatment variable is the correlation in the dividends earned by

the two assets, A and B, which can be either perfectly negative N or zero Z.

The fundamental value of an asset, assuming no discounting, is the expected divi-

dend payments remaining over the life of the asset in periods T − t+ 1, and the asset’s

terminal value TV , such that FVj,t =
∑T

s=t Es[Dj,s]+TVj, where j refers to asset type.

We assume that T = 15 and specify the fundamental value of each asset as

FVA,t = 10

FVB,t =

{
18 for t ≤ 8

(T − t + 1) + 10 for t > 8

FVC,t =

{
28 for t ≤ 8

(T − t + 1) + 20 for t > 8.
(1)

All market participants are endowed with a bundle of cash and a portfolio of assets,

such that the distribution of wealth across players is equal. We specify the initial

allocation of assets Ω = {A,B,C}, and cash for all players in Table 1. In each session,

players can participate in up to three separate call markets, each consisting of T =

15 trading periods. In every period t = {1, . . . , T} asset A pays a dividend DA ∈
{−1, 1}, which is decided by a fair coin flip such that the expected dividend E[DA] = 0.

Following period T , asset A pays a terminal value TVA = 10. Thus, the fundamental

value FVA is constant and equal to 10.6 In periods t = {1, . . . , t∗}, asset B follows

the same dividend structure as asset A, such that DB ∈ {−1, 1} and E[DB] = 0. For

periods t = {t∗ + 1, . . . , T}, there is a structural break so that DB ∈ {0, 2}, which

is decided by a fair coin flip such that the expected dividend E[DB] = 1. Following

period T , asset B pays a terminal value TVB = 10. Hence, asset B has a constant

fundamental value until t∗, and a decreasing trend thereafter.

In the zero correlation environment the realizations of DA and DB are drawn in-

dependently of each other, and the independence of these realizations is known. By

6There is a small probability (equal to 0.059) that FVA < 0 if the realized dividends for asset A
are negative for at least 11 of the total 15 periods, given that the terminal value for A is equal to 10.
However, in expectation, the value of the dividends is zero and therefore this should not be an issue
for forward-looking agents.
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contrast, in the perfectly negative correlation environment the realizations of DB are

exactly opposite to the realizations of DA. That is, in a negative correlation environ-

ment in periods t = {1, . . . , t∗}, when DA = −1, then DB = 1, and when DA = 1,

then DB = −1. In periods t = {t∗ + 1, . . . , T}, when DA = −1, then DB = 2, and

when DA = 1, then DB = 0. The exact timing of the structural break and the perfect

negative correlation in dividends is known. In the three asset environment, we intro-

duce an ETF asset to the two asset market, which we call asset C. This ETF asset is

a composite asset composed of one unit of asset A and one unit of asset B.

Table 1: Endowment bundles across subjects in all treatments

3 assets (3N, 3Z) 2 assets (2N, 2Z)
Subjects Cash A B C A B
1-3 444 8 2 0 8 2
4-6 396 2 8 0 2 8
7-9 280 0 0 10 10 10
Note: we assume an initial total cash-asset ratio of three, and an equal
distribution of wealth across participants. The initial fundamental value
for assets {A,B,C} is {10,18,28}.

Dividend earnings from all assets held by a player in each period are stored in

a separate account and are converted into cash earnings at the end of the terminal

period T . The number of shares available for trade at any given time is fixed such

that sA, sB, sC = {30, 30, 30}.7 Since we assume that one share of the ETF asset C, is

composed of one share of asset A and one share of asset B, the net asset value (NAV)

of the ETF asset C is

NAV
C

:=
sC
A
× p

A
+ sC

B
× p

B

s
C

= p
A

+ p
B
. (2)

Note that the dividends received for holding one share of the ETF asset C follow

D
C

:=
sC
A
×D

A
+ sC

B
×D

B

s
C

= D
A

+ D
B
. (3)

Therefore, for t = {1, . . . , t∗} the ETF asset C pays {−2,0,2} with probability {1/4, 1/2, 1/4}
when the correlation between the underlying assets is zero, or zero when the correla-

7Our ETF environment assumes a fixed supply of assets and is therefore different from an open-
ended fund, where shares are created and redeemed in response to market forces. However, given
that this is the first paper to study the impact of ETFs on market behavior, we assume a simple
environment, focusing on the secondary market.
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tion between the underlying assets is negative, with certainty. For t = {t∗ + 1, . . . , T},
ETF asset C pays either {−1,1,3} with probability {1/4, 1/2, 1/4} when the correla-

tion between the underlying assets is zero and one when the correlation between the

underlying assets is negative, with certainty.

We assume an initial total cash-asset ratio endowment of three in each experimental

session. Moreover, each subject enters the market with the same wealth, though we

vary the composition of wealth across subjects. Specifically, subjects 1-3 are endowed

with eight shares of asset A and two shares of asset B, subjects 4-6 are endowed with

two shares of asset A and eight shares of asset B, and subjects 7-9 are endowed with

ten shares of the ETF asset C. In a two-asset market, where only assets A and B

are traded, the distribution of shares is the same for the subjects 1-6 and subjects 7-9

now receive ten shares each of assets A and B, which is equivalent to ten shares of the

composite ETF asset C. It is important to highlight that the only difference across

treatments is the presence of the ETF asset. The distribution of assets and cash is

similar across treatments.

3.1 Market format

As a market clearing mechanism, we employ a call market which produces a single

uniform price for each asset traded in time t.8 In a three asset environment, subjects

can trade in up to three separate call markets simultaneously, with one market assigned

to each asset. Similarly, in the two asset environment, subjects can trade in up to two

separate call markets, with one market assigned to each asset.

In any given market, after all bids and asks are submitted, our computer program

sorted bids in a descending order and asks in an ascending order to derive market

demand and market supply curves to clear each asset market at a uniform price. Each

period t, market participants can submit one buy order and/or sell order for each of

the three asset markets. They can also choose not to participate in one, two or all

three markets. A complete buy order specifies a single bid price and a number of units

desired at that price. Similarly, a complete sell order includes a single ask price and

a number of units for sale at that price. In our environment, participants can only

8We employ a call market for three reasons: (i) it requires less effort on the part of subjects tasked
with following the prices of multiple assets, (ii) subjects are required to interact in each market, even
if they wish to place an order for zero units, and (iii) there is a large tradition of using call markets as
market institutions. The convergence of asset prices to fundamental values in call markets has been
demonstrated by Smith et al. (1982), Cason and Friedman (1997) and Plott and Pogorelskiy (2017).
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sell assets currently in their portfolio– that is, short-selling is not allowed. Moreover,

there is no borrowing, as each participant can only place bid orders which satisfy their

budget constraint (current cash available).

At the end of each period, subjects learn the market prices of either two or three

assets (p
A

, p
B

and p
C

), depending on the assigned treatment and the net asset value

of the ETF asset C or NAV
C

= p
A

+ p
B

, if appropriate. By design, the NAV
C

can

depart from p
C

, providing a potential for arbitrage opportunities.

3.2 Hypotheses

Assuming no limits to arbitrage, ETF prices should not deviate from their fundamental

net asset values (NAVs), which depend on the market prices of the assets underlying

the ETF. It follows that there should be no difference in various market measures, such

as mispricing, price volatility and trade volume between our three asset market with

ETFs and the comparable two asset market without ETFs. We will examine these

measures in detail in section 5. We further explore how different risk profiles arising

from the two different correlations between asset returns might affect market prices,

assuming risk-averse subjects.

Hypothesis 1: Price volatility in a market with ETF assets is the same as in a market

without ETF assets.

According to Ben-David et al. (2018) ETF arbitrage activity can increase non-

fundamental volatility of the underlying stocks due to noisy traders. However, ar-

bitrage also indicates an active market, which should help with price discovery and

therefore reduce the price volatility of the underlying assets.

Hypothesis 2: A market with ETF assets will exhibit the same level of mispricing as

a market without ETF assets.

The evidence is mixed with regards to how ETFs affect market prices and price

discovery. As we noted earlier, there are some studies suggesting an improvement

in efficiency, though this is sensitive to scope (sector, industry, etc.), and asset types

(greater efficiency gains for bond ETFs, where underlying assets are less liquid). Lastly,

experimental evidence suggests that depending on asset return correlations, we should
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see some evidence of correct relative pricing.

Hypothesis 3: The volume of trade in markets with ETF assets is the same as in a

markets without ETF assets.

We expect this outcome for two reasons: (i) arbitrage activity will ensure an active

market, and (ii) although ETFs may be thought of as passive instruments, they are

actually actively traded.

Hypothesis 4: The price of the ETF follows the NAV.

If the price of the ETF does not follow NAV, then arbitrage between underlying

securities and the composite assets will exist.

Hypothesis 5: Asset prices are not affected by the correlation in the returns of the

underlying assets.

According to Charness and Neugebauer (2019), the correlation in asset returns

matters for the pricing of assets. Therefore, we expect that when the correlation in

asset returns is perfectly negative, asset prices could differ from those observed under

zero correlation in returns. However, to stay consistent with our no limits to arbitrage

assumption, we test the null hypothesis of no effect of correlation in returns on asset

pricing.

4 Laboratory Procedures

The experiment was conducted at the Experimental Social Science Laboratory (ESSL)

of the University of California, Irvine. Participants included undergraduate students

from all fields who were recruited online using the SONA systems software. Subjects

were assigned to participate in one of the four treatments: {2Z, 3Z, 2N, 3N}. In each

session, subjects were asked to complete a quiz after reading the instructions. Upon

completion, the experimenter checked the answers and if a subject made any incorrect

responses, the correct answers were given and explained privately to the individual.

Before the market opened for trading, the subjects also completed a risk-elicitation task
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(Crosetto and Filippin, 2013, implemented in oTree by Holzmeister and Pfurtscheller,

2016).

Figure 1: User interface in the 3N treatment.

Each session consisted of two 15 period markets. In each period, each subject had

the option to input buy and/or sell orders, subject to the constraints that their buy

orders did not exceed their endowment and their sell orders were for assets currently

in their possession (i.e., no borrowing or short selling was allowed). Once a subject

had decided on their order, they had to confirm their order by clicking on a button.

For an example of the user-interface, designed in oTree (Chen et al., 2016), please

refer to Figure 1.9 Among the information provided to the subjects each period was

market data (prices and units transacted) from all previous periods, and the NAV of

9On the decision screen shown in Figure 1, subjects had to fill in all twelve boxes (0 was always
an option). The input boxes in the first column were for the per unit bids for assets A, B and C;
the boxes in the second column were the number of units to buy of assets A, B, and C; the boxes in
the third column were the per unit asks for assets A, B and C, and the boxes in the fourth column
were the number of units to sell of assets A, B, and C. While there was a timer counting down 180
seconds, there was no binding time constraint; market prices were not determined until all 9 subjects
had confirmed their orders (completed all 12 boxes and submitted the order).
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the ETF asset C (in treatments where there was such an asset). In the case where

current price information for either asset A or asset B was not available (because a

market clearing price could not be determined), the NAV was computed using the most

recently available market price.

Any dividends accrued by subjects over the course of the market were put into

a separate account which was converted into cash at the end of the session.10 The

dividend yield was displayed to subjects if and only if she held the relevant asset.

Current asset and cash holdings were provided, as well as the previous change in

holdings, which appeared as a positive (negative) value for assets that the subject

bought (sold), and a negative (positive) value for the cash paid (received). The interface

for the two-asset markets, 2N and 2Z, is similar to the one presented in Figure 1, except

that all information related to asset C is omitted, including prices, NAV, dividends and

buy/sell orders. Subject endowments of cash and assets for all sessions are presented

in Table 1.

Table 2: Overview of sessions

Treatment Sessions Subjects per session Payoff (USD, without show-up fee)
2Z 5 9 24.64
3Z 5 9 24.80
2N 5 9 24.64
3N 5 9 25.03

Total 20 180 24.78

In total, we conducted 20 sessions, with five sessions per treatment, and nine sub-

jects per session. We present an overview of all sessions from our experiment in Table

2. All subjects participated in two, 15-period markets. At the end of the experiment,

one of these two markets was randomly selected and subjects’ total point earnings

from the market were converted into US dollars at the known exchange rate of $0.04

per point. Subjects market earnings were equal to the sum of their dividends received

and/or storage costs paid over all 15 rounds from assets held plus their remaining cash

balance and the value of their asset position at the end of the 15th round. The latter

value was determined by summing together 1) the number of units of asset A held

multiplied by 10, 2) the number of units of asset B held multiplied by 10, and 3) (in

the three asset markets), the number of units of the ETF asset C held multiplied by

20. On average, each session lasted two hours and the average earnings were $24.78.

10This procedure, following Kirchler et al. (2012), ensures that there is no increase in the cash-to-
asset ratio over time.
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In addition, subjects received a show-up fee of $7, bringing the average total to $31.78.

5 Results

We begin our analysis by presenting the median market prices, and the fundamental

values, of assets A, B and C in Figure 2 across all markets and treatments. The x-axis

provides the period number for each of the two markets, with each lasting 15 periods.

In the three asset treatments, 3N and 3Z, we also include the NAV which is computed

as the sum of the last available prices of assets A and B. In Appendix A we also include

the same figures using a subset of data limited to the second market, when subjects

have more experience. In all of the statistical analysis that follows, we use data only

from the second market to account for subject learning.11 Overall, the price of asset

A closely follows its flat fundamental value across all treatments except 2N , where we

observe a higher level of mispricing. Such behavior is consistent with trading of assets

with flat fundamental values and a constant cash to asset ratio as shown in Kirchler

et al. (2012). The mispricing of asset B increases at the structural break where the

fundamental value changes trend, and then decreases by the terminal period. We also

observe that the price of the ETF asset C is closer to the NAV than to the fundamental

value in the negative correlation treatment.

In treatment 3N the ETF asset C provides perfect insurance over market outcomes

while in treatment 3Z, the insurance is incomplete. Therefore, if investors are risk-

averse, then we need to account for the difference in insurance provided by the different

market environments.12

Table 3 presents a summary of our results using averages for each of the four treat-

ments: 2Z, 3Z, 2N , and 3N , respectively.13 To study market behavior, we employ the

following measures: price amplitude, volatility, relative absolute deviation (RAD), rel-

ative deviation (RD), relative pricing, asset turnover, relative absolute deviation from

the NAV (RAD-NAV), and relative deviation from the NAV (RD-NAV). Our first mea-

sure, the price amplitude of an asset relative to its fundamental value (PA-FV), was

introduced by Porter and Smith (1995). We define this measure as the difference be-

11Our results are qualitatively similar if we use the data from both markets.
12Using a call market, Biais et al. (2017) find that the price of a risky asset is lower in an environment

with aggregate risk than in an environment without such risk. In multiple asset markets, a risk-
premium also appears under aggregate risk in Bossaerts and Plott (2004) and Bossaerts et al. (2007).

13Appendix B includes the measures presented in Table 3 for each second market across all sessions.
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(a) treatment 2Z (b) treatment 3Z

(c) treatment 2N (d) treatment 3N

Figure 2: Median asset price per period for each treatment (5 sessions) and fundamental
values. Each session contains two markets, each lasting 15 periods.

tween the maximum deviation from the fundamental value and the minimum deviation

from the fundamental value of an asset, normalized by the initial fundamental value,

such that

PAj − FVj := [max(Pj,t − FVj,t)−min(Pj,t − FVj,t)]/FVj,1, (4)

where t = 1, . . . , 15 and j ∈ {A,B,C}. We also compute the volatility of the prices

of each asset using the standard deviation of the prices in a market. To measure the

extent of mispricing, or the price deviation from the fundamental value, we follow

Charness and Neugebauer (2019), and define the relative absolute deviation of each

14



Table 3: Summary of results

First market Second market

2Z 3Z 2N 3N 2Z 3Z 2N 3N
Asset A
Price amplitude 0.52 1.04 2.92 0.89 0.62 1.25 2.93 1.11
Volatility 1.81 3.12 8.88 2.61 2.03 4.13 8.70 3.49
RAD 0.26 0.32 1.01 0.51 0.39 0.70 1.27 0.40
RD 0.22 0.27 0.99 0.45 0.39 0.69 1.21 0.39
Turnover 1.22 1.51 1.45 1.35 1.48 1.48 1.25 1.14
Asset B
Price amplitude 0.65 0.76 1.79 1.06 0.45 1.07 1.15 0.48
Volatility 3.54 3.31 8.82 5.90 3.65 5.71 7.21 2.25
RAD 0.31 0.47 0.70 0.52 0.34 0.88 0.60 0.36
RD 0.25 0.46 0.62 0.44 0.32 0.87 0.55 0.35
Turnover 1.18 1.33 1.30 1.54 1.19 1.06 0.99 1.11
RAD B/A 0.22 0.33 0.33 0.55 0.17 0.41 0.31 0.15

Asset C
Price amplitude – 0.99 – 0.43 – 0.35 – 0.52
Volatility – 7.28 – 3.13 – 3.66 – 5.40
RAD – 0.55 – 0.45 – 0.59 – 0.47
RD – 0.43 – 0.48 – 0.52 – 0.47
RAD-NAV – 0.34 – 0.17 – 0.29 – 0.19
RD-NAV – 0.04 – 0.08 – 0.09 – 0.10
Turnover – 1.15 – 0.99 – 0.83 – 0.90

asset from fundamental value as:

RAD-FVj :=
1

T

T∑
t=1

|Pj,t/FVj,t − 1|, (5)

where T represents the total number of periods in which assets are transacted.14 Our

results do not significantly change when using a geometric average, as suggested by

Powell (2016). We also consider a relative deviation measure, (6) which is same as

RAD, but does not take the absolute value of the deviation. RD is useful in tests

where the null hypothesis assumes zero differences across variables, and by design the

RAD measure is always bounded away from zero.

RD-FVj :=
1

T

T∑
t=1

Pj,t/FVj,t − 1, (6)

14We drop the periods in which there are no observations for a given asset from our calculations.
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To account for multiple assets, we extend the RAD formula in equation (4) and

assign weights according to the number of assets transacted relative to overall number

of market transactions. Thus, the total relative absolute deviation is

RAD-TOTAL :=
1

Q

C∑
j=A

T∑
t=1

|Pj,t/FVj,t − 1| × qj,t, (7)

where Q is the total number of market transactions across all assets, and qj,t is the

quantity of asset j transacted in time t. If we divide Q by the total supply of assets,

which differs across two and three asset markets, then we obtain our measure of asset

turnover.

We also present the relative mispricing of assets A and B using a relative RAD

B/A, which we define as

RAD-B/A :=
1

T

T∑
t=1

|P
B
t /FV B

t

PA
t /FV A

t

− 1|, (8)

where T is the total number of periods with joint transactions of A and B. In the

case of the ETF asset C, we measure how far it is priced from the NAV. We follow the

definition above, and measure the price deviation with respect to NAV as

RAD-NAV :=
1

T

T∑
t=1

|PC
t /NAVt − 1|. (9)

Similarly, we measure how for the ETF asset C is priced from NAV using RD

measure, which does not take the absolute value of the deviation. Table 3 shows

that in the negative correlation treatments, there is less price volatility and prices are

closer to the fundamental value when there is an ETF asset (3N) compared to the

case without the ETF asset (2N). For example, the volatility and RAD of asset B

dramatically improve (from 7.21 in 2N to 2.25 in 3N and from 0.60 in 2N to 0.36 in

3N respectively, in the second market). On the other hand, in the zero correlation

treatment, the introduction of the ETF asset is less helpful in terms of pricing assets

A, and B, and reducing volatility.

Such outcome is intuitive, because when the correlation in asset returns is negative

there is a greater demand for both assets in order to eliminate market risk. The increase

in demand for assets moves prices away from their fundamental values. Once an ETF

asset is introduced, the demand for individual assets decreases. In the zero correlation
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treatment the role of the ETF asset is less evident for subjects, which explains why its

effect is generally not significant in subsequent analysis. The measure of asset turnover,

which tells us how active the market is similar across all treatments.

Notice that in Table 3 there is little change in most measures for asset A between

markets 1 and 2. However, most measures of asset B —price amplitude volatility and

RAD— are considerably lower in the second market relative to the first. Given that

asset B is harder to price due to a decreasing trend in the fundamental value following

period eight, we need to allow for subject learning. For this reason, we focus most of

our subsequent analysis on the second market.

Lastly, the results for asset C suggest that when the correlation between asset re-

turns is negative, the introduction of the ETF asset improves most of the measures

reported in Table 3. The price deviations for asset C with respect to NAV are smaller

than with respect to the fundamental value. This indicates that subjects are pricing

assets correctly in the relative sense. In the subsequent paragraphs, with the help of

parametric as well as non-parametric tests, we formalize our results, using data from

the second market to control for possible learning effects.

Result 1: In the case where asset returns are negatively correlated, assets A and B

exhibit lower volatility when an ETF asset is traded than in a market without an ETF

asset.

In our non-parametric analysis we use each second market from our data set as a

unique observation to perform a two-sided Wilcoxon test to evaluate differences, if any,

across treatments (with five observations per treatment). Table 4 shows the direction

of these differences and the relevant p-values for at least a 10 percent significance level.

The volatility of assets A and B in the 3N treatment is lower than in the 2N treatment

(with p-values of 0.095 and 0.032 for assets A and B, respectively). The higher p-value

for asset A relative to B may be due to the differences in the path of the fundamental

values of the two assets. There is a greater chance of observing a deviation from the

fundamental value of asset B because it is changing across time, unlike asset A which

has a constant fundamental value. Thus, there is more room for improvement in the

case of asset B.

The ETF asset does not appear to play a significant role in the environment with

zero correlation in asset returns. We do not observe any differences between the 2Z and
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Table 4: Wilcoxon Test: volatility (p-values)

A B C
Market 2Z 3Z 2N 2Z 3Z 2N 3Z
2Z
3Z = =
2N > (0.056) > (0.095) > (0.056) =
3N = = < (0.095) = = < (0.032) =

3Z treatments. In the zero correlation treatment, aggregate risk still exists, however

the ETF asset cannot offer the same level of insurance as in the negative correlation

case. Using another measure for the dispersion of prices in Table 5, price amplitude,

we find similar outcomes. The ETF asset decreases price amplitude for assets A and

B when the correlation is negative, but not when the correlation is zero.

Table 5: Wilcoxon Test: price amplitude (p-values)

A B C
Market 2Z 3Z 2N 2Z 3Z 2N 3Z
2Z
3Z = =
2N > (0.048) > (0.087) > (0.032) =
3N = = < (0.087) = = < (0.079) =

Result 2: When asset returns are negatively correlated, the price of asset A, and rel-

ative price of asset B with respect to A is closer to the fundamental value in a market

with an ETF asset than in a market without an ETF asset.

We follow equation (5) to compute the RAD for each asset, and equation (8) to

study the relative price dispersion with respect to fundamentals. The introduction

of the ETF asset appears to affect only the asset with a constant fundamental value

(A), and only in the case where the ETF asset provides a perfect diversification of

market risk (p-value of 0.056). Similarly, the relative price of asset B with respect

to A is closer to the fundamental value (p-value of 0.032) in the environment with

negative correlation. There is also improvement in relative pricing B/A in the three
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asset environment (with an ETF) when the correlation between individual assets is

negative, 3N versus 3Z (p-value of 0.095).

Table 6: Wilcoxon Test: RAD-FV (p-values)

A B B/A C
Market 2Z 3Z 2N 2Z 3Z 2N 2Z 3Z 2N 3Z
2Z
3Z = = =
2N > (0.056) = = = = =
3N = = < (0.056) = = = = < (0.095) < (0.032) =

Complementary to the non-parametric analysis, we perform OLS regressions using

our measures of RAD from equation (5) at the period level, for each asset as the

dependent variable. That is, we do not aggregate the absolute deviation across periods

in this analysis. Table 7 presents the results. As independent variables we include a set

of dummies, Z, Three, and Three×Z, which capture marginal effects of the different

treatments. The intercept measures the effect of the baseline treatment 2N .

Table 7: OLS regressions: RAD

RAD-FV A RAD-FV B RAD-B/A RAD-FV C
(I) (II) (III) (IV) (V) (VI) (VII) (VIII)

Intercept 1.26
∗∗∗

1.29
∗∗∗

0.64
∗∗∗

0.37
∗

0.37
∗∗∗

0.27
∗∗

0.44
∗∗∗

0.27
(0.31) (0.42) (0.21) (0.21) (0.12) (0.12) (0.16) (0.18)

Z −0.84
∗∗ −0.84

∗∗ −0.30 −0.30 −0.21 −0.21 0.36 0.36
(0.36) (0.37) (0.24) (0.24) (0.13) (0.14) (0.51) (0.51)

Three −0.82
∗∗ −0.82

∗∗ −0.25 −0.22 −0.21
∗ −0.20

∗
– –

(0.37) (0.37) (0.25) (0.24) (0.12) (0.12)

Three× Z 1.12
∗

1.12
∗

0.73 0.69 0.41
∗∗

0.38
∗∗

– –
(0.64) (0.64) (0.46) (0.53) (0.17) (0.17)

Period – −0.00 – 0.04
∗∗∗

– 0.01
∗∗

– 0.02
∗

(0.03) (0.01) (0.01) (0.01)
R2 0.11 0.11 0.09 0.15 0.11 0.15 0.06 0.08
N 240 240 242 242 205 205 103 103
Note: Standard errors are clustered at the session level and computed via bootstrapping.
∗∗∗

p ≤ .01,
∗∗

p ≤ .05,
∗
p ≤ .1

We define our dummy variables as follows: (i) Z takes the value of one when the

correlation of asset returns is zero, and zero otherwise, and (ii) Three takes the value

of one when an ETF asset is traded in the market, and zero otherwise. Hence the
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coefficients Z and Three capture the 2Z and 3N treatments, respectively. We also

include an interaction term Three× Z which captures the effect of the 3Z treatment.

To control for group effects, we cluster the standard errors by session, and compute via

bootstrapping. The trend variable, Period controls for time and learning. For every

asset, we present the specification with and without the time trend. In the last two

specifications of Table 7, the interpretation of the intercept is different because the

ETF asset C is traded only in the 3N and 3Z asset markets. Hence, for specifications

(VII) and (VIII) the constant captures the baseline 3N treatment.

The negative sign on the coefficient of Three in specifications (I)-(VI) indicates that

RAD is smaller in 3N compared to 2N . The difference is significant at the five percent

level for asset A and at the ten percent level for the relative price B/A. Specifically,

the RAD for asset A is smaller by 82 percentage points in the 3N relative to 2N . We

test the effect of the ETF asset on RAD within a zero correlation environment using a

Wald test, where the null hypothesis states that the sum of coefficients for the Three

and Three × Z is equal to zero. In all specifications, we cannot reject that RAD of

individual assets in 3Z is equal to the RAD in 2Z. For the ETF asset C, specifications

(VII-VIII) do not show any important differences across treatments. The positive time

trend coefficient (Period) captures the effect of the decreasing trend in the fundamental

value of assets B and C, which complicates pricing behavior.

Table 8: Wilcoxon Test: RAD-TOTAL (p-values)

2Z 3Z 2N
2Z
3Z =
2N > (0.095) =
3N = = < (0.056)

To study the overall mispricing relative to fundamentals we refer to equation (7).

Consistent with our earlier results, we find that mispricing is smaller in 3N than in 2N ,

with a p-value of 0.056 as indicated in Table 8. Thus, when the correlation between

assets is negative ETFs help reduce the overall level of mispricing.

Result 3: Introducing the ETF asset does not affect the volume of trade.
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To determine whether the ETF asset affects market activity, or the volume of trade,

we compare our two-asset markets (without ETFs) and our three-asset markets (with

ETFs) and use asset turnover as an indicator of market activity. The results are re-

ported in Table 18, Appendix B. We define asset turnover as total assets transacted in

the market divided by the total supply. Note that in our environment, the ETF asset

represents a significant portion of market supply, or 50 percent of assets. We do not

find any difference in the trading volume across the two and three asset markets. This

result is robust to extending the analysis to the number of bids and asks in the market.

Result 4a: The price of the ETF asset C closely follows its net asset value.

We test whether the price of the ETF asset is equal to the NAV using the relative

deviation (RD) measure.15 For each of the treatments, 3N and 3Z, we cannot reject

the null (p > 0.10) that the price of the ETF asset is equal to the NAV. Further, we

do not find any statistical difference in the market price of the ETF asset across the

3Z and 3N treatments.

Table 9: OLS Regressions: PC−NAV

PC-NAV PC-NAV
(I) (II)

Intercept 3.824 5.178
∗

(2.608) (3.083)
Z 6.836 4.270

(9.185) (10.147)

Period −0.231 −0.418
∗

(0.213) (0.221)
Period × Z – 0.352

(0.427)
R2 0.04 0.07
N 103 103
Notes:
a. Standard errors are clustered at the ses-
sion level and computed via bootstrapping.
∗∗∗

p ≤ .01,
∗∗

p ≤ .05,
∗
p ≤ .1

We also analyze the effect of time and correlation in asset returns on arbitrage.

We look for evidence that price differences from NAV are arbitraged over time by re-

gressing the difference between the price of the ETF asset and its NAV per period on

15 In this case, RD is a more appropriate measure because RAD is constrained by the lower bound
of zero, and thus a test using RAD would fail on the account of the definition of the measure.
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time as well as the correlation between asset returns in Table 9. The results suggest

that in specification (I), there is no difference between the price of the ETF asset and

its NAV in both the zero and negative correlation treatments. The Period variable,

while not significant, has a negative sign which would suggest learning. Specification

(II) allows further analysis with the addition of the interaction term Period × Z. In

this specification, the time trend coefficient, −0.418 is significantly negative (with a

p-value of 0.059). This suggests that most of the arbitrage over time occurs in the

negative correlation treatment. Thus, we can conclude that the ETF asset serves as

an important a benchmark for price discovery.

Result 4b: The bids across all assets, A, B, and C are more consistent with the no

arbitrage prediction in treatment 3N than in treatment 3Z.

We further consider whether there is any inconsistency between the (i) individual

bids for the underlying assets, A and B, and the bids for the composite asset C, and

(ii) individual asks for the underlying assets, A and B, and the asks for the composite

asset C. We use individual bid data to measure the absolute difference between the

sum of the bids (b) for assets A and B and the bids for asset C, as defined by:

AD-BIDS :=
1

T ·N

N∑
i=1

T∑
t=1

|bAit + bBit − bCit |, (10)

where T is the number of periods, and N the number of instances with joint bids for all

three assets A, B and C. The same approach is used to measure the absolute difference

between the sum of the asks for assets A and B and the asks for asset C (AD-ASKS).

Table 10: Bid and ask consistency in ETF markets

AD: BIDS Count (subjects) AD: ASKS Count (subjects) AD: BIDS + ASKS Count
Market 3Z 3N 3Z 3N 3Z 3N 3Z 3N 3Z 3N 3Z 3N
I 5.43 4.76 38 (6) 6 (2) 7.13 6.43 12 (3) 7 (4) 5.84 5.66 50 13
II 9.46 3.97 21 (4) 19 (4) 31.5 4.76 5 (4) 27 (5) 13.70 4.43 26 46
III 7.46 3.06 24 (6) 16 (3) 7.56 – 4 (3) 0 (0) 7.47 3.06 28 16
IV 18.35 1.82 13 (6) 47 (6) 23.69 2.77 8 (3) 33 (4) 20.38 2.21 21 80
V 27.67 6.12 6 (3) 39 (3) 18.67 9.01 3 (1) 25 (2) 24.67 7.25 9 64
Mean 13.67 3.95 21 (5.0) 19 (3.6) 17.01 5.74 6.4 (2.8) 18.4 (3) 14.41 4.52 26.8 43.8

Table 10 reports on AD-BIDS, AD-ASKS and AD-BIDS + AD-ASKS along with

counts of the number of instances of joint bids or asks for all three assets and the
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number of subjects making these joint asks or bids (in parentheses). Using a Wilcoxon

test, we find that the absolute deviation of bids (left columns) asks (middle columns)

and bids and asks (right columns) presented in Table 10, is smaller in the 3N treatment

relative to the 3Z treatment, with a p-values of 0.016, 0.063, 0.016, respectively. Thus,

consistent with the results reported in Table 9, arbitrage appears to be stronger in 3N

than in 3Z.

Result 5: Risk averse investors have a more balanced portfolio in the negative corre-

lation treatment.

We analyze how risk attitudes affect portfolio allocations between assets A and B

by constructing a measure of portfolio imbalance as the absolute difference between an

individual’s holdings of A and B divided by their total holdings of assets A and B. In

both environments there is an equal supply of assets A and B (though the total supply

of these assets depends on whether there is an ETF or not), so the market portfolio

would consist of holding equal numbers of both assets. Our portfolio imbalance measure

helps quantify how far an individual portfolio is from the market portfolio. Since

holding a composite asset C is equivalent to holding one A and one B, when a subject

adds asset C to her portfolio it increases the denominator in our imbalance measure by

a count of two. If a subject does not hold any assets, which accounts for 13 percent of

participants, we drop that subject from the database.16 When the portfolio imbalance

measure is zero, a subject holds the market portfolio, or equal units of assets A and

B, while a value of one means that a subject’s portfolio only consists of one asset,

indicating extreme imbalance.

In order to estimate the effect of risk aversion on portfolio imbalance, we regress

the individual portfolio imbalance measure on risk attitudes, as measured by the bomb

elicitation task Crosetto and Filippin (2013). The mean number of the boxes collected

is 35.83, which is below the risk-neutral benchmark of 50. The standard deviation of

boxes collected is 16. We measure the Risk as the maximum number of boxes (100)

minus the number of boxes collected. Thus risk aversion range is from 100, maximal

risk aversion, to 0, maximal risk tolerance. Table 11 summarizes the regression results

of our analysis. All regressions use holdings at the end of the session, and compute

the standard errors (clustered at the session level) using bootstrapping. Specification

16There is no significant difference in the number of boxes collected by the dropped players relative
to other players in our bomb elicitation task.
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(I) shows that on average a subject who collects all boxes (Risk = 0) will have an

imbalance of 0.603, and that risk aversion has a small but positive effect on the portfolio

imbalance, at the 0.05 significance level.

Table 11: OLS Regressions: Portfolio Imbalance

(I) (II)

Intercept 0.603
∗∗∗

0.781
∗∗∗

(0.110) (0.160)

Risk (100−Boxes) −0.003
∗∗ −0.006

∗∗∗

(0.002) (0.002)
Z – −0.342

(0.211)

Risk × Z – 0.006
∗∗

(0.003)
R2 0.02 0.04
N 156 156
Notes:
a. Portfolio imbalance is measured as |A −
B|/(A+B + 2C).
b. Standard errors are clustered at the ses-
sion level and computed via bootstrapping.
∗∗∗

p ≤ .01,
∗∗

p ≤ .05,
∗
p ≤ .1

To control for different correlations between asset returns, we include a dummy

variable Z, which takes the value of one when the asset returns have zero correlation,

and the value of zero otherwise. Lastly, we also include an interaction term Z ×Risk.

According to specification (II) in Table 11, where the intercept is now 0.781, higher

risk aversion should decrease the imbalance in the negative correlation treatment. On

the other hand, risk does not seem to play a role in the zero correlation treatment.

The interaction between the Z treatment and the risk measure results in a positive but

small increase in the imbalance measure.

Result 6: There is heterogeneity in trading strategies.

We classify trader behavior according to three types, (i) fundamental value trader,

(ii) momentum trader, and (iii) rational speculator closely following the framework of

Haruvy and Noussair (2006), Haruvy et al. (2013), and Breaban and Noussair (2015).

An individual’s behavior is defined as consistent with the fundamental value trader type

at period t if si,t < si,t−1 when pt > ft , where pt is the price, f is the fundamental value

and si,t is the number of assets that individual i holds in period t. This means that

when asset prices rise above the fundamental value, trader i is a net seller. Similarly,
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if asset prices go below fundamental value, then trader i will be a net buyer. Trader

behavior is consistent with being a momentum trader if si,t < si,t−1 when pt−1 < pt−2.

Similarly, if pt−1 > pt−2 then si,t > si,t−1. A momentum trader is a net buyer in period

t when there is an increasing price trend over the last two periods, and a net seller when

there is a decreasing price trend. Lastly, trader behavior is defined as consistent with

the rational speculator trader type if si,t < si,t−1 when pt+1 < pt. Likewise, if pt+1 > pt

then si,t > si,t−1. A rational speculator is assumed to anticipate next period’s price

in an unbiased manner, and makes positive net purchases when the price is about to

increase and positive net sales when the price is about to decrease.

To classify a subject as a type, we first count the number of periods for each

asset when subject behavior is consistent with a particular type. We then sum across

these counts to determine which trading behavior the subject follows most often per

asset. Finally, in order to classify subject behavior according to one of the three

aforementioned types, we require that a subject behaves as a particular type for at

least two of the three assets.17 We present these results in Table 12. In the case where

there is no dominant behavior, the subject is classified as a combination of two or three

types, which we display in the last four rows of Table 12.

Table 12: Proportion of trader types

Type 2Z 3Z 2N 3N
Fundamental 0.09 0.22 0.18 0.29
Momentum 0.13 0.13 0.09 0.18
Rational Speculator 0.18 0.38 0.20 0.20
Fundamental & Momentum 0.22 0.00 0.11 0.02
Fundamental & Rational Speculator 0.13 0.07 0.24 0.02
Momentum & Rational Speculator 0.20 0.13 0.11 0.20
All 3 types 0.04 0.07 0.07 0.09

Overall, we find that all three types reported in the earlier literature, involving only

single assets, are also present in our multi-asset markets. The frequency of these trading

strategies also varies, potentially in a response to the environment. For example, the

proportion of traders who follow the fundamental strategy for buying and selling is

0.22 in the 3Z treatment and 0.29 in the 3N treatment.

17This construction allows comparisons across treatments with two and three asset markets.
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6 Conclusion

Exchange traded funds now comprise 35 percent of all equity trades in the United

States and have been exponentially growing in popularity. Understanding whether

and how such assets affect market measures such as prices and volatility is important

for policymakers concerned with financial stability. In this paper, we have taken a novel

first step toward addressing this question with the first laboratory market experiment

to use composite, exchange traded assets.

We find that for the most part, ETFs do not foster mispricing, do not contribute

to price volatility nor reduce market activity. When the incentive for holding an ETF

asset is especially salient, as in our negative correlation treatment where it provides

perfect insurance, these composite assets actually reduce mispricing, by providing an

important benchmark for price discovery. We also find that risk-averse traders prefer

more balanced portfolios in our negative correlation treatment, and therefore providing

an asset which facilitates holding the market portfolio may result in faster convergence

to the Sharpe ratio.

Our markets with and without ETF assets make use of a simple call market envi-

ronment, where the composite asset completely covers the market. In future research,

we propose to study continuous time trading, which would improve opportunities for

arbitrage and to consider ETFs which do not cover the market or which are not rep-

resentative of market capitalizations. We further propose to study ETFs in a CAPM

environment (Bossaerts et al., 2007). These projects, currently in progress, will im-

prove our understanding of how ETFs affect diversification strategies and contribute

to a lower market risk premium. Lastly, it would be interesting to study, the role of

APs in providing liquidity to markets, or how multiple ETFs may affect the efficiency

of markets. We leave these questions for future work.
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Appendix A: Price plots for each session

(a) Session 1 (b) Session 2

(c) Session 3 (d) Session 4

(e) Session 5

Figure 3: Asset prices and fundamental values per period for treatment 2N in the second
market.
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(a) Session 1 (b) Session 2

(c) Session 3 (d) Session 4

(e) Session 5

Figure 4: Asset prices and fundamental values per period for treatment 3N in the second
market.
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(a) Session 1 (b) Session 2

(c) Session 3 (d) Session 4

(e) Session 5

Figure 5: Asset prices and fundamental values per period for treatment 2Z in the second
market.
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(a) Session 1

I

(b) Session 2

(c) Session 3 (d) Session 4

(e) Session 5

Figure 6: Asset prices and fundamental values per period for treatment 3Z in the second
market.
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Appendix B: Market level data

Table 13: Price Amplitude A, B and C assets

A B C
Market 2Z 3Z 2N 3N 2Z 3Z 2N 3N 3Z 3N
I 0.10 0.50 1.00 0.30 0.14 0.56 1.28 0.25 0.13 0.71
II 0.70 0.17 0.96 0.25 0.61 0.61 0.64 0.19 0.21 0.36
III 0.10 0.30 1.00 4.05 0.17 0.34 0.83 0.06 0.42 0.36
IV 2.00 4.35 2.20 0.10 1.17 3.03 1.28 0.49 0.29 0.29
V 0.20 0.90 9.50 0.85 0.17 0.81 1.72 1.39 0.70 0.89
Mean 0.62 1.25 2.93 1.11 0.45 1.07 1.15 0.48 0.35 0.52
Note: Price Amplitude is measured as PA-FV := [max(Pi − FVi)−min(Pi − FVi)]/FV1

Table 14: Volatility A, B and C assets

A B C
Market 2Z 3Z 2N 3N 2Z 3Z 2N 3N 3Z 3N
I 0.40 1.93 3.62 1.03 2.30 2.47 8.96 0.88 2.07 7.27
II 2.58 0.52 3.49 1.01 3.08 1.85 4.22 0.79 1.45 2.99
III 0.45 0.89 3.23 12.25 1.53 0.63 5.27 0.58 2.26 3.12
IV 6.10 14.84 6.65 0.52 8.48 19.94 7.60 3.09 4.01 2.93
V 0.63 2.48 26.94 2.66 2.87 3.67 9.98 5.93 8.49 10.66
Mean 2.03 4.13 8.79 3.49 3.65 5.71 7.21 2.25 3.66 5.40

Table 15: RAD A, B and C assets

A B B/A C
Market 2Z 3Z 2N 3N 2Z 3Z 2N 3N 2Z 3Z 2N 3N 3Z 3N
I 0.06 0.24 0.63 1.09 0.04 0.27 0.42 0.79 0.06 0.37 0.16 0.13 0.09 1.01
II 0.29 0.11 0.81 0.14 0.61 0.52 0.19 0.17 0.42 0.46 0.36 0.06 0.08 0.30
III 0.24 0.21 0.79 0.46 0.08 0.24 0.34 0.09 0.17 0.09 0.31 0.09 0.51 0.30
IV 1.29 2.52 2.23 .06 0.88 2.09 1.41 0.28 0.14 0.38 0.25 0.22 0.10 0.10
V 0.07 0.41 1.90 0.26 0.07 1.29 0.66 0.46 0.04 0.74 -0.81 0.24 2.16 0.65
Mean 0.39 0.70 1.27 0.40 0.34 0.88 0.60 0.36 0.17 0.41 0.30 0.15 0.59 0.47

Note: RAD-FV := 1
T

∑T
i=1 |Pi/FVi − 1| and RAD-B/A := 1

T

∑T
i=1 |

PB
i /FV B

i

PA
i /FV A

i
− 1|
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Table 16: RD A, B and C assets

A B C
Market 2Z 3Z 2N 3N 2Z 3Z 2N 3N 3Z 3N
I 0.06 0.24 0.63 1.09 0.01 0.19 0.37 0.78 -0.09 1.01
II 0.29 0.11 0.81 0.13 0.61 0.52 0.11 0.17 0.00 0.30
III 0.24 0.21 0.79 0.43 0.08 0.24 0.22 0.09 0.51 0.30
IV 1.29 2.47 2.23 0.06 0.88 2.09 1.41 0.28 0.03 0.09
V 0.05 0.41 1.63 0.26 0.04 1.29 0.66 0.44 2.16 0.65
Mean 0.39 0.69 1.21 0.39 0.32 0.87 0.55 0.35 0.52 0.47

Note: RD-FV := 1
T

∑T
i=1 Pi/FVi − 1

Table 17: RAD Total Assets

Market 2Z 3Z 2N 3N
I 0.05 0.19 0.62 0.92
II 0.42 0.19 0.53 0.20
III 0.11 0.28 0.55 0.51
IV 1.06 1.62 1.84 0.15
V 0.07 1.42 1.01 0.48
Mean 0.34 0.74 0.91 0.45

Table 18: Turnover A, B and C assets

A B C
Market 2Z 3Z 2N 3N 2Z 3Z 2N 3N 3Z 3N
I 4.15 3.43 1.97 1.47 2.12 1.77 0.10 1.47 1.63 0.60
II 0.93 0.70 0.97 1.13 1.00 0.40 0.83 0.73 0.47 1.00
III 0.30 1.60 1.63 1.27 0.77 1.70 1.57 0.30 1.07 0.83
IV 1.27 1.23 0.97 137 1.12 0.80 0.77 1.67 0.33 1.47
V 0.73 0.40 0.72 0.47 0.95 0.63 0.75 1.37 0.63 0.60
Mean 1.48 1.48 1.25 1.14 1.19 1.06 0.99 1.11 0.83 0.90
Note: Turnover is measured as total assets transacted divided by the total supply.

32



Table 19: C - NAV

Amplitude RAD RD
Market 3Z 3N 3Z 3N 3Z 3N
I 0.03 1.10 0.21 0.11 -0.20 0.04
II 0.10 0.40 0.20 0.11 -0.19 0.09
III 0.22 0.40 0.26 0.20 0.26 0.19
IV 0.61 0.07 0.09 0.09 -0.09 -0.09
V 1.14 1.88 0.69 0.43 0.69 0.26
Mean 0.36 0.79 0.29 0.19 0.09 0.10
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Appendix C: Risk elicitation responses

We elicit risk attitudes following the protocol of Crosetto and Filippin (2013) imple-

mented in oTree (Holzmeister and Pfurtscheller, 2016). The median boxes collected

in the treatments 2Z, 3Z, 2N , and 3N are 35, 40, 35 and 36, respectively. Using the

Wilcoxon test, we cannot reject that the distribution of boxes is equal across treat-

ments. Figure 7 shows the frequency of boxes collected in the two treatments.

(a) treatment 2N (b) treatment 3N

(c) treatment 2Z (d) treatment 3Z

Figure 7: Histogram of the risk elicitation task across treatments.
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