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Diego Zuñiga, and seminar participants at the California Macroeconomics Conference at Clairmont McKenna College,
European University Institute, Einaudi Institute for Economics and Finance, Stanford, UC Davis, UC Irvine, UCLA, Ohio
State, UC Riverside, UC Santa Cruz, University of Queensland, Royal Bank of Australia, London School of Economics.
Anthony Brassil and Walker Ray provided us with excellent critical discussions. Bigio thanks the National Science Foun-
dation (NSF award number: 1851752) for its support.
†Department of Economics, University of California, Los Angeles and NBER, email: sbigio@econ.ucla.edu.
‡Stanford Business School and NBER, email: sannikov@gmail.com.



1 Introduction

In modern economies, MP operates through the provision of reserves and a corridor of policy rates.1

A popular view among academics is that these tools implement a desired nominal interest rate,
which grants control over inflation, and this is ultimately what matters for MP (Woodford, 1998).
A bank-centric view has it that these tools influence bank credit and spreads, and thus, impact real
activity through their influence on the financial system (Bernanke and Blinder, 1988, 1992). Although
this view is widely held by practitioners, and has strong empirical support (Kashyap and Stein, 2000;
Drechsler et al., 2017), its theoretical foundations are still being laid out. This paper presents an
incomplete-markets economy where credit is intermediated by banks that hold reserves to manage
liquidity. MP is implemented through a corridor system and open market operations (OMO). The
paper articulates how these tools affect credit, monetary balances, borrowing and lending rates,
inflation, and output, in the context of an incomplete-markets economy.

In the environment, operating a corridor system grants MP enough tools to implement inflation and
manage credit spreads as independent targets. Whereas the control over inflation relates to well-
traveled transmission mechanisms, the control over credit spreads is a notion of the credit channel.2

This feature allows for the positive analysis of the credit channel within an incomplete-markets econ-
omy. Studying the credit channel in an incomplete-markets economy is important. During booms,
policy circles debate whether MP is sowing the seeds of crises, but during busts, that it is akin to pushing
on a string. Should MP tighten credit during booms, but stimulate it during busts is at the core of
historical and contemporary policy debates (Bagehot, 1873; Stein, 2018). The normative insight of the
paper is that the active management of credit spreads is important to reduce productive inefficien-
cies and mitigate the extent of crises, but this power comes at the expense of repressing credit, which
hurts insurance. This message is particularly pertinent now that countries are considering replacing
corridor systems with floor systems. For this paper, this change means surrendering an important
policy tool.

We build this case through the study of a canonical continuous-time incomplete-markets environ-
ment. This is an endowment economy where households face idiosyncratic risk, as in Huggett (1993).
To speak about productive efficiency though, we let households choose between a safe endowment

1A corridor system is a framework/procedure for implementing monetary policy whereby a central bank can
use/combine various tools to steer the market interest rate toward a chosen target. Two important tools are the dis-
count rate and the interest rate on reserves. The discount rate is the rate at which a central bank lends reserves, against
collateral, to banks that are below their reserve requirement. The discount rate tends to be the upper bound or ceiling
for the market interest rate. The interest rate on reserves is the rate at which banks are remunerated for holding reserve
balances at the central bank. It tends to be the lower bound or floor for the market interest rate for interbank loans. These
two rates form a “corridor” that will contain the market interest rate. Open market operations are then used as needed
to change the supply of reserve balances so that the market interest rate is as close as possible to the target.

2A narrative description of different transmission channels of MP is found in Ben S. Bernanke (1995)’s “Inside the
Black box.” Kashyap and Stein (2000) presented evidence on the credit channel by exploiting differences in the cross
section of liquidity ratios across banks. Bindseil (2014) describes the modern implementation of MP through banks
across countries.
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process and a risky, but more profitable, process. Here, it is never efficient to choose the safe endow-
ment because risk is only idiosyncratic, but the market incompleteness can lead to that inefficient
choice. Although stylized, the mechanism captures the idea that financial stress leads to inefficient
choices. Mechanically, it produces a map from the fraction of debt-constrained agents to output.

Credit is nominal and intermediated by a fringe of competitive banks. In addition to deposits and
loans, banks hold reserves to manage liquidity. The power to influence spreads stems from an insti-
tutional feature. Whereas loans are permanently held by the issuer bank, deposits circulate. Thus,
banks use reserves to settle deposit transfers. A potential shortage of reserves by some banks opens
the door for interbank credit. The interbank market, however, operates with matching frictions (á
la Ashcraft and Duffie, 2007; Afonso and Lagos, 2015). As a result, not all reserves deficits can be
tapped with private credit and some deficits are forced to be borrow at a penalty rate set by MP. The
overall quantity of reserves and the corridor rates set by MP translate into an intermediation cost.
Ultimately, banks are a pass-through from a policy corridor spread to actual credit spreads.

A similar implementation of the credit channel already appears in work by Bianchi and Bigio (2017a),
and in related works by Piazzesi and Schneider (2016); De Fiore et al. (2018); Chen et al. (2017);
Drechsler et al. (2017). Here, bank decisions are simplified, and the pass-through from policy rates
to spreads is immediate. The emphasis is not on the banking sector, but on the effects in an incom-
plete market economy. The latter delivers a broad set of implications for changes in credit spreads.
Notably, the real effects of MP are driven by the precautionary motive. Because MP indirectly affects
the distribution of wealth, it influences the mass of agents that choose the inefficient endowment, and
this impacts productive efficiency. Because this mechanism is independent of inflation, the model
connects transparently with other transmission mechanisms.3

The paper first delves into the details of implementation. It presents closed-form expressions for
nominal deposits and loans interests. These nominal rates carry different premia over the rate on
reserves. The difference between these premia is a real credit spread, which, in turn, is expressed
as a function of a liquidity ratio and the policy corridor spread set by MP. The implementation is
explicit about a reserve satiation regime (a floor system), and a zero lower bound on deposit rates
(DZLB). Away from either regime, OMO and/or reductions in policy corridor spread, implement a
reduction in the credit spread. Another tool, the interest on reserves, grants direct control over in-
flation, without affecting on the spread. In a satiation regime, all rates equal the interest on reserves,
so MP can control inflation, but not spreads.4 In a DZLB, OMO are irrelevant, but reductions in the
interest on reserves can produce a joint movement in credit spreads and inflation, a phenomenon

3In the language of Achdou et al. (2019), a borrower-lender spread is dubbed “soft-constraint.” The mechanics of the
credit-channel can thus be interpreted as the ability of MP to affect soft constraints in an incomplete markets economy.

4Different from Woodford (1998), the control over nominal rates is achieved without OMO, but by setting the interest
on reserves. Inflation changes are neutral, but we are explicit that with additional frictions, a control over nominal rates
can produce effects through the interest rate, inflation cost, and debt deflation channels, all of which can be thought
of as operating independently. In each case, the model would need an additional ingredient: nominal rigidities, cash
transactions, and long-term debt, respectively.
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that has been recently identified in the date (Heider et al., 2019; Eggertsson et al., 2019).

After the implementation, the paper presents an analysis of the real effects of MP. The economy can
be solved in real terms; deposit, money and loans markets collapse into a single market for real
claims. In turn, clearing in the real claims market is influenced by a spread target. As a result,
through its control over spreads, MP influences the real rates at which real wealth clears, both in
the short and the long run. Since these rates impact the mass of agents in debt, they also impact
output at any horizon. The effects of spreads can be decomposed into a direct and an indirect fiscal
effect. The direct effect is the induced reduction in the real deposit rate and the increase in the real
loans rate. Because savers are more interest rate sensitive than borrowers, to satisfy market clearing,
the loans rate reacts more to MP than the deposit rate (as found empirically by Drechsler et al.,
2017). The fiscal effect emerges because the operations that engineer a spread generate income to
a central bank, which then has to redistribute it. In an incomplete market economy, this produces
non-Ricardian effects. This fiscal indirect effect is, nevertheless, swamped by the direct effect.

Temporary and permanent changes in spreads have different effects. A permanent increase in the
spread has non-monotone effect on output. Because spreads primordially impact the loans rate, the
effect on efficiency is driven by the impact on borrowers. With higher loans rates, borrowers have
stronger incentives to repay debts, on the one hand. On the other hand, debt rollover is greater with
higher rates. As a result, mild increases in spreads concentrate the distribution of wealth toward the
middle as borrowers repay their debts faster. Since fewer agents hit their debt limits, this promotes
efficiency. Further increases in spreads, makes it harder to repay debt, to the point that borrowers
give up. This effect fans out the distribution of debt, and more agents hit their debt limits. This
triggers more inefficient behavior. When the effect is temporary, the debt accumulation effect is
stronger. Therefore, a greater mass of agents reaches its debt limits, and efficiency falls, while spreads
are raised temporarily.

The model also has implications for the statistical relationship between monetary aggregates and
inflation. Whereas the model is entirely consistent with the quantity theory of money, it can also
produce a liquidity effect. For example, a temporary OMO can produce a reduction in inflation. The
effect of the operation is a reduction in spreads and an increase in output, which increases the real
deposit rate. If MP keeps the rate on reserves constant, the monetary expansion is deflationary.

Turning to the normative analysis, the optimal spread is governed by a trade-off. The paper ends
with a study of the problem of an egalitarian planner, following the approaches in Nuno and Moll
(2018) and Nuno and Thomas (2017). The planner chooses a path for spreads, in order to achieve a
fixed net-asset position of the central bank. For a lower fixed net-asset position, the optimal steady-
state spread is positive. The optimal spread balances distributional considerations against efficiency
considerations. In terms of redistribution: wider spreads hurt everyone, especially the very poor
and very rich who care the most about rates. Primarily, the indirect fiscal effect helps the poor, so
the net balance is an improvement of the middle class. In terms of efficiency, wider spreads trans-

3



late into worse ex-ante insurance, but improve output efficiency, which through general equilibrium
forces, benefits everyone. The case for positive steady-state spreads is enhanced when the endow-
ment choice spills over to other households’ income—for example, with a labor demand externality.
Finally, to analyze the benefits of a countercyclical spread policy, the paper studies an aggregate
credit crunch episode. A numerical example illustrates the advantages of a policy that features pos-
itive spreads during booms, but eliminates the spread during a crunch. This is implemented with a
corridor system that satiates banks with reserves during crises, but runs through a standard corridor
system in normal times.

The organization is as follows. We connect with the literature, in Section 2. Section 3 lays out the core
model. Section 4 describes the determination of credit, interest and prices and the implementation of
MP. Section 5 presents a study on MP regimes. Section 6 studies the optimal use of spreads. Section
7 concludes.

2 Connection with the Literature

Our paper’s title emphasizes the connection with the two most common frameworks for MP anal-
ysis. One approach emphasizes the connection between money and prices and the other between
interest and prices. In the first approach, money plays a transactions role (Lucas and Stokey, 1987;
Lagos and Wright, 2005) and there is a tight connection between prices and the quantity of (outside)
money. The real rate is fixed, so any real effects follow because inflation is a transactions tax. The
second approach is the new-Keynesian approach where the important connection is between interest
and prices. Under that framework, MP controls real rates directly because prices are rigid. There is
no role for monetary balances. Neither framework emphasizes the effect of MP on credit, at least not
directly. The model here establishes a meaningful connection between intermediation, money, interest
and prices. Because the credit channel here can be studied independently of the control of inflation,
it only complements the inflation-tax or interest-rate channels in those approaches.

Since 2008, there’s been an increased interest in how MP interacts with credit markets. That gap is
being filled, and incomplete market models are a natural starting point.5 In fact, the first generation
of heterogeneous agent models, Lucas (1980) and Bewley (1983), were about MP and were not inter-

5Models that feature credit must provide a motive for credit. One way is to endow agents with different technologies
as in Bernanke and Gertler (1989) and the other is make them subject to idiosyncratic risk. To establish a connection
between MP and credit markets, models must have features by which MP impacts credits. A first such model is Bernanke
et al. (1999), which incorporated nominal rigidities into the two-sector economy of Bernanke and Gertler (1989). In
Bernanke et al. (1999), MP was capable of moving real rates because of nominal rigidities. In that model, and models
that follow it, Christiano et al. (2009), credit imperfections amplify the effects of the interest rate channel—through the
financial accelerator. However, the effect on credit spreads is not an independent instrument, as it is here.
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ested in heterogeneity per se. However, neither model established how MP affects credit.6 Credit, of
course, has a tradition in heterogeneous agent models (see the early work of Huggett, 1993; Aiyagari,
1994), but the literature evolved abstracting away from its initial interest in MP.

A recent generation of works has introduced nominal rigidities into heterogeneous agent models.
To replicate the credit crunch of 2008, Guerrieri and Lorenzoni (2017) studies the tightening of bor-
rowing limits in a Bewley economy with nominal rigidities.7 These models are appealing because,
as an artifact of heterogeneity, MP responses depend on the distribution of wealth and borrowing
constraints. Auclert (2016) decomposes the response to policy changes into different forces that
appear in that class of models. Kaplan et al. (2016) introduce illiquid assets, which produce high-
income elasticities among rich agents, something that changes the nature of propagation in the new-
Keynesian model.8 In that generation of works, MP operates exclusively through the interest rate
channel of the new-Keynesian model. Instead, here MP operates through the credit channel by af-
fecting spreads.

Another set of recent works in the money and prices tradition, allows for credit in models where
money plays a transactions role. When credit (inside money) is an imperfect substitute for outside
money, the inflation-tax channel spills over to the supply of credit (see for example Berentsen et al.,
2007; Williamson, 2012; Gu et al., 2015). Rocheteau et al. (2016) bring the insights of money-search
transactions into a heterogeneous agent environment. The model here abstracts from the inflation-
tax channels, but can naturally be adapted to feature transactions, following the methodology in
Rocheteau et al. (2016).

By introducing long-term debt, another set of works, Gomes et al. (2016) for example, recognizes
that MP affects the distribution of wealth through debt deflation. Nuno and Thomas (2017) take
that insight to a heterogeneous agent environment and study optimal MP in a heterogeneous agent
environment with nominal rigidities and possible debt deflation.

The credit channel in this paper is not new. The implementation is inherited from Bianchi and Bigio
(2017a). That paper articulates a notion of the credit channel and how MP functions through cor-
ridor rates. In contrast to this paper, that paper presents a rich description of bank decisions and
studies shocks that impact the interbank market, whereas the nonfinancial side is static. In that pa-
per, any dynamic effects of MP follow from the evolution of bank net worth. Here, the banking side
is simplified, but the dynamics depend on the evolution of household wealth. Piazzesi and Schnei-

6In both models, there was a constant supply of outside money. Lucas (1980) studied a stable price equilibrium.
Bewley (1983) focused on the case where money earned an interest rate financed with lump sum taxes, so the interest
rate had redistributive consequences because it was funded with lump sum transfers. Ljungqvist and Sargent (2012,
Chapter 18) describes how policies in Bewley (1983) models are akin to changes in borrowing limits in economies with
pure credit. Lippi et al. (2015) introduce aggregate shocks into a pure currency economy, and study the optimal helicopter
drops.

7Following up on that work, McKay et al. (2015) compare the effects of forward-guidance policies in representative
agent new-Keynesian models and incomplete markets economies.

8Greenwald (2016) and Wong (2016) study interest rate sensitivities to mortgage refinancing options.
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der (2016) also feature a similar implementation of MP. The focus of that paper is on the connection
between interbank settlements and asset prices. Our model also shares common elements with and
Brunnermeier and Sannikov (2012). In Brunnermeier and Sannikov (2012), agents face undiversified
investment risk, so a demand for currency emerges due to market incompleteness.9

The focus on incomplete market economies leaves room for normative analysis. The methodol-
ogy employed in the normative study here follows directly from Nuno and Thomas (2017), which
together with Bhandari et al. (2019), are the first papers to study optimal MP under incomplete mar-
kets. In both works, MP balances aggregate demand stabilization with insurance considerations.
Instead, here the problem is to design the optimal management of the credit channel, weighing fi-
nancial stability with insurance considerations. Seeing financial stability as a crucial element of MP
is discussed formally in Stein (2012), for example. The normative message, that MP should actively
target credit spreads, is controversial. Curdia and Woodford (2016) and Arce et al. (2019), for exam-
ple, study whether the control over spreads is a useful tool in economies with nominal rigidities.
Their answer is no, and that suggests that there are no costs from switching to a floor system. In-
stead, we take the sides of Stein (2012) and Kashyap and Stein (2012), and the control of spreads is
crucial for financial stability. A corridor system is a way to achieve this stability, and moving to a
floor system is a mistake.

3 Environment

3.1 From Policy Spreads to Real Credit Spreads

In the model that follows, we embed financial intermediation (by banks) in an environment where
money holdings, prices and rates are determined in general equilibrium. In this introductory section,
we present the banking block. We derive a simple formula that maps a MP corridor spread into a real
intermediation spread for given monetary aggregates. Later, we show how real spreads determine
monetary aggregates, and thus, how the CB has the ability to control real spreads.

Banks. There is free entry and perfect competition among banks.10 We consider the static portfolio
decision of a bank within an interval of time of length ∆—which we later take to zero. We assume
banks are owned by households. Because there are no aggregate shocks during the ∆ period, the

9Other related work includes Silva (2016), that focuses on open market operations and the effects of expected infla-
tion. In Buera and Nicolinni (2016), the identity of borrowers and lenders is determined by a threshold interest rate.
Furthermore, there is an explicit role for outside money because a transactions instruments and MP have real effects
because they affect the stock of risk-free bonds which, in turn, affects the threshold identity of borrowers and lenders.

10Banks operate without equity. The introduction of a role for bank equity (via restrictions like capital requirements
or limited participation) would produce bank profits and would make equity an aggregate state variable. For simplicity,
we abstract away from this dimension in this paper. See den Heuvel (2002) for an early model of bank equity capital and
monetary policy. Recent work by Wang (2019) studies the passthrough of MP as function of bank equity.
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bank’s objective is simply to maximize expected profits. Competition leads to zero expected bank
profits.

At the start of the ∆ interval, banks choose their supply nominal deposits, a, nominal loans, l, and
reserve holdings, m. The aggregate supply of deposits and loans, and holdings of reserves are de-
noted by Ab, Lb, and Mb, respectively. Deposits, loans, and reserves earn corresponding rates ia, il,
and im. Whereas the loan and deposit rates are equilibrium objects, im is a policy instrument.

After the portfolio decision is made, banks face random payment shocks, as in Bianchi and Bigio
(2017a); Piazzesi and Schneider (2016). In particular, within the interval, payment shocks take one
of two values, ω ∈ {−δ,+δ} and occur with equal probability and are i.i.d across banks. If ω = δ, a
bank receives δa deposits and is credited δa reserves from other banks. If ω = −δ, the bank transfers
δa deposits and δa is debited to other banks. Naturally, if a bank receives a deposit, it absorbs a
liability of another bank. If it loses a deposit, another bank absorbs its liability. As a result of the
transfer of liabilities, assets need to be transferred to settle the transfer. A key assumption is that
within the time ∆ interval, loans are illiquid in the sense that they must stay with banks. Therefore,
net deposit flows must be settled with reserves which are cleared at the CB. After the payment shock
to a bank, its net reserve balance at the CB is:

b = m− $a + ωa.

The coefficient, $ ∈ [0, 1] represents a constant liquidity requirement coefficient.11 Clearly, since ω is
random, the reserve balance is not entirely under the control of a bank. For that reason, it is possible
that the bank ends with a negative balance, b < 0. In that case, the bank with a negative balance must
close this gap, either by borrowing reserves from banks with a surplus or from the CB. Figure A.1 in
the Appendix presents the corresponding T-accounts for the scenarios that can emerge within the ∆
interval. For the rest of the paper, we work with policies that guarantee aggregate excess liquidity:
M− $A > 0.

Interbank Market. After the reserve positions are determined, an interbank market opens and banks
borrow and lend reserves to each other. For a balance b, a fraction of those balances, are lent (or
borrowed, if negative) in the interbank market. In particular, if a bank has a surplus b, it lends the
fraction ψ+ to other banks and, hence, b− ψ+b remains idle in a CB account. If the bank has a deficit
of −b, it borrows only the fraction ψ− from other banks, and the remainder deficit − (b− ψ−b) is
borrowed from the CB at a discount window rate idw. The discount rate is also a policy choice.
By convention, borrowed reserves from the CB earn the interest on reserves im. Thus, the effective
borrowing cost is the policy spread ι ≡ idw − im. The trading probabilities {ψ+, ψ−} are meant to

11We can interpret $ as reserve requirements, imposed by the CB or other forms of regulation, or self imposed by the
bank for cash management purposes. Notice that we model the balance in terms of the pre-transfer deposits. If we make
this a function of after-payment balances, the balance is defined as b = m + ωa − $ (1 + ω) a. There are no material
differences.
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capture trading frictions in the interbank market.

Integrating b across banks yields expressions for aggregate surplus and deficit positions:

B− ≡ −
ˆ 0

−∞
bdG (b) = max

{
(δ + $) Ab −Mb, 0

}
and B+ ≡

ˆ ∞

0
bdG (b) = Mb + (δ− $) Ab,

where G is a measure of reserve balances induced by individual bank decisions. These expressions
follow directly from the independence assumption on ω. Clearing in the interbank market requires
that the total amount of reserve balances lent is equal to the amount borrowed

ψ−B− = ψ+B+. (1)

Trading frictions, a well-documented empirical feature (see Ashcraft and Duffie, 2007; Afonso and
Lagos, 2014), are key in the model to have a pass-through from policy to credit spreads. There are
many ways to induce trading frictions. Here, we assume that the interbank market is an over-the-
counter (OTC) market in the spirit of Afonso and Lagos (2015), but we adopt the formulation in
Bianchi and Bigio (2017b) that renders analytic expressions. The interbank market works as follows:
The market operates in a sequence of n trading rounds. Given the initial positions

{
B−0 , B+

0
}
≡

{B−, B+}, surplus and deficit positions are matched randomly. When a match is formed, the two
banks agree on an interbank market rate for the transaction. The remaining of surplus and deficit
positions define an new balance,

{
B−1 , B+

1

}
. New matches are formed, and a new interbank market

rate emerges. The process is repeated n times, defining a sequence
{

B−j , B+
j

}
j∈1:n

until a final round

is reached. Whatever deficit remains is then borrowed from the CB at a cost given by ι.

The interbank market rate at a given trading round is determined by a bargaining problem in which
banks take into consideration the matching probabilities and trading terms of future rounds. This
produces an endogenous average interbank rate, ı̄ f . Given trading probabilities, the policy rates and
the average rate i f

, the average rates earned on negative and positive positions are respectively:

χ− = ψ−
(

i f − im
)
+ (1− ψ−) · ι, and χ+ = ψ+

(
i f − im

)
.

Banks take into account these costs and benefits when forming their portfolios. To express {χ−, χ+},
Bianchi and Bigio (2017b) assume that matches are formed on a per-position basis and according
to a Leontief matching technology, λ

n min
{

B−j , B+
j

}
, where λ captures the trading efficiency. Let

θ = B−/B+ ≤ 1 define an initial interbank “market tightness.” In the limit n → ∞, trading prob-
abilities across all trading rounds, {ψ+, ψ−}, converge to ψ+ (θ) = θ (1− exp (−λ)) and ψ− (θ) =

1− exp (−λ), two expressions consistent with market clearing. Then, the average interbank market
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rate i f
that results when both bargaining weights are equal is

i f
(θ, im, ι) ≡ im + ι ·

(
(θ + (1− θ) exp (λ))1/2 − 1

)
(1− θ) (exp (λ)− 1)

. (2)

The corresponding expressions for the average cost functions are:

χ+ (θ, ι) = ι ·

(
θ (θ + (1− θ) exp (λ))1/2 − θ

)
(1− θ) exp (λ)

and, (3)

χ− (θ, ι) = ι ·

(
(θ + (1− θ) exp (λ))1/2 − θ

)
(1− θ) exp (λ)

.

These coefficients are independent of im and only depend on the total gains from trade, ι = idw − im.
Of course, im affects the direct return of holding reserves. If the CB has the ability to control χ, it will
have control over credit spreads.

The Bank Problem. We turn to the banks optimal portfolio choice. The average benefit (cost) of an
excess (deficit) reserve balance, b, is:

χ(b; θ, ι) =

χ− (θ, ι) b if b ≤ 0

χ+ (θ, ι) b if b > 0
. (4)

We label χ the liquidity yield function. With this function, we are ready to present the bank’s problem:

Problem 1 [Bank’s Problem] A bank maximizes its instantaneous expected profits:

πb = max
{lb,mb,ab}∈R3

+

(
il lb + immb − iaab + E [χ (b; θ, ι)]

)
subject to the budget constraint l + m = a and the law of motion for reserve balances:

b (a, m) =

{
m + (δ− $) a with probability 1/2
m− (δ + $) a with probability 1/2

.

At the individual level, the bank objective is linear. As in any model with linear firms, banks earn
zero (expected) profits in equilibrium. However, the kink in χ(b) introduces concavity (at the indi-
vidual asset level) that is necessary to pin down the portfolio. This feature is akin to what occurs with
competitive firms that operate a Cobb-Douglas production technology with two inputs—whereas
firms earn zero profits and the individual scale is indeterminate, the ratio of inputs and factor prices
is determined in equilibrium.

Equilibrium Credit Spreads. Next, we explain how a ratio of money aggregates determines the
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equilibrium loan and deposit rates. To that end, we define the aggregate liquidity ratio as Λ ≡ Mb/Ab.
The interbank market tightness can be in terms of this ratio:

θ (Λ) ≡ max
{

δ + $−Λ
δ− $ + Λ

, 0
}

. (5)

The tightness θ is decreasing in the liquidity ratio because with more liquidity, there is less need to
borrow. The function is also bounded: θ = 1 when Λ = $, and θ = 0 for any Λ = $ + δ. If we
substitute (5) into (4), we can express χ as a function of the policy corridor, ι, and the liquidity ratio,
Λ, and do not depend on the level of

{
Mb, Ab}.

The linearity of the bank’s problem, coupled with a free-entry condition, yield corresponding equi-
librium nominal rates and a real spread:

Proposition 1 [Nominal Rates and Real Spread] Consider an aggregate liquidity ratio Λ . Then, for given
{im , ι}, any equilibrium with finite loans and deposits must feature the following loans and deposit rates:

il ≡ im +
1
2
[
χ+ (θ (Λ) , ι) + χ− (θ (Λ) , ι)

]
︸ ︷︷ ︸

liquidity value of reserves

(6)

ia ≡ im +
1
2
[
(1− $ + δ) χ+ (θ (Λ) , ι) + (1− $− δ) χ− (θ (Λ) , ι)

]
︸ ︷︷ ︸

liquidity value of reserves-liquidity cost of deposits

. (7)

The equilibrium credit spread, il − ia, is given by,

il − ia =
δ

2
(
χ− − χ+

)
+

$

2
(
χ+ + χ−

)
=

δ

2
(
χ− − χ+

)
+

$

2

(
il − im

)
· . (8)

Furthermore, if Λ ≥ $ + δ, then, il = ia = im and if Λ = $, then, il = ia = im + 1
2 ι. In all cases, banks earn

zero expected profits.

Proposition 1 establishes that the interest on reserves is a base rate for both the nominal borrowing
and lending rates. The credit spread is positive when Λ < $ + δ is positive. Both rates carry a dif-
ferent liquidity premium relative to the rate on reserves. To understand this, consider first the loans
liquidity premium. Loans earn a premium over reserves because, on the margin, an additional re-
serve earns χ+ if the bank is in surplus or spares the bank χ− if the bank is in deficit—each scenario
occurs with equal probability. The deposit liquidity premium reflects that an additional deposit pro-
duces a marginal increase in reserve balances δ or decrease−δ if the balance is negative. The deposit
premium is thus the sum of the expected marginal increase in the interbank payments produced by
additional reserves minus the that of a marginal deposit. The spread (8) directly follows from sub-
tracting the deposit rate from the loans rate. The following lemma shows a necessary and sufficient
condition that for a large ρ/δ ratio, the spread is always decreasing in the liquidity ratio Λ:
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(b) Equilibrium spread given ι and Λ

Figure 1: Interest Rates and Spread as Functions of Λ
Note: Panel (a) plots the nominal deposit, loan, average interbank rate, and policy rates as functions of liquidity yield and spread as functions of
liquidity ratio Λ. Panel (b) shows the components of the liquidity yield and the equilibrium spread. The figure is constructed using parameters from
the calibration presented in section 5.

Lemma 1 The spread is decreasing in Λ ∈ [ρ, ρ + δ]) if and only if,

ρ/δ ≥ (1 + exp (−λ/2)) / (3− exp (−λ/2)) . (9)

We work with the assumption that parameters satisfy (9) for the rest of this paper. Figure 1 depicts
the formulas in Proposition 1 for nominal rates and the spread as functions of Λ. The figure summa-
rizes the implementation we have discussed thus far: The left panel plots

{
il, i f

, ia
}

as functions of

(6) and (7) for fixed policy rates {ι, im} . Both rates lie in between im and idw.12 Both rates feature a
spread when Λ ∈ ($, $ + δ). We also see how the credit spread decreases with the liquidity ratio.

The next section embeds bank intermediation into the incomplete markets economy, in the spirit
of the early monetary model of Bewley (1983). Before we proceed, we discuss the assumptions
encountered so far.

Digression: discount window loans. The discount window rate and the size of payment shocks
stand in for features missing from the model. In practice, the cost of reserve shortages can be much
larger than the discount window rate set by the CB. One reason for this is that discount window loans
require high quality collateral. If collateral is scarce and a bank cannot close its position, the bank
that cannot close a negative balance can be intervened (for a related bank model with collateralized
discount loans see De Fiore et al., 2018). Another issue is that discount window loans can bear a
stigma (as in Ennis and Weinberg, 2013). This is because discount window loans are uncollateralized
in the model and the discount window rate may be too low compared to the actual cost of a reserve
shortage. For this reason, the discount window rate in the model must be treated as a much larger
cost than the discount rate seen in the data.

12Credit risk or illiquidity is enough to produce rates above those bands.
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The withdrawal shock in the model is i.i.d. In the data, payment shocks are likely to be persistent.
Thus, to precisely capture the cost of withdrawals, we must increase the size of shocks to compensate
for the lack of persistence in the withdrawal shock. Adding persistence makes the model more
realistic, but this comes at the expense of tractability. The value of $ can be interpreted literally as
a reserve requirement, but since the introduction of sweep accounts, the effective requirement is
small. However, current bank regulation imposes minimum liquid asset holdings. In addition, if
banks may self-impose minimum liquidity holdings to avoid runs. These features are left out of the
model.

3.2 General Equilibrium

We now embed financial intermediation into the general equilibrium model. We take a continuous
time limit of the bank’s problem. Within a time interval of size ∆, average profits are ∆ ·πb—all rates
are scaled by ∆ and the objective is linear. Since bank policy functions are independent of ∆, the
equilibrium rates of Proposition 1 also scale with ∆, even as ∆ → 0. Next, intermediation, into the
continuous-time limit of the general equilibrium. To do so, we work with a ∆→ 0 limit.13

The nonfinancial sector of the economy features a measure-one continuum of heterogeneous house-
holds. From their perspective, time is indexed by some t ∈ [0, ∞). The price of the good in terms
of money is Pt. Banks intermediate between borrower and lender households, but since they make
zero profits, they are simple passthrough entities. The CB determines the policy corridor rates, con-
ducts open market operations and makes/collects (lump sum) transfers/taxes to/from households.
Households attempt to smooth idiosyncratic income shocks, via the insurance provided by the inter-
mediation sector. However, a social inefficiency arises when households hit their borrowing limits.

Notation. Individual-level variables are denoted with lowercase letters. Aggregate nominal state
variables are denoted with capital letters. Aggregate real variables are written in calligraphic font.
For example, ah

t will denote nominal household deposits, Ah
t the aggregate level of deposits, and Ah

t

real household deposits.

Households. Households face a consumption-saving problem. Household preferences are described
by:

E

[ˆ ∞

0
e−ρtU (ct) dt

]

where U (ct) ≡
(

c1−γ
t − 1

)
/ (1− γ) is their instantaneous utility.

13Note that the balance by the end of a time interval bt, is a random variable. If we were to track bt as a function of
time, this stochastic process would not be well defined—the sum of coin tosses in continuous time is not well defined.
However, treating bt+∆ as the single realization of a random variable in a single instance is a perfectly well defined object.

12



Households receive an flow of real income given by:

dwt = (y (u) + Tt) dt + σ(u)dZt.

Income is the sum of transfers Tt and an endowment income process. To generate endowment
income, households choose among two processes, u ∈ {L, H}, with L and H denoting the low
and high intensity processes, respectively. The choice of u is made every instant. By assumption,
y (H) > y (L)>0, but σ (H) > σ (L) = 0. The term dZt is noise associated with an idiosyncratic
Brownian motion process: households partially control that risk because u affects their risk expo-
sure σ (u). Naturally, the process trades risk for return.

All financial assets are nominal. Although all claims are nominal, the individual state variable is, st,
the stock of real financial claims. Households store wealth in bank deposits, ah

t , or currency, mh
t , and

borrow loans against banks, lh
t . By convention,

{
ah

t , mh
t , lh

t
}
≥ 0. The real rates of return on deposits

and liabilities are ra
t ≡ ia − Ṗt/Pt and rl

t ≡ il − Ṗt/Pt. Currency doesn’t earn nominal interest, and
thus, its real return is −Ṗt/Pt. The law of motion of real wealth follows

dst =

(
ra

t
ah

t
Pt
− Ṗt

Pt

mh
t

Pt
− rt

lh
t

Pt
− ct

)
dt + dwt (10)

and the balance-sheet identity:(
ah

t + mh
t

)
/Pt = st + lh

t /Pt.

From a household’s perspective, there is no distinction between holding deposits or currency beyond
their rates of return. Hence, currency is only held when the nominal deposit rate is zero, and both
assets yield the same return. This feature is introduced into the model only to articulate a DZLB as
an implementation constraint. Another observation is that households will never hold deposits and
loans if there’s a positive spread between them. Combining these insights, (10) can be written more
succinctly as:

dst = (rt (s) s− ct) dt + dwt where rt (s) ≡
{

ra
t if st > 0

rl
t if st ≤ 0

. (11)

There are two important assumptions. First, endowment risk cannot be diversified due to incom-
plete markets. In particular, households face a debt limit st ≥ s̄ where s̄ ≤ 0 is exogenous and
constant. Technically, this means that at s = s̄, it must be that dst ≥ 0. The second assumption is that
consumption is a function of current savings and the intensity choice, but cannot be contingent on
dwt. This is the continuous-time analogue to the assumption that consumption is chosen prior to the
arrival of an income shock in the discrete-time representation, and implies that households cannot
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perfectly control theirs savings.14 These two assumptions are important. Because the endowment
risk is only idiosyncratic, any choice u = L is a social waste induced by market incompleteness.
Households will be forced to make that wasteful choice when they reach their borrowing limits.
Since, households cannot borrow more at the debt limit, ctdt ≤ dwt when at s = s̄, but this can only
be guaranteed if ut = L at s = s̄.

The corresponding Hamilton-Jacobi-Bellman (HJB) equation of the household’s problem is:

Problem 2 [Household’s Problem] The household’s value and policy functions are the solutions to:

ρV (s, t) = max
{c} ≥ 0, u ∈ {L, H}

U (c) + Vs · (rt (s) s− c + (y (u) + Tt)) +
1
2

Vssσ
2(u) + V̇. (12)

subject to st ≥ s̄.

At each instant, there’s a distribution f (s, t) of real financial wealth across households. The law of
motion of this distribution satisfies a Kolmogorov-Forward Equation: Let c (s, t) , u (s, t) and mh (s, t)
be the solutions to the household’s problem. The drift of real wealth is

µ (s, t) ≡ rt (s)
(

s−mh (s, t) /Pt

)
− Ṗt/Pt ·mh (s, t) /Pt − c (s, t) + y (u (s, t)) + Tt.

The volatility of real wealth is σ2
s (s, t) ≡ σ2 (u (s, t)) . The path of the distribution of real wealth,

f (s, t), satisfies the following Kolmogorov-Forward equation:

∂

∂t
f (s, t) = − ∂

∂s
[µ (s, t) f (s, t)] +

1
2

∂2

∂s2

[
σ2

s (s, t) f (s, t)
]

. (13)

The wealth distribution f (s, t) is allowed to feature non-zero mass points—it can feature a Dirac
measure. Hence, the interpretation of this equation is in the generalized sense that is found in
Achdou et al. (2017).15 We can express output as an integral over the wealth distribution:

Yt = y (H)−
ˆ ∞

s̄
(y (H)− y (L))︸ ︷︷ ︸

Efficiency Loss

I[u(s,t)=L] f (s, t) ds.

Clearly, a positive mass of agents at the debt limit produces an output loss. Notice also that potential
output is y (H).

14In technical language, this means that consumption is a Markov process, that is, a determined by a function c (t, s)
that depends on time and savings. This is a different concept than adapted control, which define consumption as
c (t, s, ω) where ω is the probability event associated with the Zt. For a reference on this timing assumption see Ok-
sendal (2014, ch. 11).

15Achdou et al. (2017) also shows how to interpret the outcomes of a finite-difference computation scheme as mass
points.
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Central Bank. The CB has a nominal net asset position, Et, defined as:

Et ≡ L f
t −Mt.

The net-asset position is the difference between loans held by the CB, L f
t , and the CB liabilities, i.e.,

the monetary base, Mt. The monetary base is divided into the aggregate holdings of reserves by
banks Mb

t and the household’s currency holdings, M0t. The monetary base is always positive. The
CB can issue or purchase loans L f

t : when negative L f
t is understood to be a stock of government

bonds, when positive, it is understood to be the loan purchases of the CB.16 An OMO is a simultane-
ous increase or decrease in Mt and L f

t . Finally, the CB chooses Tt.

In addition to these operations, the CB sets the discount window rate idw
t at which banks can borrow

reserves and the interest on reserves, im
t , that we presented earlier.17 In the analysis, we think of im

t

and the corridor spread ιt = idw
t − im

t as independent instruments, so for example, when we study
changes in im

t holding fixed ιt, we are effectively moving both rates in a parallel shift.

The nominal income flow of the CB is:

π
f
t = il

tL
f
t − im

t (Mt −M0t) + ιt
(
1− ψ−t

)
B−t . (14)

The CB earns il
t on L f

t , and pays im
t on the portion of the money supply held as reserves. The third

term, ιt
(
1− ψ−t

)
B−t , is the income earned from discount window loans to banks. The net asset

position evolves according to

dEt = π
f
t dt− PtTtdt︸ ︷︷ ︸

undistributed income

= −
(

dMt − dL f
t

)
︸ ︷︷ ︸

unbacked transfers

.

The CB accumulates a nominal claim on the private sector as undistributed income. The net asset
position decreases with the difference between the monetary base and the loan purchases of the CB.
In real terms, the CB’s net asset position is Et ≡ Et/Pt and its loan holdings are L f

t ≡ L f
t /Pt.

Markets. Outside money is held as bank reserves or currency. The aggregate currency stock is

M0t ≡
ˆ ∞

s̄
mh

t (s) f (s, t) ds.

16There is no distinction between private and public loans. In fact, whenever L f
t < 0, an increase in L f

t is interpreted
as a conventional OMO. Instead, when L f

t > 0, an increase L f
t is an unconventional OMO. The assumption is that

government bonds are as illiquid as private loans from the point of view of banks.
17The CB faces a solvency restriction, idw

t − im
t ≥ 0, and also idw ≥ 0 . The spread idw

t − im
t ≥ 0 because a negative

corridor spread would enable banks to borrow from the discount window and lend back to the CB and create arbitrage
profits. If idw < 0, banks could borrow reserves and lend reserves as currency to households swapping the currency for
deposits at zero rates. This operation would produce another arbitrage for the bank.
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Equilibrium in the outside money market is:

M0t + Mb
t = Mt. (15)

The credit market has two sides, a deposit and a loans market. In the deposit market, households
hold deposits supplied by banks. In the loans market, households obtain loans supplied by banks.
The distinction between the loans and deposits is that they clear with different interest rates. The
deposit market clears when:

Ab
t =

ˆ ∞

0
ah

t (s) f (s, t) ds, (16)

where ah
t (s) ≡ Pts−mh

t (s), for a positive s. The left of this equation is the bank supply of deposits.
The loans market clears when:

Lb
t + L f

t =

ˆ 0

s̄
lh
t (s) f (s, t) ds, (17)

where lh
t (s) ≡ −Pts for negative s. Finally, the goods market clears when:

ˆ ∞

s̄
y (u (s, t)) f (s, t) ds ≡ Yt = Ct ≡

ˆ ∞

s̄
c (s, t) f (s, t) ds. (18)

Equilibrium. A price path-system is the vector function
{

P (t) , il (t) , ia (t)
}

: [0, ∞) → R3
+. A

policy path is the vector function
{

L f
t , Mt, , idw

t , im
t , Tt

}
: [0, ∞) → [0, ∞) → R5

+. Next, we define an
equilibrium path.

Definition 1 [Perfect Foresight Equilibrium.] Given an initial condition for the distribution of household
wealth f0 (s) , an initial net asset position, E0, and an initial price level P0, and a policy path

{
L f

t , Et, im
t , ιt, Tt

}
,

a perfect-foresight equilibrium (PFE) is (a) a price system, (b) a real wealth distribution path f (s, t), (c)
a path of aggregate bank holdings

{
Lb

t , Mb
t , Ab

t
}

t≥0 , and (d) household’s policy
{

c (s, t) , u (s, t) , mh (s, t)
}

and value functions {V (s, t)}t≥0, such that:

1. The path of aggregate bank holdings solves the static bank’s problem (1) at each t,

2. The household’s policy rule and value functions solve the household’s problem (2),

3. The law of motion for f (s, t) is consistent with Kolmogorov-Forward equation (13),

4. The government’s policy path satisfies the governments budget constraint (14),

5. All the asset markets and the goods market clear (1,15-18).
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Next, we characterize the equilibrium dynamics. A steady state occurs when ∂
∂t f (s, t) = 0 and{

ra
t , rl

t
}

are constant. We use subscripts ss to denote variables at steady state. An important assump-
tion is that we treat P0 in the definition of equilibrium as given to avoid issues of multiplicity. Like
in any model with nominal assets, the time-zero price determines the real distribution of wealth and
thus an equilibrium path. The approach here is to think of P0 as determined from past policies. The
idea is to think of the time-zero price as the price level at steady state consistent with a steady state
given a nominal monetary base of Mt that was committed a priori. This approach circumvents the
need for refinements that pin down time-zero prices such as the fiscal theory of the price level. We
do want to take a stance on whether this is a reasonable assumption.

Digression: Model Assumptions. The financial architecture in the model captures a fundamental
feature of banking. In practice, banks issue deposits in two transactions. The first is a swap of
liabilities with the nonfnancial sector. When banks make loans, they effectively credit borrowers with
deposits, a bank liability is exchanged for a household liability. This swap is the process of inside
money creation. Deposits then circulate as agents exchange deposits for goods. This circulation gives
rise to the settlement positions. The second transaction is the exchange deposits (a bank liability) for
currency (a government liability).

A missing element is government bonds. In practice, central banks conduct open-market operations
by purchasing government bonds. Here, negative holdings of L f are interpreted as government
bonds. The implicit assumption is that bonds are as illiquid as private loans. Bianchi and Bigio
(2017a) introduce government bonds that are more liquid than loans, but less so than reserves, be-
cause they cannot be used for settlements.

The endowment choice produces a new mechanism for monetary policy. The goal of this formulation
is to capture the idea that when agents in an economy are close to borrowing limits, they undertake
inefficient choices. By focusing on endowments, we are silent on who makes that choice. One in-
terpretation is that households conduct entrepreneurial activities. As a result, near their borrowing
constraints, households act more cautiously in their entrepreneurial activities. This interpretation is
explicit in section 6 where we introduce entrepreneurs and workers.

4 Implementation

Any nominal spread between loans and deposits equals a the spread in real terms. We label the
equilibrium real spread by ∆rt = il

t − ia
t . As shown in Proposition 1, the real spread is governed

by Λ and ι. We now explain how a CB can implement a desired real credit spread. First, we show
that given an equilibrium spread ∆rt, market clearing in real financial claims is consistent with an
equilibrium real deposit rate ra

t . This real equilibrium rate is the one that solves a single clearing
condition, which implies clearing in all asset markets, as demonstrated by the following proposition:
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Figure 2: Excess Savings as a Function of Deposit Rate in Steady State
Note: The figure depicts the excess savings supply as a function of the real deposit rate (in steady state) for two CB net asset positions. Taking the real
spread as given, the spread is constant. The excess supply is the difference between aggregate deposits and aggregate loans as a percentage of efficient
output, i.e., (Ass + E − Lss) /Y (H). The figure is constructed using parameters from the calibration presented in Section 5.

Proposition 2 [Real Wealth Clearing] Let nominal rates be given by (6) and (7), and let the liquidity ratio be
given by Λt. Then, market clearing in real terms,

−
ˆ 0

s̄
s f (s, t) ds =

ˆ ∞

0
s f (s, t) ds + Et for t∈[0,∞), (19)

implies market clearing in all asset markets. Furthermore, if (19) and the Kolmogorov-Forward equation (13)
hold, then, the goods market clearing condition (18) also holds.

The proposition thus shows that all clearing conditions are summarized by a single clearing condi-
tion in real wealth. If we obtain the real deposit rate, we also obtain the real value of deposits. Now,
if the CB induces a real spread, and banks earn zero profits, the revenues from the spread must go
somewhere. Figure 2 plots the relationship between the deposit-output ratio and the equilibrium
deposit rate in steady state under different government net asset position. A more negative net asset
position increases aggregate private deposits.

In this model, the CB earns the revenues obtained from the spread, which actually equal the revenues
from discount window loans. The next proposition exploits this observation to express the law of
motion of the real net asset position Et.
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Proposition 3 [Real Budget Constraint] Consider equilibrium in all asset markets, then Et satisfies:

Ėt = (ra
t + ∆rt)︸ ︷︷ ︸

return on CB balance sheet

Et + ∆rt

ˆ ∞

0
s f (s, t) ds︸ ︷︷ ︸

discount window profits

−Tt, E0 given. (20)

The first term in 14 is the portfolio income earnings (losses) of the CB which equal the real lending
rate times the net asset position. The second term captures that the CB perceives all the profits from
intermediation. Finally, transfers subtract from the real asset position. A policy path is constrained
by solvency conditions: An important restriction is a long-run solvency constraint for the CB. In
particular, there’s limit limt→∞Et ≥ E for some minimum E that guarantees that the CB can raise
enough revenues and satisfy dE = 0. It must be the case that at E discount window revenues
cover any balance sheet costs. This condition is equivalent to assuming that the CB’s liabilities are
not worth zero in equilibrium. The model features a Laffer curve for CB revenues. Although we
don’t solve for E explicitly, in the exercises we analyze in the following section, we impose that all
policy paths lead to a convergent stable government net asset position and limt→∞dEt = 0. Another
restriction in the opposite direction is that Et ≤ −s̄, which is equivalent to saying that the CB claim
on the public cannot exceed the public’s debt limit. Figure 16 in Appendix B plots the components
of the CB’s profits (relative to private savings) for various values of Λt.

Implementation. From equation (8), we know that the real spread ∆rt is a function of the liquidity
ratio and the corridor spread, {Λt, ιt}. The policy corridor {ιt} is directly controlled by the CB. A
natural question is to what extent does the CB control the real spread? To answer that, we need to
understand the CB’s control over the liquidity ratio. The main result of this section is that OMO
affects the liquidity ratio, unless the economy reaches a DZLB or unless the economy is satiated with
reserves.

We first characeterize the DZLB. The DZLB emerges because households can convert deposits into
currency, but banks cannot.18 Hence, although the CB can set im

t < 0, the deposit rate is always ia
t ≥ 0.

To characterize the DZLB, we define Λzlb
t as the threshold liquidity such that for any liquidity ratio

above that point, the equilibrium deposits rate, as determined by equation (7), would be negative:

Λzlb (im
t , ιt) ≡ inf

{
Λ|0 > im

t +
1
2
[
(1− $ + δ) χ+ (Λ, ιt) + (1− $− δ) χ− (Λ, ιt)

]}
.

Because a negative deposit rate cannot occur in equilibrium, we know that Λt ≤Λzlb (im
t , ιt). If the

CB attempts to increase Λt, beyond Λzlb, the increment in the money supply must immediately
translate into an increase M0t, but not in Mb

t ! Within DZLB, the CB loses the ability to influence
spreads through an increase in OMO. Furthermore, because χ− ≥ χ+ ≥ 0, we know that Λzlb is a
finite only if im

t < 0. Thus, the DZLB is relevant only when the rate on reserves is negative.

18We assume that banks can’t hold currency due to regulation, taxation, or physical costs.
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We can define a monetary base liquidity ratio, ΛMB
t as

ΛMB
t ≡ Mt

At
.

Different from the liquidity ratio of banks, Λt, which is the relevant object to determine bank spreads,
the monetary base liquidity ratio ΛMB

t is defined in terms of the total monetary base, which includes
reserves and currency. We express ΛMB

t in terms of the composition of the CB’s balance sheet in real
terms:

ΛMB
t =

(
L f

t − Et

)
/Pt

At/Pt
=

L f
t − Et´ ∞

0 s f (s, t) ds
≡ ΛMB

(
Et, ft,L f

t

)
.

Collecting results we obtain:

Proposition 4 [Implementation Conditions] Consider an equilibrium path for
{

ra
t , ∆rt, ft, Ṗt/Pt

}
t≥0. To

implement the equilibrium path, the CB chooses
{

im
t , ιt,L f

t , Tt

}
subject to the following restrictions:

1. The equilibrium liquidity ratio is Λt = min
{

Λzlb (im
t , ιt) , ΛMB

(
Et, ft,L f

t

)}
.

2. The real spread ∆rt is given by (8) and {Λt, ιt}.

3. The real rate ra
t is consistent with real wealth clearing (19).

4. The real net asset position, Et, evolves according to (20).

5. The inflation rate is:

Ṗt/Pt = im
t +

1
2
[
χ+ (θ (Λt) , ι) + χ− (θ (Λt) , ι)

]
− ra

t − ∆rt. (21)

Proposition 4 describes the dynamic allocations that can be induced by the CB. Allocations are af-
fected by the CB because it controls the real spread either through changes in corridor rates or
through OMO. The real spread, given a distribution of wealth and a net asset position, pins the
real deposit rate. Through market clearing, the size of Et also influences the real interest rate. In
addition, the CB can select a rate on reserves to target an inflation rate.

In addition to the DZLB, OMO are also irrelevant when banks are satiated with reserves. This occurs
when the CB satiates banks with reserves, and as a result θ = 0. This regime occurs when Λt ≥ $+ δ,
because in that case, banks have enough liquidity to cover a withdrawal. When, im < 0, we know
that Λzlb (im

t , ιt) < δ, because otherwise χ− = χ+ = 0, and the deposit rate would be negative. This
means that the satiation regime occurs only when rates on reserves are positive. This observation,
allows us to organize the effects of policy tools into a single proposition:
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Proposition 5 [Properties of Equilibrium Rates and Spreads] Consider a CB policy given by
{
L f

t , im
t , ιt

}
.

1. [Corridor Regime] If Λt < min
{

δ + $, Λzlb (im
t , ιt)

}
, then idw > il > ia > im and 0 < ∆r < ι and,{

∂il

∂L f
t

,
∂ia

∂L f
t

,
∂∆r

∂L f
t

}
< 0,

{
∂il

∂im
t

,
∂ia

∂im
t

,
∂∆r
∂im

t

}
= {1, 1, 0} ,

{
∂il

∂ιt

ιt
il ,

∂ia

∂ιt

ιt
ia ,

∂∆r
∂ιt

ιt
∆r

}
= {1, 1, 1} .

2. [Floor Regime] If Λt ≥ δ + $, then il = ia = im and ∆r = 0 and{
∂il

∂L f
t

,
∂ia

∂L f
t

,
∂∆r

∂L f
t

}
= 0,

{
∂il

∂im
t

,
∂ia

∂im
t

,
∂∆r
∂im

t

}
= {1, 1, 0} ,

{
∂il

∂ιt
,

∂ia

∂ιt
,

∂∆r
∂ιt

}
= {0, 0, 0} .

3. [DZLB and negative im regime] If Λt = Λzlb (im
t , ιt), then il > ia = 0 and ∆r > 0,{

∂il

∂L f
t

,
∂ia

∂L f
t

,
∂∆r

∂L f
t

}
= 0,

∂il

∂im
t
> 0,

∂ia

∂im
t
= 0,

∂∆r
∂im

t
> 0,

∂il

∂ιt
> 0,

∂ia

∂ιt
= 0,

∂∆r
∂ιt

> 0.

Proposition 5 establishes the direction of policy effects. There are three regimes. In the first regime,
Λt < min

{
$ + δ, Λzlb (im

t , ιt)
}

so liquidity is scarce enough to promote interbank lending. This
regime is referred to as a corridor system. It features a positive credit spread. Open market operations
reduce the spread. Increases in im induce a parallel increase in both nominal rates and inflation, but
not the spread. An increase in the policy corridor induces a linear increase in all rates and the spread.
The neutrality of im on the spread implies that the CB can control inflation independently.

When im > 0, and the liquidity ration exceeds $ + δ, banks are satiated with reserves. In that case, all
nominal rates equal im. This regime is referred to as a floor system. Increases in the policy corridor are
neutral. Furthermore, OMO have no effects; they satisfy classic Wallace irrelevance, (Wallace, 1981).
Thus, in floor system, the CB loses the ability to affect spreads and handles inflation with im.

Now consider im
t < 0 . This opens the possibility of a DZLB. A DZLB occurs when the liquidity ratio

is above Λzlb
t . In that region, OMO are irrelevant because any increase in CB liabilities translates into

an increase in currency, not reserves. However, the spread is still positive, even though OMO have
no effects. The reason is that negative rates on reserves tax deposits. Since the deposit rate is fixed
at zero, banks require a higher lending rate—because deposits have an infinite price elasticity at that
rate. As a result, changes in im

t produce a joint effect on the real spread and inflation, which is some-
thing that does not occur in a corridor system. The change of behavior of spreads at the DZLB has
been documented by (Heider et al., 2019; Eggertsson et al., 2019). In a different model, Brunnermeier
and Koby (2019) obtain a similar effect, but the mechanism operates through bank capital. Figure 17
in Appendix B presents additional figures for the case of a negative rate on reserves.

Policy Discussion: Tools and Targets. At any point, the CB here has four tools:
{

im, ι,L f
t , Tt

}
.

21



We saw that imcontrols inflation and Tt has direct redistributional effects. We also saw that
{

ι,L f
t

}
can produce a desired spread. To understand whether the latter are redundant assets, we must ask
if the implementation of a credit spread has fiscal consequences. In the model, the spread can be
obtained by moving the corridor spread ι, or by implementing OMO. We are tempted to argue that
these instruments have different fiscal consequences, so the choice of tools matters for the ability to
redistribute wealth. However, this intuition is wrong in light of Proposition 3:

Corollary 1 [No Fiscal Consequence of an implementation choice] Consider two policies {ιt, Λt} that imple-
ment the same real spread target, ∆rt. Both are consistent with the same discount window profits and, hence,
produce the same fiscal revenues.

Because
{

ι,L f
t

}
have the same effect on households through the spread, and have the same effect on

fiscal revenues, both instruments are redundant. However, ι can be increased to achieve any spread.
Instead, OMO can produce spreads within the bound ∆r ∈

{
ι
2 , ι
}

.

Policy Discussion: Alternative Implementations. It is worth discussing MP implementations used
in practice (Bindseil, 2014, reviews cross-country practices.). In the model, one alternative way to
the control the real spread directly through OMO while keeping ι constant, is to target an interbank
market rate i f

: given ι, we can find a consistent Λ that delivers i f
. Because there is also a map from

i f
to ∆rt, a target for the interbank rate also implements a spread.

In practice, most CBs have an explicit interbank target, but restrict they way in which they achieve
it. So CBs set corridor systems with a constant corridor width ι and move Λ and target an interbank
market at the middle, i f

= im + 1
2 ι. Other countries, keep the rate on reserves at zero but move ι,

and simultaneously target i f
at a constant distance from ι. Our analysis suggests that under either

system, a CB will simultaneously move spreads and inflation, perhaps inadvertently. However, in
doing so, CBs lose an instrument: they can target inflation and spreads within a given mix, but not
as independent targets. If CBs are open to move im and ι, they can reach both targets. This paper
argues that targeting spreads is desirable.

Policy Discussion: The DZLB The effects of policy at the zero lower bound are different from those
that emerge in cash-in-advance constraints. In those models, a ZLB emerges if the CB floods the
public with savings instruments so that the asset clears at negative rates. That opens the door to
an unrealistic arbitrage in which the households borrow at negative rates from the CB to hold cur-
rency.19 Here, it is important to note that while the ZLB applies to the nominal deposit rate, it does
not apply to the rate on the policy instruments. The policy conclusion is that a CB that reduces im

t ,
perhaps in an attempt to increase inflation, will cause an increase in credit spreads.

Policy Discussion: Fiscal-Monetary Interactions. The model inherits classical monetary properties
in Bewley economies (Bewley, 1983; Ljungqvist and Sargent, 2012, , Chapter 18.11). First, a version

19In Rognlie (2016), negative rates are possible because there are costs of holding physical currency.
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of the quantity theory holds. If we fix a path for Tt, and ∆rt, then we can scale every nominal variable
by a scalar and obtain the same equilibrium. Second, changes in the growth rate of nominal transfers
produce an increase in steady-state inflation. If im increases at that same rate, the effect of the policy
is neutral.20 Third, because the economy is neutral, there is potentially a continuum of equilibrium
indexed by time zero prices. By normalizing P0, we fix the initial distribution of wealth.

5 Positive Analysis: From Instruments to Channels

This section discusses three MP rules. First, we discuss a regime where MP eliminates any credit
spread (a floor system). Second, we discuss a regime where MP operates only through transfers.
Third, we discuss a regime that opens spreads (a corridor system). Table 1 presents a summary of
the instruments employed under each regime and the channels that they activate.

Instrument Channel
Regime im

t Tt ιt L f
t Fisherian Non-Ricardian Credit

Floor system (sec 5.1) X X
Transfers (sec 5.2) X X X X

Corridor system (sec 5.3) X X X X X X X

.

Table 1: Instruments and Transmission Channels

Calibration. Next, we present a calibration to produce the computations. The paper has many
missing elements, but we attempt to get a quantitative sense of the transmission mechanisms. The
calibration, is also a guide to where the model needs realism. The calibration is summarized in Table
2 and inspired by the US economy. Risk aversion, which coincides with the inverse inter-temporal
elasticity, γ, is set to 2. The time discount, ρ, is set to 4%, which yields a real steady-state deposit rate
of approximately 1.0%. The high intensity endowment normalized. The low intensity endowment is
set to 0.8, and this produces an output drop of 10% during a severe credit crunch episode, which we
study in Section 6. This output decline is similar to the scale seen during severe financial crises (see
Cerra and Saxena, 2008; Barro and Ursua, 2010). The volatility under the high intensity endowment
is set to σ (H) = 1. This yields a private savings-to-output ratio of about 4—a number in line with
the capital-to-output ratio in the US. We think of the net asset position in terms of the consolidated
US Government, notthe Federal Reserve. For that reason, we set Ess to −20% of private assets. This
figure yields a level of public-debt-to-output ratio of 70%, the pre-Great Recession level in the US.
The debt limit s̄ is 12 times the low endowment income. This parameter produces a debt-to-income

20To illustrate, assume a policy where from t onward, the CB increases the growth rate of nominal transfers. Then
inflation rate will increase at a constant rate as long as the CB keeps a real transfers constant, but the CB must also
increase im

t and idw by the new rate of inflation. Thus, if the CB moves its policy rates accordingly, monetary policy is
super neutral. If instead, the CB increases transfers but keeps the real rate constant, it effectively changes the real value
of transfers and the real rate. In that case, monetary policy is not super neutral.
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Parameter Description Reference/Target
γ = 2 risk aversion standard
ρ = 0.04 time discount 1.0% real risk-free rate
y (H) = 1 high intensity endowment drift normalization
y (L) = 0.8 low intensity endowment drift max loan-to-income ratio of 12
σ (H) = 1 high intensity endowment volatility savings to GDP ratio Ass/Yss = 3.5
Ess= −0.2 · Ass net asset position 70% public debt to GDP
s̄ = −12 · y (L) debt limit max loan-to-income ratio of 12
s̃ss = s̄ leverage constraint no shock at steady state
L f

t = 0 CB assets normalization
λ=2.1 interbank-market match efficiency follows Bianchi and Bigio (2017a)
im = ra

ss reserve rate inflation target 0%
idw = 5% discount rate real spread of 2%

Table 2: Parameter Values
Note: The table lists the calibrated values of parameters and the corresponding reference/target of calibration.

ratio of 12 for the poorest households, a number in line with the literature. The amount of real assets
held by the CB, L f

t , is set to zero.21

The interbank-market efficiency, λ, is set to 2.1. This number is directly taken from Bianchi and Bigio
(2017a), who calibrate it to match the size of discount window loans. The rate on reserves is set to
im
ss = ra

ss, so steady state inflation is zero, which is a normalization. The discount window rate is set
to produce a steady-state spread of 2%. The required spread between the discount window rate and
the rate on reserves is much higher than in the data, but as we argued above, this is a stand-in for
missing elements such as collateral and stigma (De Fiore et al., 2018).

Steady-state Moments. To get a sense of quantitative fit, we report steady-state moments in Table 3.
The model produces a 20.2% share of agents at their debt limit and a 43.1% share that hold positive
debt. The corresponding output efficiency loss is 4.0%. The CB’s operational profits are 5.6% of
output. In the US, the transfers of the Federal Reserve to the Federal Government are similar to
corporate tax revenues, about 1.8% of GDP. Since the model does not have operational costs for banks
nor the CB, this figure, which is three times as high as in the data, is reasonable. The interest expense
on the CB’s position is 1.4% of GDP. Finally, we report levels of wealth over GDP measured as wealth
divided by per-capita income, at different quantiles. The model misses the return shocks needed to
produce the concentration ratios at the top, but does a fair job at the bottom of the distribution.
Since, as we show, most of the dynamics stem from the behavior of the poor, missing the wealth
concentration at the top should not have an important effect on the quantitative responses.

21Prior to 2008, the assets held by the Federal Reserve where small relative to liabilities. The choice is, however, a
normalization. As showed earlier, a spread can be implemented in many ways.
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Moment Value
Fraction of households at debt limit 20.2%
Fraction of households in debt 43.1%
Output efficiency loss (relative to potential) 4.0%
CB operational revenue / GDP 5.6%
CB interest rate expense / GDP 1.4%
Wealth quantiles/per capita GDP {Q10, Q25, Q50, Q75, Q90} {−10.0,−5.87, 1.43, 6.09, 10.2}

Table 3: Additional Moments (Not-Targeted)
Note: The table reports the untargetted moments of the calibrated model.

5.1 Nominal Rate Target and the Fisherian Channels

We begin with a policy that neutralizes the spread but has a nominal rate target, i.e., a floor system.
We have the following corollary:

Corollary 2 [Floor System] Let the CB either set ιt = 0 or set im ≥0 and Λ ≥ ρ + δ, then, ∆rt = 0, the
evolution of {ra

t , f (s, t)} is unaffected by policy, inflation is controlled by im
t as given by (21).

Corollary 2 is a special case of Proposition 4. If the CB satiates banks with reserves or eliminates the
policy corridor, monetary policy is neutral. However, the CB controls inflation: it effectively resets
the unit of account every period and increases the money supply accordingly. This showcases that
the CB can control nominal rates, without OMO.22 The ability to control inflation with a single instru-
ment connects with three, well-travelled transmission mechanisms: the New-Keynesian model, the
inflation-tax, and the debt deflation, which we reviewed earlier. In the model, incorporating nom-
inal rigidities would produce an interest rate channel similar to that in recent heterogeneous agent
new-Keynesian models (Guerrieri and Lorenzoni, 2017; Kaplan et al., 2016; Auclert, 2016). One can
also incorporate sporadic currency transactions as in Rocheteau et al. (2016), that would produce an
interesting interaction between currency holdings, the distribution of wealth, and productive effi-
ciency that would be affected by the inflation tax channel. One can also lengthen loan terms so that
unexpected changes in im

t are not neutral. As discussed in Gomes et al. (2016); Auclert (2016); Nuno
and Thomas (2017), this would generate surprise inflation, which would compresses the distribution
of real wealth and affect productive efficiency.

5.2 Fiscal Transfers and the Non-Ricardian Channel

This section presents the effects of transfers. The reason is twofold. Although the focus is on the
credit channel, any increase in spreads generates fiscal revenues that have to be rebated. Studying
transfers in isolation allows us to isolate the direct effect on economy from the fiscal effect spreads.

22In Proposition 4, we set Et = 0 for the sake of exposition, but the result holds with little loss in generality. Without
a policy corridor, the CB controls inflation even if there are no reserves. Woodford (2001) advocates for this policy and
calls it the Wicksellian doctrine.
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Second, fiat money transfers are classic exercises in monetary economics. We begin with the steady
state. We maintain the implementation of ∆r = 0 but allow the net-asset position Ess to differ from
zero—transfers are Tss = ra

ssEss. The next corollary to Proposition 4 is a classic result:

Corollary 3 [Non-Ricardian Effects] An economy with a steady state net asset position Ess induces the same
equilibrium allocation as an alternative economy with zero net asset position E (a)

ss = 0 with a borrowing
s̄(a) = s̄ + Ess.

Corollary 3 shows that a reduction in the Ess is akin to a more relaxed debt limit. Figure 3 reports
the corresponding real rate, output, and the real wealth distributions for different levels of Ess. Panel
(a) depicts the distribution of wealth, Panel (b) output and the real rate. We see that a lower net
asset position, is associated with a more dispersed distribution, but a higher mean. A more negative
net asset position produces a higher real interest rate; a more spread out distribution and higher
rates indicate better ex-ante insurance. Panel (b) shows a non-monotonic relation between the net
asset position and output. When the net asset position is very low, the wealth distribution is very
dispersed, so a larger mass of agents concentrate at the debt limit. This causes greater output inef-
ficiency. As Ess improves from low values, the distribution tends to concentrate and the mass at the
debt limit falls. This improves output. However, there’s a counteracting force that kicks in when the
net asset position improves above a certain point. As Ess increases, the interest rate falls, and this at-
tracts more debt. In fact, at the limit where, Ess = −s̄, all agents must be at their debt limits—output
is at its lowest possible Y (L). These two forces, better risk sharing and the crowding out of private
savings, explain the non-monotonic behavior of output. This non-monotonic effect is similar to the
effect that appears in Aiyagari and McGrattan (1998). One important note is that once the CB pays
interest on reserves, the level of real transfers does not affect inflation. Instead, the money supply
adjusts to finance im, but does not alter the real rate (see the discussion in Ljungqvist and Sargent,
2012, Ch. 18). A final, important clarification is that transfers here have non-Ricardian effects only
because households cannot borrow against future taxes. In fact, if we modify the economy and let
the borrowing depend on the net present value of taxes, then transfers have no effect:

Proposition 6 [Conditions for Ricardian Equivalence] Consider an alternative economy such that agents
now face a time varying borrowing limit equal to s̄(a) (t) = s̄ + h (t), such that the present value of transfers
h (t) ≡

´ ∞
t exp

(
−
´ τ

t ra (z) dz
)

Tτdτ = Ess. Consider a policy that sets ιt = 0 or satiates banks with
reserves. Then, any path of fiscal transfers {Tt, Et} does not alter allocations.

The next experiment considers a one-time decrease in transfers, holding the spread fixed at ∆rss =

2%. The program is announced at time zero, but it is carried out a year later, and lasts for two years.
We study the effects of anticipated policies because even if the policy is anticipated, once it takes
place, the effect is similar to when the policy is unanticipated. Yet, with an unanticipated policy, we
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Figure 3: Steady State Effects of Transfer/Net Asset Position.
Note: The figure depicts the output, real deposit and loan rates, and real wealth distributions for different levels of the government’s net asset position.
For panel (a), the measure of households with assets s̄ is in mass probability (left scale), and the measure of households with s > s̄ is in probability
density (right scale). Efficient output is expressed as the endowment income flow of high intensity process y (H). For panel (b), Yss is the flow of
households’ aggregate income in steady state. Deposit and loan rates are expressed in annual percentage terms. For both panels, the government’s net
asset position is expressed as a fraction of aggregate deposits in steady state.

can also study the effect of the anticipation of the policy. Thus, the exercises allow us to highlight
anticipation effects as well as the impact effect of both announced and unannounced policies.

The economy initiates at the steady state. This initial condition produces a level of steady state,
lump sum taxes. When the policy is announced, taxes increase by ∆rss · Lss/2, and slowly revert
to the steady state by the end of the program. The idea is to make the exercise comparable to the
fiscal effect of a reduction in spreads, which we study next. Two years into the program, the policy
is reversed so that the net asset position transitions back to the steady state—this is done so that the
annual reversal rate is approximately 10. We have to be careful not to return to the net asset position
too quickly though. Hence, we adopt a fiscal rule: denote by tstart the time of the policy program
(i.e., tstart = month 12) and tend the end of the program (i.e., tpost = month 36). The transition path
for Tt is given by

Tt =



Tss, if t < tstart,

∆rtLt + ra
ssEss − τt, if t ∈

[
tstart, tpost] ,

∆rtLt +
[
1−

(
δtrans)t−tpost] [

ra
t Et + δe f (Et − Ess)

]
if t > tpost,

+
(
δtrans)t−tpost

ra
ssEss,

(22)

where Tss = ∆rssLss + ra
ssEss is the steady state transfers, and

τt =
tpost − t

tpost − tstart ·
∆rss · Lss

2

represents the magnitude of the increase in taxes. The rest of the details are presented in Appendix
C. For the rest of the paper, we employ the same fiscal rule and we set δtrans = 0.9 and δe f = 0.1. The
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Figure 4: Fiscal Policy Path.
Note: This figure plots the time path of fiscal transfers and the government’s net asset position in response to an anticipated one-time increase in lump
sum taxes. The net asset positions and fiscal transfers are calculated as a percentage of contemporaneous aggregate output. The policy change program
is announced at time zero, takes place one year later (at the first vertical dashed line), and lasts for two years (between the two vertical dashed lines).
During the program, the lump sum transfer is increased to close the gap between the current value and the steady state value at a fixed rate. After the
program (after the second vertical dashed line), the lump sum transfer is adjusted to close the gap between the net asset position in the current state
and the steady state at an exponential rate of 10% annually. The detailed transition paths of fiscal transfers are given by (22).

policy paths for this exercise are depicted in Figure 4.

Figure 5 reports the responses of macroeconomic variables. Upon announcement, agents anticipate
the change in Tt. In the anticipation phase, we observe (Panel c) a mild decrease in both, borrowing
and lending rates. We also observe (Panel b) a decrease in credit and an increase in output (Panel d).
The anticipation of future taxes increases the precautionary behavior. With this expectation, falling
into debt is seen as more painful. This reduces credit demand in the anticipation phase. Although
credit contracts, the announcement effect is slightly expansionary because the mass of agents at the
debt limit falls.

Once the policy is enacted, the effects reverse. We see an increase in real rates and credit, and a con-
traction in output. This pattern occurs because the taxes make debt repayments more difficult. On
impact, real rates decrease despite lower debt. This is because with greater taxes, more agents hit the
constraint. By the end of the program, taxes gradually reverse to the steady state; output and credit
variables mirror their behavior during the program. The study of transfers is also important because
some have advocated for “helicopter drops” as a stimulus tool in recent year—to be implemented
as tax rebates funded by the CB. An increase in transfers would reverse the sign of the transitions in
the experiment. Thus, the exercise here also warns against the use of helicopter drops. The risk is
not inflation, which can be controlled by im and the growth in future money supply. Rather, the risk
is that the anticipation of transfers can lead to an ex ante expansion in credit that can lead to further
productive inefficiency.
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Figure 6: Steady State Effects of Real Spreads.
Note: This figure depicts the real wealth distributions, output and real deposit and loan rates for different values of spreads. In panel (a), the measure
of households with assets s̄ is in mass probability (left scale), and the measure of households with s > s̄ is in probability density (right scale). Efficient
output is expressed as the endowment income flow of high intensity process y (H). In panel (b), Yss is the flow of households’ aggregate income in
the steady state. Deposit and loan rates are expressed in annual percentage terms. For both panels, the real spread is expressed in annual percentage
terms.

5.3 Credit Spread Target and the Credit Channel

We now move to consider the effects of a spread target, ∆r. We start with the steady-state effect.
Figure 6 reports the real wealth distribution (panel a) and output and real interests (panel b) for
different values of ∆r. Above, we saw how higher lump sum taxes shift the wealth distribution to the
right, and spread it out. The steady-state effect of spreads is different. Wider spreads compress the
wealth distribution while total wealth remains constant—for any spread, private wealth integrates
to Ess. Thus, the spread is a tax on intermediation and, like any tax, it has an incidence on both
borrowers and lenders. Thus, a wider spread reduces the real deposit rate and raises the real loans
rates. As a result, the spread makes saving less attractive to both borrowers and savers. This is an
indication that wider spreads produce worse risk sharing.

The effect of the real spread on steady-state output is non-monotonic. At a zero spread, an increase
in the spread increases output. This is because up to a first-order, it makes borrowing less attractive
and, therefore, less agents hit their debt limit. There is a force in the opposite direction that dominates
for wider spreads, which is not seen from the figure. Higher loan rates make it more difficult to
repay debt. At some point, the mass of households at the debt limit begins to increase again. As
borrowing rates continue to increase, households switch to the inefficient endowment process.23 In
our calibration, output increases with the spread until the spread reaches 8%. The main takeaway
of this exercise is that for small values, spreads can increase output efficiency, at the expense of risk
sharing.

23In fact, at the limit with infinite spreads, all households have s ≥ 0, only save in currency and switch to the safe
technology at s = 0.
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Next, we consider a transition after a reduction ∆rt. Again, the policy is announced at time zero,
implemented after a year, and lasts for two years. The policy halves the spread from a steady-state
level of 200bps. Again, we split the description into the ex ante and ex post phases. As explained
earlier, the policy has a direct effect through the reduction in spreads and an indirect, fiscal effect.

The effects are described in Figure 7. In the ex ante phase, the announcement stimulates credit. The
reason is the easing of the precautionary motive. The credit market clears with higher rates because
savers are more interest rate elastic; as a result, both the real deposit and loans rates increase. Also,
deposits increases more than loans because the CB’s net asset position worsens. Because borrowers
expect an easing of credit spreads, they hit the debt limit more often, which explains the output
decline.

Once the reduction in spreads takes place, the easing of credit spreads reverses the effects. The
reduction in the spread has an incidence on both a lower loans rate and a higher deposit rate. A
lower loans rate allows borrowers to abandon their debt limit faster. The expectation of higher future
borrowing rates is an additional force to reduce debt. The overall effect is an output expansion that
overcomes the initial drop. As the policy is reverted, real rates are normalized and the distribution
of wealth returns to the steady state. With lower rates, there is a continued expansion in quantity of
deposits, but private borrowing declines—a lower net-asset position crowds out private debt.

An important observation is that the dynamics effects after the decrease in spread have the opposite
sign compared to the tax increase studied above, although the fiscal effect of the spread reduction is
similar. The only variable that has the same behavior is the real deposit rate, whose response on im-
pact is twice as high after the reduction in the spread. On impact, the output responses is an order of
magnitude larger in absolute terms. All in all, this means that the direct effect of spreads overshad-
ows the fiscal effect. Another important observation is that the loans rate is more sensitive than the
deposit rate. Recent work by Drechsler et al. (2015) documents this difference in sensitivity. Because
they can control for measures of local competition, the authors attribute the effect to market power
behavior by banks. Here, the deposit rate is less responsive, simply because savers are more inter-
est rate elastic than borrowers in an incomplete markets economy. Intuitively, borrowers are closer
to their borrowing constraints, so their prudence effect makes them respond. This is in addition to
intertemporal substitution, which is equally strong for the rich. Since wealth is slow moving, and
real wealth has to clear, most of the impact of the spread is on the loans rate.24 An important final
observation is that, as noted by (Kaplan et al., 2016), in presence of an illiquid asset, debt-constrained
agents can be found not only at the bottom of the wealth distribution. The efficiency losses could be
higher in presence of illiquid assets.

24We can again use the analogy of a spread as a tax on intermediation and interpret the result in terms of a tax
incidence. Translated into the logic of tax incidence, this means that to obtain an equilibrium in the credit market,
loans rates must respond more than the deposit rate. Tax incidence is higher on the most inelastic side.
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MP Implementation and the Correlation between Inflation and Monetary Aggregates. We have
been silent about the implementation in the exercises. As we showed earlier, there are various ways
to implement the policy, and these have different effects on the statistical correlation between infla-
tion and monetary aggregates. Next, we discuss an implementation of a narrowing of spreads via
OMO, while keeping the corridor spread constant. The details of the implementation are presented
in Figure 8. Panel (a) in Figure 8 shows the increase in monetary aggregates. An OMO that increases
reserves is carried in the twelfth month and reversed two years later. The OMO are slowly reversed
during the program and strongly by the end to track the evolution of deposits that shrink. The goal
is to have the constant liquidity ratios, Λ, during and after the program. In the example, reserves
increase at the start of the program, by 5% followed by a similar decline at the end. Panel (b) de-
picts inflation. The lesson is that the policy leads to deflation, although the quantity of both, outside
money (M0) and deposits (M1) increase! The reason is that the increase in the liquidity ratio of banks
produced by the OMO stimulates credit. The implied reduction in spreads leads to an increase in
the real deposit rate while it also leads to a reduction in the nominal deposit rate. Following Fisher’s
equation, the economy must converge to a lower price level, consistent with the path of inflation and
the reduction in the supply of reserves. Figure 19 in Appendix E presents the decomposition of the
path of the real deposit rate.

The reduction in inflation that follows an OMO is known as the liquidity effect. This effect is docu-
mented by Alvarez et al. (2009) which uses a segmented market model to rationalize the effect. The
result here is also related to the unpleasant monetarist arithmetic (Wallace and Sargent, 1981). In
that analysis, an OMO causes permanent deflation, because it generates capital gains that alter the
required seigniorage to balance the budget. The source of the effects here are different. The liquid-
ity effect here is produced by the reduction in credit spreads. Since budget balance is not altered
here, the effect on inflation is not permanent as in the unpleasant arithmetic. The lesson from the
exercise is the same though, it is important to be explicit about the MP instruments used, before
we can establish an empirical connection between monetary aggregates and prices. As we argued,
this model is consistent with quantity theory, which presents a sharp relation between money and
prices, and consistent with OMO that break that relationship. Appendix E extends this discussion to
implementations with changes in the corridor rates and negative interest on reserves within a DZLB.

6 Normative Analysis: Optimal use of the Credit Channel

This section studies the optimal spread target. The section is silent about the implementation with
the understanding that MP has enough instruments to reach a desired target. In the section, we
postulate and solve a Ramsey planner problem where the instrument is the spread, but takes the
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Figure 8: Monetary Aggregates and Price Level after an OMO
Note: The figure presents the responses of monetary aggregates and the price index after the implementation of a policy to reduce credit spreads via
OMO. The OMO implements the path of the credit spread in Figure 7. In panel (a), the initial levels of reserves and currency are normalized to 100
and 0, respectively. In panel (b), the initial level of price is normalized to 100.

net asset position as given.25 We first study the steady-state solution of the Ramsey problem and its
comparative statics. We also extend the framework to allow for a labor-demand externality, a feature
that strengthens the case for a positive spread. We then introduce a credit crunch episode and study
the benefits of reducing spreads during the crunch.

6.1 Optimal Spreads: with and without a Demand Externality

Aggregate Labor Demand Externality. An optimal spread turns out to be optimal even without a
demand externality, but here we introduce a parameter that captures an aggregate labor demand
externality (DE), a feature that strengthens the case for optimal spreads. We now endow households
with a labor supply of n̄ hours. Like in Hansen (1985) and Rogerson (1988), labor endowments
are indivisible—the supply is perfectly inelastic. Also, the own labor must be employed by other
households.

We adapt the endowment process. Now, it requires a specific amount of hours n (u). We let n (H) >

n (L) be the labor requirements of the high and low intensities. We normalize n (H) = n̄, so if all
entrepreneurs operate with high intensity, all hours are used. If any household chooses the low
intensity, there is unemployment. The labor market suffers from a labor hold-up problem as in
Caballero and Hammour (1998). Once a household hires hours, output is held up by the worker. In
particular, workers can threat households to divert the fraction (1− ηl) of the output y (u). Thus,

25Although we can directly compute steady-state welfare for different values ∆rss, the value that maximizes steady-
state welfare is not the steady-state solution of a planner problem. By analogy, the golden rule consumption that maxi-
mizes steady-state welfare does not coincide with the steady-state consumption of a Ramsey growth model.
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the wage is bargained after the production of output.26 As a result, ex post output is split into ηl

to the owner of the endowment and 1− ηl to the worker. We assume that workers are diversified
across all households. More importantly, ηl captures the extent of a demand externality: If ηl = 1,
the choice of utilization has only an incidence on the owner of the endowment, but if ηl < 1, then
it has an incidence on other households. Since the real wage given u is determined ex post, it is
non-contractable. Instead, the owner of the endowment chooses a intensity unilaterally.27

Since labor income is perfectly diversified, each household receive a common labor income flow:

wl
t = (1− ηl)

ˆ ∞

s̄
y (u (s, t)) f (s, t) ds.

The only change in the household’s problem is that now its real income flow depends on the choice
of others:

dwt =
(

ηly (ut) + wl
t + Tt

)
dt + σ (ut) dZt

where ηlyt (u) is the household’s own endowment flow. We see from the expression, that as others
choose the low intensity, this will affect the intensity choice of the household.

Optimal Policy. The Ramsey planner solves the following problem:

Problem 3 [Ramsey Problem] An egalitarian planner’s problem maximizes {∆r (t)} to maximize

W ( f0) = max
{∆r(t)}≥0

ˆ ∞

s̄
V (s, 0) f (s, 0) ds (23)

subject to the household’s problem 2, the law of motion of wealth (13), a path for Et, and the resource constraint
(18).

The solution follows Nuno and Moll (2018) and Nuno and Thomas (2017) and the derivations and a
discussion are relegated to appendix G. Next, we discuss the numerical results of the solution.

Optimal Steady-State Spread. Figure 9 plots two objects. The solid (blue) curves are the steady-state
welfare obtained by varying a steady-state spread on the horizontal axis. Panel (a) reports the results
without the externality (ηl = 1) and panel (b) with an externality (ηl = 0.9). The second object is

26This construction can be approximated by a limit. Suppose that technologies are fixed over specific time intervals
∆t, 2∆t, ... For every interval, assume that once the technology is chosen and workers are hired, contracts are negotiated
on the spot and according to a bargaining problem. Presumably, this hold-up problem leads to an output split according
to some Nash-bargaining problem. In that case, output is divided in η and (1− η) shares to entrepreneurs and workers,
respectively.

27Labor market clearing must be consistent with a level of unemployment:

Υ (t) =
ˆ ∞

0

[
1− (I [u (s, t) = H]− 1)

n (L)
n̄

]
ft (s) ds.
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the vertical dashed line (red). That line is located at the value of the spread that coincides with the
steady-state (the asymptotic value) spread path chosen by the Ramsey planner. Steady welfare is
increasing in a steady-state spread up to a spread of 300bps. The steady-state spread of the Ramsey
problem is narrower, close to 50bps. The Ramsey steady-state spread is narrower because, as in
a Ramsey growth model, steady-state consumption does not equal the constant consumption that
maximizes welfare, which is an artifact of time discounting. Here, the force that causes the steady
state of the optimal spread under the constant spread that maximizes steady-state welfare is also
impatience. The distribution of wealth moves slowly with the spread, but the reduction in insurance
(despite the increase in transfers) occurs immediately. Hence, the planner discounts the steady-state
benefits of an increase in spreads, and is concerned with contemporaneous insurance. Nevertheless,
the planner does not go all the way, and allows a positive spread at the limit of each policy path.
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Figure 9: Steady-State Welfare
Note: The figure plots the aggregate steady-state welfare of the competitive equilibrium as a function of credit spreads under the scenarios without
DE (panel a) and with DE (panel b). In both panels, welfare is expressed as an aggregate steady-state value function across households, and the
credit spread is expressed in annual basis points. The vertical dashed red line is located at the optimal Ramsey credit spread that corresponds to each
scenario.

To unpack the forces that drive a positive spread at steady state, we can decompose the effect. Con-
sider the value in (23) at steady state. It can be represented as

Wss (∆rss) ≡
ˆ ∞

s̄
Vss (s; ∆rss) fss (s; ∆rss) ds.

Thus, small changes in ∆rss are decomposed into:

∂Wss (∆rss)

∂∆rss
=

ˆ ∞

s̄

∂Vss (s; ∆rss)

∂∆rss
fss (s; ∆rss) ds︸ ︷︷ ︸

Value Effect

+

ˆ ∞

s̄
Vss (s; ∆rss)

∂ fss (s; ∆rss)

∂∆rss
ds︸ ︷︷ ︸

Composition Effect

.

The first term is a value effect measures how the spread changes the value function of each agent,
while holding the distribution of wealth fixed. The second term, the composition effect, captures the
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induced change in the wealth distribution. The value effect can be further decomposed into three
forces that we encountered earlier. A direct effect (1) occurs because, holding the deposit rate fixed,
the increase in the spread lowers the borrowing rate. Thus, the direct effect is always negative and
it hurts borrowers. The fiscal effect (2) emerges because the spread produces revenues that translate
into transfers. A general equilibrium effect (3) occurs because the policy causes a parallel shift in
the real deposit and loans rates, holding fixed the spread. This effect encodes the potential increase
in output. Typically, it amplifies the reduction rates—to promote consumption and, hence, market
clearing when the inefficiency falls when fewer agents hit their debt limits. This effect tends to help
borrowers but hurts the wealthy.

Figure 11 presents a numerical decomposition of how the different effects benefit agents across the
distribution of wealth—abstracting from the externality for now. To give a sense of magnitude, we
plot each agent’s certainty equivalent welfare relative to efficient output. Numerically, we increase
the spread by 10bps departing from the Ramsey optimal. We decompose the change in the value
function of each agent according to the three forces—higher-order effects are negligible. We observe
that the direct effect is negative for every agent, as anticipated. The fiscal effect is positive because
transfers are received by all households. The General Equilibrium (GE) effect is positive for all
borrowers but hurts almost all savers—not all because savers with little wealth are likely to become
borrowers and the reduction in rates is a form of insurance. The overall value effect is a positive
improvement of the middle class.28

Table 4 reports a summary of the aggregate effects of the 10bps increase in spread—the data in the
column on the far right are the welfare changes with the externality. Welfare increases with the per-
turbation because the Ramsey steady state is below the spread that maximizes welfare. To obtain
a quantitative sense, numbers are reported in planner certainty equivalent relative to efficient out-
put. The highest CE possible for the planner is efficient output—the value obtained under complete
markets without inequality. The aggregate change to CE is about 0.06%. Of this amount, the value
effect accounts for more than half; the composition effect accounts for a smaller portion. The decom-
position of the value effect summarizes the information conveyed by Figure 11. We can see that the
GE effect compensates the losses from the direct effect, which is mitigated by the fiscal effect. The
Ramsey planner does not increase the spread, because, the benefits of the GE effect can take longer
to kick during a transition than the reduction in insurance produced by the direct effect.

28The rich care little about the transfers, but do care about the reduction in the real deposit rate. The very poor suffer
from a higher loans rate. The middle benefits from lower rates and the transfers.
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w/o DE w/ DE
Change in Spread 0.34%→ 0.44% 0.82%→ 0.92%

Decomposition (% of Efficient Output)
Agg. CE before Change 88.53 88.25
Agg. CE after Change 88.59 88.32

Change in CE 0.061 0.069
Value Effect 0.037 0.033

Composition Effect 0.019 0.031
Value plus Composition Effect 0.056 0.064

Higher-order Effect 0.005 0.005
Decomposition (% of Value Effect)

Agg. Direct Effect of Spread -1347.05 -1511.94
Agg. Fiscal Effect 1235.11 1307.45

Agg. GE Effect 217.81 310.98
Sum of First-order Decomposition 105.88 106.49

Second-order Effect -5.88 -6.49

Table 4: Decomposition of Certainty Equivalent Change in Planner’s Welfare

Comparative Statics. The steady-state optimal Ramsey spread is not always positive and can be
zero depending on the parameters. Figure 10 depicts in the vertical axis the optimal steady-state
spread of the Ramsey problem as a function of debt limit (s̄) and the net asset position relative to
deposits ε f ≡ Ess/Ass. The left panel is constructed with ηl = 1 and the right with ηl = 0.9. The
first observation is that the spread is higher as the net asset position deteriorates. When the net asset
position is negative, the government is issuing debt. Debt is paid by everyone, but only the wealthy
receive the interest rate is only received by the wealth. The spread is a way to redistribute the tax
burden toward the poor. The optimal spread is non-monotonic in the debt limit. The intuition is that
the debt limit governs the extent of the output inefficiency, which is also non-monotonic in the debt
limit. In fact, the Ramsey spread almost mirrors the behavior of the output without a spread, see
Figures 22 and 22 in Appendix G. A corroboration of this result is that when we activate the labor
demand externality, the optimal spread increases.
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Figure 10: Optimal Steady-State Spread of Ramsey Problem
Note: The figure plots the Ramsey optimal steady-state spread as a function of debt limit, s̄, and the government’s net asset position relative to deposits,
Ess/Ass, for the scenarios without DE (panel a) and with DE (panel b). The spread is expressed in annual percentage terms.

6.2 Spread Management during a Credit Crunch

Borrowing and Debt Limits. We now study the benefits of relaxing spreads during a credit crunch.
To introduce a credit crunch, we modify the model. In addition to the debt limit s̄, we introduce a
potentially time-varying borrowing limit, s̃t. The borrowing limit is triggered before the household
reaches its debt limit, s̄ ≤ s̃t ≤ 0. The idea is that if households reach their borrowing limit, they
cannot take on more debt principal, but they can roll it over. That is, in s ∈ [s̄, s̃t] , households can
refinance their interest payments, but not take more debt. Formally, this means that dst ≥ rtstdt in
s ∈ [s̄, s̃t]. Thus, the earlier constraint now reads ctdt ≤ rtstdt + dwt in s ∈ [s̄, s̃t] and thus, the safe
endowment ut = L is forced in s ∈ [s̄, s̃t]. The household’s Hamilton-Jacobi-Bellman (HJB) equation
is modified to take into account these new constraints.

Intuitively, s̃t triggers the inefficient choice earlier. We interpret an increase in s̃t as a credit crunch.
This distinction between borrowing and debt limits has technical and economic motivations. The
technical motivation is that it allows us to study an unexpected credit crunch—an unexpected jump
in the debt limit is now well-defined mathematically.29 The economic motivation is that if banks
wants to cut back on credit, it is convenient to tighten the borrowing limit, but not necessarily the

29Suppose we want to study a credit crunch by an unexpected tightening of the debt limit. If there is an unexpected
change in the debt limit, there would be a positive mass of households violating their debt limits because income flows
continuously. This inconvenience does not apply when the borrowing limit s̃t moves unexpectedly. In the latter case,
households now face a problem insuring risk, but are not forced to reduce their debt stock immediately. This is a technical
assumption to circumvent an issue faced by models with debt limits. For example, Guerrieri and Lorenzoni (2017) must
study a gradual shock to debt limits precisely to leave agents enough time to abandon their borrowing limits.
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debt limit.30

A Credit Crunch. Lets first discuss the transitions produced by a credit crunch, for now holding a
fixed spread. We introduce a temporal expected increase in s̃t, starting from s̃ss = s̄. The borrowing
limit is known to tighten to s̃t = 0.8 · s̄ in a year, and the effect will lasts two years. Figure 12 shows
the dynamics after the crunch. The anticipation of the crunch leads to a reduction in credit because
it is known that being in debt in the future will be painful. Naturally, borrowers want to pay off
their debts, but then savers must hold less deposits. Panel (b) shows how both real deposits and
loans fall during the transition. As a result, real deposit rates must fall to discourage savers from
savings. The borrowing rate also falls, because the spread is constant, and borrowers are less interest
rate sensitive—Panel (c). In the ex ante phase, output actually expands as the mass of agents in the
debt limit falls. Once the crunch takes place, a large mass of agents is suddenly in the borrowing-
constrained region, st ∈ [s̄, s̃t]. This forces households in that region to the inefficient choice. The
consequence is an immediate output collapse. Output falls continuously as more households are
dragged into the borrowing constrained region. The expectation of a recovery produces an increas-
ing path of real interest rates—because borrowing-constrained households roll over a greater stock
of debt. Credit continues to decrease until it reverses as the end of the crunch approaches.

A Countercyclical Spread. We now consider how welfare varies with three different policies. The
crunch is now unexpected. In the first scenario (floor), the steady state is produced with a zero
spread, and the spread is kept at zero during the crunch, as if the central bank runs a permanent
floor system. In the second scenario (passive corridor), the spread is kept constant at the steady-
state Ramsey value, starting from the steady state and throughout the transition. In the third, the
steady state starts from the optimal Ramsey spread, but is dropped to zero during the duration of
the crunch, and reverts back to the Ramsey optimum when the crunch is over. The latter scenario
is implemented with a large OMO that satiates banks with reserves during the crunch. Table 6.2
summarizes the time-zero CE for the value, relative to efficient output. The floor scenario yields
the lowest value by far. This is because a zero spread produces a low steady-state welfare for the
planner. A passive corridor does much better. The policy that satiates banks with reserves during
the crunch, the active corridor, does better. The reason is that with a lower spread during a crunch,
agents in debt repay their debt faster. The right columns verifies again that the externality magnifies
the results, and builds a stronger case for the active management of spreads.

30When a bank extends a loan principal, it increases its liabilities. This is not true about a rollover. In the case of a
rollover, banks earn interest that increases equity, but not liabilities. During financial crises, banks will want to roll over
debt, although they are unwilling to extend principal because the latter consumes regulatory capital. In addition, if loan
repayment is suddenly forced, it can trigger default. Defaults are costly for banks, because they lead to underwritings
that also subtract regulatory capital. The formulation here is motivated by these observations, although their explicit
modeling is outside the scope of the paper. This phenomenon is called evergreening. We do not model this explicitly,
but we are guided by this economic interpretation. Our constraint is consistent with the interpretation. Caballero et al.
(2008) present a model of evergreening.
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Spread CE w/o DE CE w/ DE
Floor 88.209 86.929

Passive Corridor 88.496 88.225
Active Corridor 88.497 88.233

Table 5: Aggregate (% of Efficient Output) Welfare in Transition Path

Finally, Figure 13 presents the effect on output under the three scenarios. A first comparison is the
floor system with and without the externality (labeled floor w/DE and floor w/o DE). Output with
the demand externality is lower for the entire path. A passive corridor boosts output, to the point
that it more than offsets the externality. However, the active corridor is the best policy. Most of the
benefit from the active policy is seen after the crunch is over. The active policy cannot compensate for
the large mass of agents at the borrowing limit because wealth is a slow-moving object. However, the
active corridor induces a stronger recovery because once the crunch is over, narrower spreads enable
borrowers to repay their debts faster during the crunch, and this enhances ex post efficiency. During
the 2008 financial crisis, the Federal Reserve flooded banks with reserves. The analysis suggest that
that policy was correct and rationalizes why it had no impact on inflation. The analysis also suggests
that it may be time tor return to a corridor system.

7 Conclusion

In the final paragraph of the introduction to his collected works on monetary economics, Lucas
(2013), Robert E. Lucas writes: “Now, toward the end of my career as at the beginning, I see myself
as a monetarist. My contributions to monetary theory have been to incorporate the quantity theory
into modern modeling. For the empirically well established predictions —long-run links— this job
has been accomplished. On the harder questions of monetary economics — the real effects of mon-
etary instability, the roles of inside and outside money, this work contributes examples but little in
empirically successful models. It is understandable that in the leading operational macroeconomic
models today— the RBC and the New Keynesian models—money as a measurable magnitude plays
no role at all, but I hope we can do better than this in the future.”

This paper is one of the many attempts to let money play the role that Lucas refers to. The model
here is actually a descendant of one of Lucas’s early monetary models, Lucas (1980). Here, outside
money (reserves) is an input for inside money creation (deposits and loans). The current attempt
tries to be explicit about the implementation of MP. The novelty is that MP operates by controlling
spreads. If we are open to accepting that idea, we may challenge some traditional views. For ex-
ample, we may challenge the idea that MP is long-run neutral31 and that inflation and monetary

31This feature is also true in other incomplete market economies with money; the reason is not the spread, but the
effect of real monetary balances on credit markets.
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aggregates are tied together, which represents two working restrictions in conventional empirical
work. The model rationalizes several empirical regularities. For example, the model rationalizes
the presence of a liquidity effect and a higher loan than deposit rate elasticity to policy changes. A
normative message is that managing spreads is desirable: although spreads limit risk sharing, they
may improve efficiency. In the case of a credit crunch, countercyclical spreads implemented via open
market operations are a desirable policy that does not compromise inflation. Hence, the advice to
remain with active corridor systems.
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Appendix

A Accounting in the Model

A.1 Balance Sheets

Household Balance Sheet. The household’s balance sheet in in nominal terms is structured as:

Assets Liabilities
mh

t lh
t

ah
t Ptst

.

Bank Balance Sheet. The balance sheet of an individual bank is structured as:

Assets Liabilities
mb

t ab
t

lb
t

.

CB Balance Sheet. The balance sheet of the CB is structured as:

Assets Liabilities

L f
t Mt

Et

Accounting of OMO. To interpret OMO as purchases of government debt, consider Ft as an outstanding amount of
nominal bonds issued by a fiscal authority. Let Fcb

t < Ft be the stock of bonds held at the CB. In that case, the balance
sheet of the consolidated government is

Assets Liabilities
Fcb

t Mt + Ft

Et

=

Assets Liabilities
Fcb

t − Ft Mt

Et

.

Thus, L f
t = Fcb

t − Ft < 0 is the stock of government bonds held by banks and Et is the stock of government liabilities
net of CB purchases. A conventional open-market operation is simply an increase in Fcb

t funded with an increase in
Mt. From the government’s income flow, we can see that this operation would yield profits to the CB if there’s a spread
il
t > im

t . Figures A.1 and A.1 present the consolidated balance sheets.

Monetary Aggregates. The monetary aggregates are given by, Mt, the monetary base, M0t, the currency and M1t ≡
Ab

t + M0t, the highest monetary aggregate.

Timeline of Interbank transactions. Figure A.1 presents the accounting for banks, within a ∆ time interval. Unlucky
banks get hit by negative withdrawal shocks, which can lead them to a negative balance of reserves in the period. That



Money Mt

Deposits At =´ ∞
0 s f (s, t)dsLoans Lt =´ 0

s̄ (−s) f (s, t)ds
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Et = −Mt

HH’s Net Asset Position

Figure 14: Baseline Bank Balance Sheet
.
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Et = L f

t −Mt

All Loans´ 0
s̄ (−s) f (s, t)ds
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t

Loans held
by Banks Lb

t

Mt

L f
t HH Assets

´ ∞
0 s f (s, t)ds

Bank Assets Bank Liabilities

Figure 15: Bank Balance Sheet under ZLB/OMO
.

bank mus cover the position by the end of the interval by borrowing funds from other banks, or from the discount
window.
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A.2 Endowment Choice

The household’s optimal policy is easy to characterize. The choice between risky and safe endowments is separable from
the consumption and portfolio choices. The only portfolio choice is the currency-deposit composition when wealth is
positive. This choice depends only on the nominal deposit rate: households hold no currency when the nominal deposit
rate is positive. Households they are indifferent between currency and deposits only if the nominal deposit rate is zero,
and they strictly prefer currency if deposits are negative. The latter case never occurs in equilibrium. Consumption is
given by a simple first-order condition: U′ (c) = Vs. Finally, the risky endowment is chosen whenever:

Y (H)−Y (L)
1
2 σ2(H)

≥ −Vss

Vs
= γ

cs (s, t)
c (s, t)

.

The interpretation of this rule is that as long as the precautionary motive is not too strong, households prefer the risky
endowment.

A.3 Flow of Funds Identities

Lemma 2 If the deposit, loans and money markets clear, then:

Pt

ˆ ∞

0
s f (s, t)ds = −Pt

ˆ 0

s̄
s f (s, t)ds− Et. (24)

Proof. The deposits and loans markets clearing condition requires:

Ab
t =

ˆ ∞

0
ah

t (s) f (s, t)ds (25)

Lb
t + L f

t =

ˆ 0

s̄
lh
t (s) f (s, t)ds, (26)

and clearing in the money market requires:

Mb
t + M0t = Mt (27)

We also have that the budget constraint (balance sheet) of banks satisfies the following identity:

Ab
t = Lb

t + Mb
t . (28)

Real household assets are held as nominal deposits or currency, hence:

Pt

ˆ ∞

0
s f (s, t)ds =

ˆ ∞

0
ah

t (s) f (s, t)ds + M0t. (29)

and, similarly for liabilities:

−Pt

ˆ 0

s̄
s f (s, t)ds =

ˆ 0

s̄
lh
t (s) f (s, t)ds. (30)

Once we combine (25), (26) and (28), we obtain a single condition:

ˆ ∞

0
ah

t (s) f (s, t)ds =
ˆ 0

s̄
lh
t (s) f (s, t)ds− L f

t + Mb
t . (31)
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This condition can be expressed in terms of real household wealth, with the use of (29) and (30):

Pt

ˆ ∞

0
s f (s, t)ds = −Pt

ˆ 0

s̄
s f (s, t)ds− L f

t + Mb
t + M0t.

If we use the money market clearing-condition, (15), and employ the definition of net-asset position of the CB, we obtain
(24). QED.
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B Interbank-Market Equilibrium and Implementation Figures

The parameter λ captures the matching efficiency of the interbank market.32 According to Bianchi and Bigio (2017b), the
corresponding trading probabilities for surpluses and deficit positions along a trading session are:

ψ+ (θ) ≡

1− e−λ if θ ≥ 1

θ
(
1− e−λ

)
if θ < 1

, ψ− (θ) ≡

 1−e−λ

θ if θ > 1

1− e−λ if θ ≤ 1
.

The resulting average interbank market rate is determined by the average of Nash bargaining over the positions and is
given by:

i f
(θ, im, ι) ≡


im + ι−

((
θ̄(θ)

θ

)η
− 1
) (

θ
θ−1

) (
ι

eλ−1

)
if θ > 1

im + ι(1− η) if θ = 1

im + ι−
(

1−
(

θ̄(θ)
θ

)η) ( θ/θ̄(θ)
1−θ

) (
ι

eλ−1

)
if θ < 1

, (32)

and the average liquidity-yield functions are

χ+ (θ, ι) = ι

(
θ̄ (θ)

θ

)η
(

θη θ̄ (θ)1−η − θ

θ̄ (θ)− 1

)
and χ− (θ, ι) = ι

(
θ̄ (θ)

θ

)η
(

θη θ̄ (θ)1−η − 1
θ̄ (θ)− 1

)
, (33)

where η is a parameter associated with the bargaining power of banks with reserve deficits, and θ̄ (θ) is the end-of-day
market tightness:

θ̄ (θ) =


1 + (θ − 1) exp (λ) if θ > 1

1 if θ = 1(
1 +

(
θ−1 − 1

)
exp (λ)

)−1 if θ < 1

. (34)

Thus, the path for
{

ψ+
t , ψ−t , ī f

t , χ+
t , χ−t

}
is given by ψ+

t ≡ ψ+ (θt) , ψ−t ≡ ψ− (θt), ī f
t ≡ ī f (θt, im

t , ιt), χ+
t ≡ χ+ (θt, ιt) and

χ−t ≡ χ− (θt, ιt). In the paper, we set η = 1/2. By replacing θ̄ (θ) with (34) and setting θ < 1, equations (32) and (33)
reduce to (2) and (3).

32This can be shown very easily using a differential form.
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B.1 Additional Implementation Figures: CB Income

1
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4

5

6

10-3

Figure 16: Composition of CB profit margins given Λ
Note: This figure plots the components of CB’s profits over deposits as a function of liquidity ratio.

B.2 Additional Implementation Figures: Spread and Negative Interest on Re-

serves
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(a) Equilibrium Rates
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(b) Equilibrium Spread

Figure 17: Negative Interest on Reserves and the DZLB.
Note: This figure depicts the equilibrium rates and spread as a function of interest on reserves under DZLB. All the rates and spread are expressed in
basis points.
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B.3 Fisher Equation Decomposition

0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Inflation
Nominal Deposit Rate
Real Deposit Rate
Inflation Target

(a) Decomposition of Fisher Equation

Figure 19: Transition Dynamics of Fisher Equation Components under the Implementation of a
Spread Reduction via OMO
Note: This figure reports the responses of inflation, nominal deposit rate, real deposit rate and inflation target according to Fisher equation decompo-
sition, after the credit spread reduction implementation via OMO in Section 5.3.
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C Fiscal Transfers in Response to a Shock

The transition path of the fiscal transfer Tt, in any experiment, is designed to close the gap between steady-state value
due to shock at a constant rate.

Transfer Shock. When we study fiscal transfers, we adopt the following rule within the duration of the program. Given
any an initial increase τ̂ in lump-sum tax at t = tstart, we assume the value of lump-sum tax will decrease to steady-state
value at a constant rate within the shock periods. That is, we solve the parameter ν such that

τ̇t = ν, with t ∈
[
tstart, tpost] , τtstart = τ̂, and τtpost = 0.

The solution is

τt =
tpost − t

tpost − tstart τ̂, t ∈
[
tstart, tpost] .

For the case in (22), τ̂ is set to be −∆rss
2
´ 0

s̄ s fss (s) ds.

Fiscal Transfers after Any Shock. In post-shock periods, for any experiment, the fiscal transfer Tt is assumed to close
the gap of Et with respect to a steady state value at a constant exponential rate. This rule applies in any experiment. In
particular, given any Et at t > tpost and any time interval dt, define the auxiliary net-asset position E aux

t and the auxiliary
fiscal transfer Taux

t that satisfy

E aux
t = Ess + exp

(
−δe f · dt

)
(Et − Ess) ,

and

E aux
t = [1 + (ra

t + ∆rt) · dt] Et + ∆rt · dt ·
ˆ ∞

0
s f (s, t) ds− Taux

t · dt.

Taking dt→ 0, the solution to Taux
t is

Taux
t = ra

t · Et − ∆rt ·
ˆ 0

s̄
s f (s, t) ds + δe f (Et − Ess) .

Then the fiscal transfer Tt is given by a weighted combination of Taux
t and Ttpost , such that

Tt =

[
1−

(
δtrans)t−tpost

]
Taux

t +
(
δtrans)t−tpost

· Ttpost

= −∆rt ·
ˆ 0

s̄
s f (s, t) ds +

[
1−

(
δtrans)t−tpost

] [
ra

t · Et + δe f (Et − Ess)
]
+
(
δtrans)t−tpost

ra
ssEss,

where Ttpost = −∆rt ·
´ 0

s̄ s f (s, t) ds + ra
ssEss by the design of Tt for t ∈

[
tstart, tpost]. Note that if δtrans = 0, the fiscal

transfer is equal to the auxiliary one, which means the fiscal transfer closes the gap of net-asset position with its steady
state value at a constant exponential rate δe f .
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D Solution Algorithm

The computational method follows (Achdou et al., 2019) closely. The main differences are the presence of the net asset
position and the spread. Propositions 1, 2 and 3 are the objects we need to solve the model. They allow us to solve the
model entirely by solving for the equilibrium path of a single price. For example, we can solve the model by solving the
path for a real deposit rate ra

t . The spread ∆rt follows immediately from Proposition 1 if we know the path for ιt and
Λt set by the CB. The real spread gives us rl

t. To solve the household’s problem, we need the path for
{

ra
t , rl

t, Tt

}
. The

path for Tt is must be consistent with (20) and this yields a path for real government liabilities, Et. Then, Et together with
the evolution of f (s, t) obtained from the household’s problem, yield two sides of one equation enters (19). The rate
equilibrium rate ra

t must be the one that solves (19) implicitly.

Note that given the real credit spread ∆r and government’s net-asset position E , the HJB equation (12), KF equation (13)
and the real market clearing condition (19) imply that the equilibrium solution to the real markets is independent of
implementation variables. Thus we divide the solution algorithm into two parts: the part of real market and the part
of implementation. For the part of real market, the path of credit spread is taken as given. For the part of implemen-
tation, we simply use the equations (8) in Proposition 1 to show that the target credit spread is within the range of our
calibration. Our algorithm closely follows the finite difference in Achdou et al. (2017).

D.1 Solution Algorithm: Stationary Equilibrium in Real Markets

We need to compute the value of deposit rate that satisfies the real market clearing condition (19) in steady state. We use
an iteration algorithm that proceeds as follows. First, we take the real credit spread ∆r as given, consider an initial guess
of deposit rate ra,0, total output Y, and fiscal transfer T, and set the iteration index j, l := 0. Then:

1. Individual household’s problem. Given ra,l , Y j,l and T j,l , solve the household’s value function V j,l (s) from HJB
equation (12) using a finite difference method. Calculate the consumption function cj,l (s) and production technology
choice uj,l (s).

2. Aggregate distribution. Given µj,l (s) and cj,l (s), solve the KF equation (13) for f j,l (s) using a finite difference
method.

3. Fiscal transfer and total output. Given cj,l (s), f j,l (s), calculate aggregate output

Y j+1,l =

ˆ ∞

s̄
y
(

uj,l (s)
)

f j,l (s) ds

and fiscal transfer

T j+1,l = ra,l · e f ·
ˆ ∞

0
s f j,l (s) ds− ∆r ·

ˆ 0

s̄
s f j,l (s) ds.

If
{

Y j+1,l , T j+1,l
}

is close enough to
{

Y j,l , T j,l
}

, proceed to 4. Otherwise, set j := j + 1 and proceed to 1.

4. Equilibrium deposit rate. Given f j,l (s), compute the net supply of real financial claims

S
(

ra,l
)
=

ˆ ∞

s̄
s f j,l (s) ds + e f ·

ˆ ∞

0
s f j,l (s) ds

and update the interest rate: if S
(

ra,l
)
> 0, decrease it to ra,l+1 < ra,l and vice versa. If S

(
ra,l
)

is close enough to 0, stop.
Otherwise, set l := l + 1 and j = 0, and proceed to 1.
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D.1.1 Solution to the HJB equation

The household’s HJB equation is solved using an upwind finite difference scheme similar to Achdou et al. (2017). It
approximates the value function V (s) on a finite grid with step ∆s : s ∈ {s1, ..., sI}, where si = si−1 +∆s = s1 + (i− 1)∆s
for 2 ≤ i ≤ I. The bounds are s1 = s̄ and sN = smax, such that ∆s = (smax − s̄) / (I − 1). The upper bound smax is an
arbitrarily large number such that f (s, t) = 0 for all s > smax. We use the short-hand notation Vi ≡ V (si), and similarly
for the policy function ui and ci.

Note that the HJB involves the first and second derivatives of the value function, V′i = V′ (si) and V′′i = V′′ (si). The
first derivative is approximated with either a forward (F) or a backward (B) approximation,

V′i ≈ ∂FVi ≡
Vi+1 −Vi

∆s
, (35)

V′i ≈ ∂BVi ≡
Vi −Vi−1

∆s
. (36)

The second-order derivative is approximated by a central difference:

V′′i ≈ ∂ssVi ≡
Vi+1 − 2Vi + Vi−1

(∆s)2 . (37)

Let the superscript n be the iteration counter. The HJB equation is approximated by the following upwind scheme,

Vn+1
i −Vn

i
∆

+ ρVn+1
i = U (cn

i ) + ∂FVn+1
i ·

(
µn

i,F
)+

+ ∂BVn+1
i ·

(
µn

i,B
)−

+
1
2
(σn

i )
2 ∂ssVn+1

i , (38)

where

µn
i,F = r (si) · si − (∂FVn

i )
−1/γ + y (un

i ) + T, (39)

µn
i,B = r (si) · si − (∂BVn

i )
−1/γ + y (un

i ) + T, (40)

and
(
σn

i
)2

= σ2 (un
i
)
.

The optimal consumption is set to

cn
i = (∂Vn

i )
−1/γ , (41)

where

∂Vn
i = ∂FVn

i 1µn
i,F>0 + ∂BVn

i 1µn
i,B<0 + ∂V̄n

i 1µn
i,F≤01µn

i,B≥0.

In the above expression, ∂V̄n
i =

(
c̄n

i
)−γ where c̄n

i is the consumption level such that µn
i = 0, i.e.,

c̄n
i = r (si) · si + y (un

i ) + T.

The choice of production technology un
i is such that un

i = H if and only if

U (cn
i (H)) + ∂FVn+1

i ·
(
µn

i,F (H)
)+

+ ∂BVn+1
i ·

(
µn

i,B (H)
)−

+
1
2
(σn

i (H))2 ∂ssVn+1
i (42)

≤U (cn
i (L)) + ∂FVn+1

i ·
(
µn

i,F (L)
)+

+ ∂BVn+1
i ·

(
µn

i,B (L)
)− ,

where cn
i (H) denotes the optimal consumption choice given u = H, and the other variables are defined in a similar way.
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Substituting the definition of the derivatives (35), (36) and (37), equation (38) is

Vn+1
i −Vn

i
∆

+ ρVn+1
i = U (cn

i ) +
Vn+1

i+1 −Vn+1
i

∆s
·
(
µn

i,F
)+

+
Vn+1

i −Vn+1
i−1

∆s
·
(
µn

i,B
)−

+
1
2
(σn

i )
2 Vn+1

i+1 − 2Vn+1
i + Vn+1

i−1

(∆s)2 .

Collecting terms with the same subscripts on the right-hand side

Vn+1
i −Vn

i
∆ + ρVn+1

i = U
(
cn

i
)
+ αn

i Vn+1
i−1 + βn

i Vn+1
i + ζn

i Vn+1
i+1

αn
i = − (µn

i,B)
−

∆s +
(σn

i )
2

2(∆s)2

βn
i = − (µn

i,F)
+

∆s +
(µn

i,B)
−

∆s − (σn
i )

2

(∆s)2

ζn
i =

(µn
i,F)

+

∆s +
(σn

i )
2

2(∆s)2

(43)

Note that α1 = 0, and we set ζ I = 0 for the stability of the algorithm. Equation (43) is a system of I linear equations
which can be written in the following matrix form:

1
∆

(
Vn+1 −Vn

)
+ ρVn+1 = Un + AnVn+1

where

An =



βn
1 ζn

1 0 0 · · · 0
αn

2 βn
2 ζn

2 0 · · · 0
0 αn

3 βn
3 ζn

3 · · · 0
...

. . . . . . . . . . . .
...

0 0
. . . αn

I−1 βn
I−1 ζn

I−1
0 0 · · · 0 αn

I βn
I


, Vn+1 =



Vn+1
1

Vn+1
2

Vn+1
3
...

Vn+1
I−1

Vn+1
I


, Un =



U
(
cn

1
)

U (cn
2 )

U
(
cn

3
)

...
U
(
cn

I−1
)

U
(
cn

I
)


. (44)

The system in turn can be written as

BnVn+1 = dn (45)

where Bn =
(

1
∆ + ρ

)
I−An and dn = Un + 1

∆ Vn.

The algorithm to solve the HJB is as follows. We take the interest rate {r (si)}I
i=1, total output Y and fiscal transfer T as

given and begin with an initial guess
{

V0
i
}I

i=1. Set n = 0. Then:

1. Compute
{

∂FVn
i , ∂BVn

i
}I

i=1 using (35) and (36).

2. Compute
{

cn
i , un

i
}I

i=1 using (41) and (42) and
{

µn
i,F, µn

i,B

}I

i=1
using (39) and (40).

3. Find
{

Vn
i
}I

i=1 solving the linear system of equations (45).

4. If
{

Vn+1
i

}
is close enough to

{
Vn

i
}

, stop. Otherwise set n := n + 1 and proceed to step 1.

D.1.2 Solve KFE in Stationary Equilibrium

The stationary distribution of real wealth satisfies the Kolmogorov Forward equation:

0 = − ∂

∂s
[µ (s) f (s)] +

1
2

∂2

∂s2

[
σ2

s (s) f (s)
]

, (46)
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1 =

ˆ ∞

s̄
f (s) ds. (47)

We also solve the equation using a finite difference scheme. We use the notation fi ≡ f (si) .The system can be expressed
as

0 = −
fi

(
µn

i,F

)+
− fi−1

(
µn

i−1,F

)+
∆s

−
fi+1

(
µn

i+1,B

)−
− fi

(
µn

i,B

)−
∆s

+
1
2

(
σn

i+1
)2 fi+1 − 2

(
σn

i
)2 fi +

(
σn

i−1
)2 fi−1

(∆s)2 ,

or equivalently

fi−1ζi−1 + fiβi + fi+1αi+1 = 0.

The linear equations system can be written as

ATf = 0, (48)

where AT is the transpose of A = limn→∞ An. Notice that An is the approximation of the operator A and AT is the
approximation of the adjoint operator A∗. In order to impose the normalization constraint (47) we replace one of the
entries of the zero vector in equation (48) by a positive constant. We solve the system (48) and obtain a solution f̂. Then
we renormalize as

fi =
f̂i

∑I
i=1 f̂i∆s

.

The algorithm to solve the stationary distribution is as follows.

1. Given the interest rate {r (si)}I
i=1, total output Y and fiscal transfer T, solve the HJB equation to obtain an estimate of

the matrix A.

2. Given A find the aggregate distribution f.

D.2 Solution Algorithm: Transition Dynamics

The equilibrium transition path is solved in finite horizon [0, T], assuming that the terminal state of the economy is
steady state. We use an iterative algorithm as follows. Given the initial distribution of real wealth f0 (s) and the path of
exogenous shocks (e.g. equation (22) for a fiscal transfer shock, or the path of real credit spread ∆rt), guess a function
ra,0

t , total output Yt, and fiscal transfer Tt, and set the iteration index j, l := 0. Then

0. The asymptotic steady state. The asymptotic steady-state value function and real wealth distribution are calculated
from Section D.1.

1. Individual household’s problem. Given ra,l
t , Y j,l

t and T j,l
t , and the terminal condition V j,l (s, T) = Vss (s), solve the HJB

equation (12) backward in time to compute the path of V j,l (s, t). Calculate the production technology choice uj,l (s, t)
and consumption policy function cj,l (s, t).

2. Aggregate distribution. Given cj,l (s, t) and uj,l (s, t), solve the Kolmogorov Forward equation (13) with initial condi-
tion f j,l (s, 0) = f0 (s) forward in time to compute the path for f j,l (s, t).
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3. Fiscal transfer and total output. Given cj,l (s, t), f j,l (s, t), calculate the path of aggregate output,

Y j+1,l
t =

ˆ ∞

s̄
y
(

uj,l (s, t)
)

f j,l (s, t) ds,

and the path of fiscal transfer

T j+1,l
t = ra,l

t · Et − ∆rt ·
ˆ 0

s̄
s f j,l (s, t) ds.I f

{
Y j+1,l

t , T j+1,l
t

}T

t−0

is close enough to
{

Y j,l
t , T j,l

t

}T

t=0
, proceed to 4. Otherwise, set j := j + 1 and proceed to 1.

4. Equilibrium deposit rate. Given f j,l (s, t), calculate

S
(

ra,l
t , t

)
=

ˆ ∞

s̄
s f j,l (s, t) ds + Et

and update ra,l+1
t = ra,l

t − ξ
∂S
(

ra,l
t ,t
)

∂t for each t, where ξ > 0 is a parameter of update. If maxt

{∣∣∣S (ra,l
t , t

)∣∣∣} is close
enough to 0, stop. Otherwise, set l := l + 1 and j = 0, and proceed to 1.

D.2.1 Solution to the HJB Equation

The dynamic HJB equation (12) can be approximated using an upwind scheme as

ρVn = Un+1 + An+1Vn +
1

∆t

(
Vn+1 −Vn

)
,

where An+1 is defined in an analogous fashion to (44), and ∆t = T/N denotes the time length of each discrete period.
We start with the terminal condition VN = Vss and solve the path of value function backward, where Vss denote the
solution to stationary equilibrium obtained from Section D.1. For each n = 0, 1, ..., N− 1, define Bn =

(
1

∆t + ρ
)

I−An+1

and dn+1 = Un+1 + 1
∆ Vn+1,and we can solve

Vn = (Bn)−1 dn+1.

D.2.2 Solution to the KF Equation

Let {An}N−1
n=1 be the solution obtained from Section D.2.1. It is the approximation to the operator A. Using a finite

difference scheme similar to the one we employed in Section D.1.2, we obtain:

fn+1 − fn

∆t
= (An)T fn+1,

which implies

fn+1 =
(

I− ∆t (An)T
)−1

fn, n = 0, 1, ..., N − 1. (49)

We start from the initial period condition f0 = f0 and solve the KFE forward using (49).
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E Supplementary Section - Alternative Implementations

Components of Fisher Equation - Implementation of a Spread via OMO. Figure 19 shows the decomposition of in-
flation and the real and nominal deposit rates produced by the implementation of the spread in Figure 8. The increase
in real rates follows from the dynamics of the real credit spread. Deposit rates are constant until the OMO is actually
carried out. Inflation follows the difference between both paths. The rate on reserves is set to implement a zero inflation
target in the long-run.

Implementation of a Spread via Reduction in Corridor Rates. Figure 20 describes the details of a reduction in ι that
implements the same spread as the OMO in Figure 8. The figure also reports the decomposition in Figure 19. The
qualitative pattern is almost identical, although the quantities are not the same. Since real spreads are independent of
inflation, the real deposit rate is the same. However, the nominal deposit rate decreases by slightly more than with an
OMO. Notice how in Panel (b) there is no increase in the quantity of reserves.

Implementation of a Spread via Increase of im at the DZLB. Figure 21 describes the details of an increase in im that
implements the same spread as the OMO in Figure 8 and the reduction in ι in Figure 20. The qualitative pattern is now
different. First, for the implementation to work at all, the economy must be at the DZLB, because only in this region do
changes in im that keep ι constant have real effects. At the DZLB currency holdings—Panel (b)—are positive. Since im is
negative, but deposit rates are positive, as in the previous example, this implementation features steady-state deflation.

Here, the increase in the interest on reserves, once on negative territory, also produce a deflation since the pattern for
real rates is the same. Different from the previous examples, at the DZLB, the deposit rate is flat at zero. The increase in
interest on reserves reduces the loans rate, because it acts like a reduction the tax-like effect of negative reserve rates. We
see also that the currency ratio of the economy falls.
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F Proofs

F.1 Proof of Proposition 1

Take {Λt, im
t , ıt} as given. By equations (3) and (5), {χ+, χ−} are also given. Consider an individual bank’s problem:

max
a,l≥0

il
tl + im

t (a− l)− ia
t a + E [χt[b(a, a− l)]]

max
a,l≥0

il
tl + im

t (a− l)− ia
t a +

1
2

[
χ+(Λt, ıt)(a− l − $a + δa) + χ−(Λt, ıt)(a− l − $a− δa)

]
max
a,l≥0

[
il
t− im

t −
1
2
(
χ+(Λt, ıt) + χ−(Λt, ıt)

) ]
l−
[
ia
t − im

t −
1
2
(
(1− $ + δ)χ+(Λt, ıt) + (1− $− δ)χ−(Λt, ıt)

) ]
a

The problem is linear. Thus, a necessary condition for a positive and finite supply of loans and deposits are conditions
(6) and (7). Since in equilibrium the demand of deposits and loans is finite, the result follows. Substitute (6) and (7),
and the bank earns zero expected profits from any choice of {a, l}. Now, observe that by, definition of real rates, rl

t =

il
t − Ṗt/Pt and ra

t = ia
t − Ṗt/Pt. Hence, ∆rt = il

t − ia
t . Thus, the expression for the real spread follows immediately from

subtracting the right-hand side of (7) from the right-hand side of (6). This concludes the proof of Proposition 1. QED.

F.2 Proof of Lemma 1

We use the method of change of variables. Denote x = (θ + (1− θ) exp (λ))1/2, which implies θ =
exp(λ)−x2

exp(λ)−1 . Observe
that for θ ∈ [0, 1], thus, the domain of x is [1, exp (λ/2)]. Also, x is strictly decreasing in θ. Therefore, to prove the
lemma, it suffices to derive the necessary and sufficient condition of spread monotonically decreasing in x for any x ∈
[1, exp (λ/2)].

Replace θ with its expression in x in (3), the liquidity-yield function is rewritten as

χ+ =
ι

exp (λ)
· exp (λ)− x2

x + 1

and

χ− =
ι

exp (λ)
· x + exp (λ)

x + 1
.

Both χ+ and χ− are decreasing in x, which implies they are both decreasing in Λ. Replacing χ+ and χ− with the above
expressions in (8), the spread is rewritten as

il − ia =
ι

2 exp (λ)

[
2$ (exp (λ)− 1)

x + 1
− ($− δ) x + 2$

]
.

Taking the derivative with respect to x yields,

∂
(

il − ia
)

∂x
= − ι

2 exp (λ)

[
2$ (exp (λ)− 1)

(x + 1)2 + ($− δ)

]
.

Note that the derivative is monotonically increasing in x. Thus the necessary and sufficient condition to sign the deriva-
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tive in the entire range is obtain a condition at the boundary:

∂
(

il − ia
)

∂x

∣∣∣∣∣∣
x=exp(λ/2)

≤ 0.

Calculating the derivative yields:

ρ ≥ 1 + exp (−λ/2)
3− exp (−λ/2)

δ,

the expression in the Lemma. QED.

F.3 Proof of Proposition 2

1. We first prove that if (19) holds, then the goods market clears, which verifies Walras’s law for a continuous time
setting. Observe that if condition (19) holds, then taking time derivatives we obtain:

0 =
∂

∂t

[ˆ ∞

s̄
s f (s, t)ds

]
+

∂

∂t
[Et] ,

Then, we have:

0 =

ˆ ∞

s̄
s

∂

∂t
[ f (s, t)] ds +

∂

∂t
[Et] ,

but recall that if the KFE equation holds, then:

0 =

ˆ ∞

s̄
s
[
− ∂

∂s
[µ (s, t) f (s, t)] +

1
2

∂2

∂s2

[
σ2

s (s, t) f (s, t)
]]

ds +
∂

∂t
[Et] .

Now, observe that, if we employ the integration by parts formula:

−
ˆ ∞

s̄
s

∂

∂s
[µ (s, t) f (s, t)] ds = −sµ (s, t) f (s, t)|∞s̄ +

ˆ ∞

s̄
µ (s, t) f (s, t) ds.

We know that

−sµ (s, t) f (s, t)|∞s̄ = 0

and that
ˆ ∞

s̄
µ (s, t) f (s, t) ds =

ˆ ∞

s̄

[
rt (s)

(
s−mh (s, t) /Pt

)
− Ṗt/Pt ·mh (s, t) /Pt − c (s, t) + h (u (s, t) , t)

]
f (s, t) ds.

First, note that:

ˆ ∞

s̄
rt (s) s f (s, t) ds =

ˆ ∞

s̄
rl

t · s f (s, t) ds−
ˆ ∞

0
∆rt · s f (s, t) ds.
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Second, the household’s problem solution implies ia
t ·mh (s, t) = 0 for any (s, t), and mh (s, t) = 0 for any s ≤ 0. Then we

have
ˆ ∞

s̄

(
rt (s) + Ṗt/Pt

) (
mh (s, t) /Pt

)
f (s, t) ds

=il
t

ˆ 0

s̄

mh (s, t)
Pt

f (s, t) ds + ia
t

ˆ ∞

0

mh (s, t)
Pt

f (s, t) ds

=0.

Third, by definition,

ˆ ∞

s̄
(−c (s, t) + h (u (s, t) , t)) f (s, t) ds = Yt − Ct + Tt.

Finally, the term:

1
2

ˆ ∞

s̄
s · ∂2

∂s2

[
σ2

s (s, t) f (s, t)
]

ds =
1
2

s · ∂

∂s

[
σ2

s (s, t) f (s, t)
]∣∣∣∣∞

s̄
− 1

2

ˆ ∞

s̄

∂

∂s

[
σ2

s (s, t) f (s, t)
]

ds

= 0− 1
2

σ2
s (s, t) f (s, t)

∣∣∣∞
s̄
= 0.

Thus, we are left with:

rl
t

ˆ ∞

s̄
s f (s, t) ds− ∆rt

ˆ ∞

0
s f (s, t) ds + Yt − Ct + Tt +

∂

∂t
[Et] = 0.

But then, given the law of motion for real equity (20),

∂

∂t
[Et] + rl

t

ˆ ∞

s̄
s f (s, t) ds− ∆rt

ˆ ∞

0
s f (s, t) ds + Tt = 0.

This implies the goods market clearing condition.

2. Next, we proof that if (19) holds, the deposit and loans market must clear. The accounting identities in Section 3.2 and
Lemma 2, show that if all markets clear, the real market clears. Then, by dividing (24) by the price level, we obtain:

−
ˆ 0

s̄
s f (s, t)ds =

ˆ ∞

0
s f (s, t)ds + Et, for t ∈ [0, ∞).

The proposition establishes that if this condition holds, all asset markets clear. To proceed with the proof, argue that if
the condition holds, but one of the markets doesn’t clear, we reach contradiction.

To see that, observe that real household’s assets position equations (29) and (30), and (24) imply

ˆ 0

s̄
lh
t (s) f (s, t)ds =

ˆ ∞

0
ah

t (s) f (s, t)ds + M0t + L f
t −Mt, for t ∈ [0, ∞). (50)

Re-arranging terms leads, and using the money-market clearing condition, we obtain:

Mb
t +

ˆ 0

s̄
lh
t (s) f (s, t)ds− L f

t =

ˆ ∞

0
ah

t (s) f (s, t)ds.
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Now, recall that Mb
t = −Lb

t + Ad
t . Thus,(ˆ 0

s̄
lh
t (s) f (s, t)ds− L f

t − Lb
t

)
=

ˆ ∞

0
ah

t (s) f (s, t)ds− Ad
t .

This equation guarantees that if there is no clearing in the loans market, there is no clearing in the deposit market by that
same amount. Assume there is a deviation from market clearing in the amount ε. Then, an income ∆r · ε would not be
accounted. However, since all the spread is earned by the CB, it must be that ε = 0. QED.

F.4 Proof of Proposition 3

The nominal profits of the CB are given by:

π
f
t = il

tL
f
t − im

t (Mt −M0t) + ιt
(
1− ψ−t

)
B−t .

Note that the earnings from discount-window loans equal the average payment in the interbank market, and thus:

ιt
(
1− ψ−t

)
B−t = −E [χt (b (At, At − Lt))] . (51)

By Proposition 1, banks earn zero profits in expectation. Thus,

−E [χt (b (At, At − Lt))] = il
tL

b
t + im

t Mb
t − ia

t Ab
t . (52)

Thus, substituting (51) and (52) into the expression for π
f
t above yields:

π
f
t = il

tL
f
t − im

t (Mt −M0t) + il
tL

b
t + im

t Mb
t − ia

t Ab
t .

= il
tL

h
t − ia

t Ah
t ,

where we used the clearing condition in the money market, Mb
t + M0

t = Mt, the deposit market, Ab
t = Ah

t , and the loans
market, Lh

t = Lb
t + L f

t . Now, observe that:

π
f
t = −il

tPt

ˆ 0

s̄
s f (s, t)ds− ia

t

(
Pt

ˆ ∞

0
s f (s, t)ds−M0t.

)
,

but we know from the household’s problem that ia
t M0t=0. Hence, profits are given by:

π
f
t = −il

tPt

ˆ 0

s̄
s f (s, t)ds− ia

t Pt

ˆ ∞

0
s f (s, t)ds.

Divide (24) by the price level to obtain:

−
ˆ 0

s̄
s f (s, t)ds =

ˆ ∞

0
s f (s, t)ds + Et.

and thus:

π
f
t =

(
il
t − ia

t

)
Pt

ˆ ∞

0
s f (s, t)ds + il

tEt = ∆rtPt

ˆ ∞

0
s f (s, t)ds + il

tEt.
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Dividing both sides by the price level leads to:

π
f
t

Pt
= ∆rt

ˆ ∞

0
s f (s, t)ds + il

tEt = ∆rt

ˆ ∞

0
s f (s, t)ds +

(
ra

t + ∆rt +
Ṗt

Pt

)
Et. (53)

Then, note that:

dEt =
dEt

Pt
− Ṗt

Pt
Et =

π
f
t

Pt
− Tt −

Ṗt

Pt
Et.

But, a substitution of (53) yields:

dEt =

(
(ra

t + ∆rt)Et + ∆rt

ˆ ∞

0
s f (s, t)ds− Tt

)
dt.

This proves Proposition 3. QED.

F.5 Proof of Proposition 4

It suffices to show the equations for real credit spread and inflation rate. Along an equilibrium path for {ra
t , Et, ft, ∆rt, Tt}

the set of implementable nominal interbank rates and inflation rates is the set of {Ṗt/Pt, ī f
t } where

Ṗt

Pt
= il

t − (∆rt + ra
t ) = im

t +
1
2

[
χ+(Λt, ıt) + χ−(Λt, ıt)

]
− ∆rt − ra

t (54)

ī f
t = χ+(Λt, ıt)/ψ+(θ(Λt)) + im

t (55)

for any {im
t , ıt,L f

t } such that

∆rt = rl
t − ra

t = il
t − Ṗt/Pt − ia

t + Ṗt/Pt

= ∆it = $
χ+(Λt, ıt) + χ−(Λt, ıt)

2
+ δ

χ−(Λt, ıt)− χ+(Λt, ıt)

2
,

L f
t ≤ −

ˆ 0

s̄
s f (s, t)ds, (ıt, im

t ) ∈ R2
+.

Equations (54) and (55) steams form definitions for nominal, real and interbank rate. The implementation constraint
L f

t ≤ −
´ 0

s̄ s f (s, t)ds simply tells that there must be enough private liabilities to set L f
t . QED.

F.6 Proof of Corollary 2

It suffices to show that ∆rt = 0 when im ≥ 0 and Λ ≥ ρ + δ. Note that the interbank market is satiated with reserves
if Λt ≥ Λ̄ = $ + δ. Then the interbank market tightness is θ(Λt) = 0 for any Λt ≥ Λ̄ = $ + δ. First, we must take the
following limit

lim
θ→0

θ̄(θ)

θ
= lim

θ→0

1
θ[1 + (θ−1 − 1) exp(λ)]

= lim
θ→0

1
θ + (1− θ) exp(λ)

= exp(−λ),
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where θ̄(θ) is given by (34) in Appendix B. Then, given (η, λ), for any Λt ≥ Λ̄, (33) implies:

χ+(Λt, ıt) = lim
θ→0

ıtθ

(
θ(θ)

θ

)η(
[θ(θ)/θ]1−η − 1

θ(θ)− 1

)
= 0,

χ−(Λt, ıt) = lim
θ→0

ıt

(
θ(θ)

θ

)η(
θ[θ(θ)/θ]1−η − 1

θ(θ)− 1

)
= ıt exp(−ηλ).

Although χ−t > 0, there are not banks with reserves deficit, thus

E
{

χt[b(a, a− l)]|θt

}
= χ+(Λt, ıt) (a− l − $a) = 0

Hence, the bank’s problem becomes

πb
t = max

a,l
(il

t − im
t )lt − (ia

t − im
t )at

and by FOCs we obtain that im
t = ia

t = il
t = ī f

t . QED.

F.7 Proof of Proposition 5

1. [Corridor Regime] In this case, Λt = ΛMB
(
Et, ft,L f

t

)
, θ (Λt) ∈ (0, 1),

{
il , ia, ∆r

}
is given by (6), (7) and (8), and

{χ+, χ−} is given by (3). Since ΛMB
(
Et, ft,L f

t

)
is increasing in L f

t , then the proof of Lemma 1 in Appendix F.2 implies{
∂il

∂L f
t

, ∂ia

∂L f
t

, ∂∆r
∂L f

t

}
< 0. By (6), (7) and (8) one can observe that ∂il

∂imt
= ∂ia

∂imt
= 1 and ∂∆r

∂imt
= 0. By (3), both χ+ and χ− are

proportional to ι, thus the elasticities of
{

il , im, ∆r
}

with respect to ιt are all equal to 1.

2. [Floor Regime] In this case, θ (Λt) = 0 and the proof of Corollary 2 establishes all the results.

3. [DZLB and negative im regime] In this case, the definition of Λzlb implies that ia ≡ 0 and Λt is independent of L f
t .

Thus L f
t has no impact on

{
il , ia, ∆r

}
. The equilibrium

{
il , ∆r

}
are still given by (6) and (8). To prove the effects of

{im
t , ιt} on

{
il , ∆r

}
, it suffices to show the sign of ∂il

∂im and ∂il
∂ι . We take total differentiation of (7). This gives

0 =dim +
1
2
(1− $ + δ)

(
∂χ+ (θ (Λ) , ι)

∂Λ
dΛ +

∂χ+ (θ (Λ) , ι)

∂ι
dι

)
+

1
2
(1− $− δ)

(
∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
, (56)

which implies{
∂Λ
∂im ,

∂Λ
∂ι

}
> 0,

and

dil = dim +
1
2

(
∂χ+ (θ (Λ) , ι)

∂Λ
dΛ +

∂χ+ (θ (Λ) , ι)

∂ι
dι

)
+

1
2

(
∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
=

$− δ

2

(
∂χ+ (θ (Λ) , ι)

∂Λ
dΛ +

∂χ+ (θ (Λ) , ι)

∂ι
dι

)
+

$ + δ

2

(
∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
.
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Let dim > 0 and dι = 0. Then by Lemma 1 we have

∂il

∂im =
$− δ

2
· ∂χ+ (θ (Λ) , ι)

∂Λ
∂Λ
∂im +

$ + δ

2
· ∂χ− (θ (Λ) , ι)

∂Λ
∂Λ
∂im < 0.

Let dim = 0 and dι > 0. The proof of Lemma 1 in Appendix F.2 and equation (3) imply that

∂χ+ (θ (Λ) , ι)

∂Λ
<

∂χ− (θ (Λ) , ι)

∂Λ
< 0

and

∂χ− (θ (Λ) , ι)

∂ι
>

∂χ+ (θ (Λ) , ι)

∂ι
> 0.

Then equation (56) implies(
∂χ+ (θ (Λ) , ι)

∂Λ
dΛ +

∂χ+ (θ (Λ) , ι)

∂ι
dι

)
=− 1− $− δ

1− $ + δ

(
∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
<0.

Therefore,

∂il

∂ι
=

(
$ + δ

2
− 1− $− δ

1− $ + δ

$− δ

2

)
·
(

∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
=

δ

1− ρ + δ
·
(

∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
> 0.

This concludes the summary of the policy effects. QED.

F.8 Proof of Corollary 1

The discount window profits are equal to ∆rt
´ ∞

0 s f (s, t) ds since banks are competitive and earn zero profits. Given the
same real credit spread ∆rt, the equilibrium real wealth distribution f (s, t) is also same. Thus Corollary 1 is established.
QED.

F.9 Proof of Corollary 3

The proof is established by change of variables. Note that in Problem 2 with ra
t = ra

ss, ∆rt = 0 and Tss = ra
ssEss, the

households’ problem is

ρV (s, t) = max
{c}≥0,u∈{L,H}

U (c) + Vs · (ra
ss · s− c + y (u) + Tss) +

1
2

Vssσ2 (u) + V̇

= max
{c}≥0,u∈{L,H}

U (c) + Vs · (ra
ss · (s + Ess)− c + y (u)) +

1
2

Vssσ2 (u) + V̇
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subject to

st ≥ s̄ ⇔ st + Ess ≥ s̄ + Ess.

Denote s(a)
t = st + Ess, s̄(a) = s̄ + Ess and V(a)

(
s(a), t

)
= V

(
s(a) − Ess, t

)
. Then the households’ problem can be written

as

ρV(a)
(

s(a)
t , t

)
= max
{c}≥0,u∈{L,H}

U (c) + V(a)
s(a) ·

(
ra

ss · s
(a)
t − c + y (u)

)
+

1
2

V(a)
s(a)s(a)σ

2 (u) + V̇(a)

subject to s(a)
t ≥ s̄(a). This economy has the same equilibrium allocation as the original one. QED.

F.10 Proof of Proposition 6

The proof is similar to Corollary 3 and is also established by change of variables. Taking differentiation of h (t) with
respect to t gives us

0 = ḣ (t) = −Tt + ra
t · h (t) ,

which implies Tt = ra
t · h (t). Note that a policy that sets ιt = 0 or satiate banks with reserves imply ∆rt = 0. Thus denote

s(a)
t = st + h (t) ≡ st + Ess, s̄(a)

t = s̄ + h (t) ≡ s̄ + Ess and V(a)
(

s(a), t
)
= V

(
s(a) − Ess, t

)
, the household’s problem 2 with

∆rt = 0 and Tt = ra
t · h (t) can be written as

ρV(a)
(

s(a)
t , t

)
= max
{c}≥0,u∈{L,H}

U (c) + V(a)
s(a) ·

(
ra

t · s
(a)
t − c + y (u)

)
+

1
2

V(a)
s(a)s(a)σ

2 (u) + V̇(a)

subject tos(a)
t ≥ s̄(a)

t . This economy has the same equilibrium allocation as the original one, and the allocation is inde-
pendent of {Tt, Et}. QED.
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G Ramsey Problem

We first summarize the main results of this section, namely restating the Ramsey problem, setting up the Lagrangian,
and presenting the necessary conditions for optimality. We then move on to the proofs in further detail.

G.1 Summary of Main Results

For Problem 3 it is useful to rewrite the planner’s objective function as follows:

Lemma 3 The welfare criterion (23) can be expressed as

W ( f0) =

ˆ ∞

0
e−ρt
ˆ ∞

s̄
U (c (s, t)) f (s, t) dsdt. (57)

We consider the case where the planner credibly commits to a path of credit spread {∆r (t)}t∈[0,∞), but takes a steady-
state value for the net asset position as given. The optimal credit spread path is then a function of the initial distribution
f0 (s) and time. Thus, we can restate the Ramsey problem as the following value functional of planner:

WR ( f0) = max
{∆rt ,ra

t , f (·,t),V(·,t),c(·,t),u(·,t)}t∈[0,∞)

ˆ ∞

0
e−ρt
ˆ ∞

s̄
U (c (s, t)) f (s, t) dsdt, (58)

subject to the law of motion of wealth distribution (13), asset market clearing condition (19), households’ HJB equation
(12) and two first-order conditions on the choice of c (s, t) and u (s, t):

U′ (c (s, t))− ∂V (s, t)
∂s

= 0 (59)

and

u = H if and only if
Y (H)−Y (L)

1
2 σ2(H)

≥ −Vss

Vs
and s > s̃t. (60)

Note that by Walras’ law the goods market clears if and only if the asset market clears. We use the latter since under this
condition the numerical solution is more stable.

The above Ramsey problem is an optimal control problem in a suitable function space. We construct a Lagrangian to
solve the problem. As shown in the proof, the Lagrangian is given by

L (∆r, ra, f , V, c, u; f0) ≡
ˆ ∞

0
e−ρt
ˆ ∞

s̄
{U (c (s, t)) f (s, t)

+ φ (s, t)
[
− ∂

∂t
f (s, t)− ∂

∂s
[µ (s, t) f (s, t)] +

1
2

∂2

∂s2

[
σ2

s (s, t) f (s, t)
]]

+ ω (s, t)
[

U (c (s, t)) +
∂V (s, t)

∂s
· (r (s, t) s− c (s, t) + y (u (s, t)) + Tt)

+
1
2

σ2(u (s, t))
∂2V (s, t)

∂s2 +
∂V (s, t)

∂t
− ρV (s, t)

]
+ ϕ (s, t)

[
U′ (c (s, t))− ∂V (s, t)

∂s

]}
dsdt

+

ˆ ∞

0
e−ρtξ (t)

[ˆ ∞

s̄
s f (s, t) ds + e f

ˆ ∞

0
s f (s, t) ds

]
dt,
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where e−ρtφ (s, t), e−ρtω (s, t), e−ρt ϕ (s, t) and e−ρtξ (t) are the Lagrange multipliers associated to equations (13), (12), (59)
and (19). We do not incorporate (60) in Lagrangian since u (s, t) is a discrete choice variable. The necessary conditions
for optimality are first-order conditions of the Lagrangian with respect to the functions ∆r, ra, f , V, c by taking Gateaux
derivatives. The following proposition characterizes the solution to this problem based on the first-order conditions.33

Proposition 7 In addition to equations (13), (12), (19), (59) and (60), if a solution to the Ramsey problem (58) exists, the credit
spread path ∆rt and the Lagrange multipliers must satisfy

ˆ ∞

s̄
[φs (s, t) f (s, t) + Vs (s, t)ω (s, t)] ·

[
Lt + I{s<0} · s

]
ds = 0, (61)

ρφ (s, t) =
∂φ (s, t)

∂t
+ U (c (s, t)) +

∂φ (s, t)
∂s

· [r (s, t) s + ηl · y (u (s, t)) + (1− ηl)Yt − c (s, t) + Tt] (62)

+
1
2

σ2
s (s, t)

∂2φ (s, t)
∂s2 + ξ (t)

[
1 + I{s≥0}e f

]
s

+
[
(1− ηl) y (u (s, t))− I{s<0}∆rt · s + I{s≥0}r

a
t · e f · s

]
·
ˆ ∞

s̄
[φs (s, t) f (s, t) + Vs (s, t)ω (s, t)] ds,

∂ω (s, t)
∂t

= − ∂

∂s
[µ (s, t)ω (s, t)] +

1
2

∂2

∂s2

[
σ2

s (s, t)ω (s, t)
]
+

∂ϕ (s, t)
∂s

, (63)

0 =

(
U′ (c (s, t))− ∂φ (s, t)

∂s

)
f (s, t) + ϕ (s, t)U′′ (c (s, t)) , (64)

ˆ ∞

s̄
[φs (s, t) f (s, t) + Vs (s, t)ω (s, t)] ·

[
s + e f At

]
ds = 0, (65)

for any (s, t) ∈ [s̄, ∞) × [0, ∞), where Yt =
´ ∞

s̄ y (u (s, t)) f (s, t) ds, Tt = ∆rtLt + e f ra
t At, Lt = −

´ 0
s̄ s f (s, t) ds, At =´ ∞

0 s f (s, t) ds, and transversality and boundary condition

lim
T→∞

exp (−ρT) φ (s, T) = 0, (66)

ω (·, 0) = lim
T→∞

exp (−ρT)ω (·, T) = 0, (67)

ϕ (s̄, ·) = lim
s→∞

ϕ (s, ·) = 0. (68)

Interpretation: The KFE multiplier φ is the solution to an HJB different from the HJB of V. It considers the value of
resources and value in insurance. This is a second-order PDE with a transversality condition. The multiplier ω for HJB
of V is not always equal to 0, which means the household’s HJB could be binding. The multiplier for ϕ is not zero,

33We consider the general case that allows aggregate labor demand externality.
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although it is also redundant in terms of the choice of optimal spread. The multiplier of market clearing condition ψ is
given by (65), which requires the aggregate asset weighted by φs is equal to 0. Equation (61) is the first-order condition
for optimal spread path. The choice of ∆r balances a pair of trade-off. First, an increase in ∆r raises up aggregate welfare
through fiscal transfer, which is captured by 〈φs f + Vsω, Lt〉S . φs measures the marginal social value of an individual
and Lt measures the marginal increase in assets for each individual. Second, an increase in ∆r decreases borrowers’
welfare through a higher borrowing interest rate, which is captured by

〈
φs f + Vsω, I{s<0} · s

〉
S

. The loss of marginal
social value of a borrower is weighted by her debt level s.

G.2 Proofs

The proofs are based on the methodology Nuno and Thomas (2017), but adapted to consider the presence of an endoge-
nous market clearing rate.

G.2.1 Mathematical preliminaries

First we introduce some mathematical concepts to simplify the expression and formalize the math. An operator T is a
mapping from one vector space to another. Given the stochastic process st in (10), define an operator A,

AV ≡ µ (s, t)
∂V (s, t)

∂s
+

1
2

σ2
s (s, t)

∂2V (s, t)
∂s2 , (69)

with

µ (s, t) ≡ r (s, t) s + ηl · y (s, t) + (1− ηl)

ˆ ∞

s̄
y (u (s, t)) f (s, t) ds− c (s, t) + ∆rtLt + e f ra

t At (70)

and σ2
s (s, t) ≡ σ2 (u (s, t)). The HJB equation (12) can be expressed as

ρV = max
c∈R+ ,u∈{L,H}

{U (c) +AV}+ ∂V
∂t

.

Let S ≡ [s̄, ∞) and Ω ≡ S × [0, ∞) be the valid domain. The space of Lebesgue-integrable functions L2 (S) with the
inner product

〈 f , g〉S =

ˆ
S

f · gds

for any f , g ∈ L2 (S), are both Hilbert spaces.

Given an operatorA, its adjoint is an operatorA∗ such that 〈 f ,Ag〉S = 〈A∗ f , g〉S . In the case of the operator defined by
(69) its adjoint operator is given by

A∗ f ≡ − ∂

∂s
[µ (s, t) f (s, t)] +

1
2

∂2

∂s2

[
σ2

s (s, t) f (s, t)
]

(71)

such that the law of motion of wealth distribution (13) results in

∂ f
∂t

= A∗ f .
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We may verify that A and A∗ are adjoint in S . Given any u, g ∈ L2 (S)

〈g,Au〉S =

ˆ
gAuds =

ˆ
g (s)

[
µ (s, t)

∂u
∂s

+
1
2

σ2 (s, t)
∂2u
∂s2

]
ds

=

ˆ
u
[
− ∂

∂s
(gµ) +

1
2

∂2

∂s2

(
σ2 (s, t) g

)]
ds

=

ˆ
uA∗gds = 〈A∗g, u〉S ,

where 〈·, ·〉 is the inner product in L2 (R) and we have integrated by parts.

G.2.2 Proof of Lemma 3

Given the welfare criterion defined in equation (23), we have

W ( f0) =

ˆ ∞

s̄
V (s, 0) f (s, 0) ds

=

ˆ ∞

s̄
E0

[ˆ ∞

0
e−ρtU (c (st, t)) dt|s0 = s

]
f0 (s) ds

=

ˆ ∞

s̄

[ˆ ∞

s̄

ˆ ∞

0
e−ρtU (c (ŝ, t)) f (ŝ, t; s) dtdŝ

]
f0 (s) ds

=

ˆ ∞

0
e−ρt
ˆ ∞

s̄
U (c (ŝ, t))

[ˆ ∞

s̄
f (ŝ, t; s) f0 (s) ds

]
dŝdt

=

ˆ ∞

0
e−ρt
ˆ ∞

s̄
U (c (ŝ, t)) f (ŝ, t) dŝdt,

where f (ŝ, t; s) is the transition probability from s0 = s to st = ŝ, and in the last equality we used the Chapman-
Kolmogorov equation,

f (ŝ, t) =
ˆ ∞

s̄
f (ŝ, t; s) f0 (s) ds,

which concludes the proof. QED.

G.2.3 Proof of Proposition 7: Solution to the Ramsey problem

Following the proof of Proposition 1 in Nuno and Thomas (2017), the idea is to construct a Lagrangian in a Hilbert
function space and to obtain the first-order conditions by taking the Gateaux derivatives.

Step 1: Statement of the problem. The planner wishes to optimize a path of real spreads by maximizing:

W [ f0 (·)] = max
{∆r(t),ra(t),V(s,t),c(s,t), f (s,t)}≥0

ˆ ∞

0
e−ρt
ˆ ∞

s̄
U (c (s, t)) f (s, t) dsdt

subject to the Kolmogorov equation:

ft (s, t) = A∗ f (s, t) ; given f (s, 0) = f0 (s) (72)

the accounting identity of the value (the HJB)

ρV (s, t) = U (c (s, t)) +AV (s, t) + Vt (s, t) (73)

A29



the asset market clearing condition

ˆ
s<0

s f (s, t) ds +
ˆ

s≥0

[
1 + e f

]
s f (s, t) ds = 0 (74)

the first-order condition

U′ (c (s, t)) = Vs (s, t) (75)

and

u = H if and only if
Y (H)−Y (L)

1
2 σ2(H)

≥ −Vss

Vs
and s > s̃t.

Next we perform some useful calculations:

∂

∂raA [z] = zs ·
(

s + e f At

)
and

∂

∂∆r
A [z] = zs ·

(
Lt + I{s<0} · s

)
.

and

∂

∂raA
∗ [z] = − ∂

∂s

[
z ·
(

s + e f At

)]
,

and

∂

∂∆r
A∗ [z] =− ∂

∂s

[
z
(

I{s<0} · s + Lt

)]
=− zI{s<0} − zs

[
I{s<0} · s + Lt

]
.

Finally, we have the following derivative with respect to transfers:

∂

∂Lt
A [z] = zs · ∆r and

∂

∂At
A [z] = zs · e f ra,

abd

∂

∂Lt
A∗ [z] = −zs · ∆r and

∂

∂At
A∗ [z] = −zs · e f ra.

Step2: The Lagrangian. The corresponding Lagrangian of this problem is given by:

L (∆r, ra, f , V, c; f0) = 〈exp (−ρt)U (c) , f 〉Ω
+ 〈exp (−ρt) φ,A∗ f − ft〉Ω
+ 〈exp (−ρt)ω, U (c) +AV + Vt − ρV〉Ω
+

〈
exp (−ρt) ξ,

〈[
1 + I{s≥0}e f

]
s, f
〉
S

〉
[0,∞)

+
〈
exp (−ρt) ϕ, U′ (c)−Vs

〉
Ω ,

where exp (−ρt) φ (s, t), exp (−ρt)ω (s, t), exp (−ρt) ϕ (s, t) ∈ L2 (Ω) and exp (−ρt) ξ (t) ∈ L2 [0, ∞) are the Lagrange
multipliers associated to equations (72), (73), (75) and (74). The given pieces of the problem is an initial distribution of
real wealth f0. An optimal policy sets the functional derivative of the Lagrangian equal to zero. The Lagrangian can be
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expressed as

L (∆r, ra, f , V, c; f0) =

ˆ ∞

0
exp (−ρt)

〈
U (c)− ρφ + φt +Aφ + ξ ·

[
1 + I{s≥0}e f

]
s, f
〉
S

dt

+

ˆ ∞

0
exp (−ρt)

(
〈ω, U (c)〉S + 〈A

∗ω−ωt, V〉S +
〈

ϕ, U′ (c)−Vs
〉)

dt

− lim
T→∞

〈exp (−ρT) φ (·, T) , f (·, T)〉S + 〈φ (·, 0) , f (·, 0)〉S

− 〈ω (·, 0) , V (·, 0)〉S + lim
T→∞

〈exp (−ρT)ω (·, T) , V (·, T)〉S

where we have applied

〈φ,A∗ f 〉 = 〈Aφ, f 〉 , 〈ω,AV〉 = 〈A∗ω, V〉 ,

and the integration by parts formula:

〈exp (−ρt) φ,− ft〉Ω
= − 〈exp (−ρt) φ, ft〉Ω (76)

= −
ˆ
S

exp (−ρt) φ (s, t) f (s, t) |∞0 ds + 〈exp (−ρt) (φt − ρφ) , f 〉Ω
= 〈exp (−ρt) (−ρφ + φt) , f 〉Ω − lim

T→∞
〈exp (−ρT) φ (·, T) , f (·, T)〉S + 〈φ (·, 0) , f (·, 0)〉S , (77)

and

〈exp (−ρt)ω, Vt − ρV〉Ω =

〈
ω,

∂

∂t
[exp (−ρt)V]

〉
Ω

=

ˆ
S

exp (−ρt)ω (s, t)V (s, t) |∞0 ds− 〈exp (−ρt)ωt, V〉Ω

= lim
T→∞

〈exp (−ρT)ω (·, T) , V (·, T)〉S − 〈ω (·, 0) , V (·, 0)〉S

− 〈exp (−ρt)ωt, V〉Ω .

Step 3: Necessary conditions. We take the Gateaux derivatives with respect to the controls { f , V, c, ∆r, ra}.

1. The Gateaux derivative with respect to f (s, t) is:

d
dα

[L (∆r, ra, f + αh, V, c; f0)]

=

ˆ ∞

0
exp (−ρt)

(〈
U (c)− ρφ + φt +Aφ + ξ ·

[
1 + I{s≥0}e f

]
s, h
〉
S

)
dt

+

ˆ ∞

0
exp (−ρt)

(〈
∂Aφ

∂α
, f
〉
S
+

〈
∂A∗ω

∂α
, V
〉

S

)
dt

− lim
T→∞

〈exp (−ρT) φ (·, T) , h (·, T)〉S + 〈φ (·, 0) , h (·, 0)〉S

which should be equal to zero for any function exp (−ρt) h ∈ L2 (Ω) such that h (·, 0) = 0. Recall that

∂Aφ

∂α
=

∂Aφ

∂ [Lt + αHt]

∣∣∣∣
α=0

d [Lt + αHt]

dα

= φs (s, t) ·
[
(1− ηl) 〈y, h〉S + ∆r (t) ·

〈
I{s<0} (−s) , h

〉
S
+ ra (t) e f

〈
I{s≥0}s, h

〉
S

]
= −∂A∗φ

∂α
.
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Then we must have〈
∂Aφ

∂α
, f
〉

S
= 〈φs, f 〉S

[
(1− ηl) 〈y, h〉S + ∆r (t) ·

〈
I{s<0} (−s) , h

〉
S
+ ra (t) e f

〈
I{s≥0}s, h

〉
S

]
= 〈φs, f 〉S ·

〈
(1− ηl) y + ∆r (t) I{s<0} (−s) + ra (t) e f I{s≥0}s, h

〉
S

and 〈
∂A∗ω

∂α
, V
〉

= − 〈ωs, V〉S
[
(1− ηl) 〈y, h〉S + ∆r (t) ·

〈
I{s<0} (−s) , h

〉
S
+ ra (t) e f

〈
I{s≥0}s, h

〉
S

]
= 〈Vs, ω〉S ·

〈
(1− ηl) y + ∆r (t) I{s<0} (−s) + ra (t) e f I{s≥0}s, h

〉
S

.

Thus, we obtain:

d
dα

[L (∆r, ra, V, c, f + αh; f0)] |α=0

=

ˆ ∞

0
exp (−ρt)

(〈
U (c)− ρφ + φt +Aφ + ξ ·

[
1 + I{s≥0}e f

]
s, h
〉
S

)
dt

+

ˆ ∞

0
exp (−ρt)

[
(1− ηl) 〈y, h〉S + ∆r (t) ·

〈
I{s<0} (−s) , h

〉
S
+ ra (t) e f

〈
I{s≥0}s, h

〉
S

]
(〈φs, f 〉S + 〈Vs, ω〉S) dt

− lim
T→∞

〈exp (−ρT) φ (·, T) , h (·, T)〉S + 〈φ (·, 0) , h (·, 0)〉S ,

which implies that the necessary conditions for f are

ρφ = U (c)+ φt +Aφ+ ξ
[
1 + I{s≥0}e f

]
s︸ ︷︷ ︸

value of resources

+
[
(1− ηl) y (s, t)− I{s<0}∆r · s + I{s≥0}r

a · e f · s
]
· (〈φs, f 〉S + 〈Vs, ω〉S)︸ ︷︷ ︸

value in insurance

(78)

for (s, t) ∈ Ω with the transversality condition

lim
T→∞

exp (−ρT) φ (s, T) = 0 (79)

with the intuition that each individual is valued for his own utility flow, but also by the net resources it brings.

2. For c (s, t), the Gateaux derivative is

d
dα

[L (∆r, ra, f , V, c + αh; f0)]

∣∣∣∣
α=0

=

ˆ ∞

0
exp (−ρt)

〈
U′ (c) · h +

∂Aφ

∂α
, f
〉
S

dt

+

ˆ ∞

0
exp (−ρt)

(〈
ω, U′ (c) h

〉
S +

〈
∂A∗ω

∂α
, V
〉
S
+
〈

ϕ, U′′h
〉
S

)
dt

=

ˆ ∞

0
exp (−ρt)

〈
U′ (c) · h +

∂Aφ

∂α
, f
〉
S

dt

+

ˆ ∞

0
exp (−ρt)

(〈
ω, U′ (c) h

〉
S +

〈
ω,

∂AV
∂α

〉
S
+
〈

ϕ, U′′h
〉
S

)
dt

=

ˆ ∞

0
exp (−ρt)

〈(
U′ (c)− φs

)
h, f
〉
S dt

+

ˆ ∞

0
exp (−ρt)

(〈
ω,
(
U′ (c)−Vs

)
h
〉

S +
〈

ϕ, U′′h
〉
S
)

dt.

The Gateaux derivative should be zero for any function exp (−ρt) h ∈ L2 (Ω). Since the first-order condition of house-
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holds at optimum is U′ (c) = Vs, this yields

0 =
(
U′ − φs

)
f + ϕU′′. (80)

3. The Gateaux derivative of V (s, t) is

d
dα

[L (∆r, ra, f , V + αh, c; f0)]

∣∣∣∣
α=0

=

ˆ ∞

0
exp (−ρt) (〈A∗ω−ωt, h〉S + 〈ϕ,−hs〉S ) dt

− 〈ω (·, 0) , h (·, 0)〉S + lim
T→∞

〈exp (−ρT)ω (·, T) , h (·, T)〉S

=

ˆ ∞

0
exp (−ρt) 〈A∗ω−ωt + ϕs, h〉S dt

− 〈ω (·, 0) , h (·, 0)〉S + lim
T→∞

〈exp (−ρT)ω (·, T) , h (·, T)〉S

−
ˆ ∞

0
exp (−ρt) ϕ (s, t) h (s, t)|∞s̄ dt.

The Gateaux derivative should be zero for any function exp (−ρt) h ∈ L2 (Ω). Then for ω we obtain the transversality
condition

lim
T→∞

exp (−ρT)ω (·, T) = 0, (81)

and a KFE in ω

ωt = A∗ω + ϕs (82)

with boundary conditions

ω (·, 0) = 0. (83)

Note that the multiplier ω is not always equal to 0, implying that the HJB of V is binding at some (s, t). For ϕ we have
the following transversality condition lims→∞ ϕ (s, ·) = 0, and the boundary condition ϕ (s̄, ·) = 0.

4. For ∆r, the Gateaux derivative is

d
dα

[L (∆r + αh, ra, f , V, c; f0)]

∣∣∣∣
α=0

=

ˆ ∞

0
exp (−ρt)

(〈
∂Aφ

∂∆r
, f
〉
S
+

〈
∂A∗ω
∂∆r

, V
〉
S

)
h (t) dt

=

ˆ ∞

0
exp (−ρt)

(〈
∂Aφ

∂∆r
, f
〉
S
+

〈
∂AV
∂∆r

, ω

〉
S

)
h (t) dt

=

ˆ ∞

0
exp (−ρt)

〈
φs f + Vsω, Lt + I{s<0} · s

〉
S

h (t) dt

which should be equal to zero for any function exp (−ρt) h ∈ L2 [0, ∞). Then the equation yields:〈
φs f + Vsω,

[
Lt + I{s<0} · s

]〉
S
= 0. (84)

5. The Gateaux derivative of ra is
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d
dα

[L (∆r, ra + αh, f , V, c; f0)] |α=0

=

ˆ ∞

0
exp (−ρt)

(〈
∂Aφ

∂ra , f
〉
S
+

〈
∂A∗ω

∂ra , V
〉
S

)
h (t) dt

=

ˆ ∞

0
exp (−ρt)

(〈
∂Aφ

∂ra , f
〉
S
+

〈
∂AV
∂ra , ω

〉
S

)
h (t) dt

=

ˆ ∞

0
exp (−ρt)

〈
φs f + Vsω, s + e f At

〉
S

h (t) dt.

The Gateaux derivative should be equal to zero for any exp (−ρt) h ∈ L2 [0, ∞). The optimality condition then results in〈
φs f + Vsω, s + e f At

〉
S
= 0. (85)

This is the system in the statement of the proposition. QED.

G.3 Solution Algorithm: Asymptotic Steady State

In this section we describe the algorithm we use to solve the asymptotic steady state of Ramsey problem. The algorithm
closely follows the algorithm of stationary equilibrium in Section D.1. In particular, we use an iteration algorithm that
proceeds as follows. First, consider an initial guess of real credit spread ∆r and ξ, and set the iteration index i := 0. Then:

1. Solve stationary equilibrium. Given the credit spread ∆ri, apply the algorithm in Section D.1 to solve the sta-
tionary equilibrium, obtain the stationary distribution f i (s), derivative of value function ∂sVi (s), consumption ci (s),
drift term µi (s), the matrix form of operator Ai, the aggregate loan Li = −

´ 0
s̄ s f i (s) ds, and the aggregate deposit

Di =
´ ∞

0 s f i (s) ds.

2. Solve the multipliers. The multipliers φ (s), ω (s) and ϕ (s) are solved using an upwind finite difference scheme
similar to Section D.1.1 and D.1.2. We discretize the space of real wealth s into even grids and approximate the first-
order derivatives of φ and ω using forward or backward approximation, and the second-order derivative of φ using
central differences. The algorithm is as follows. Given the stationary equilibrium solution obtained from the previous
step, consider an initial guess of φ (s) and set iteration index j := 0. Then:

2.1. Solve ϕ (s) using (64), i.e.,

ϕj,i (s) = −
U′
(
ci (s)

)
− ∂φj,i (s)

U′′
(
ci (s)

) f i (s) ,

where ∂φj,i (s) = ∂Fφj,i (s) · 1
{

µi (s) > 0
}
+ ∂Bφj,i (s) · 1

{
µi (s) < 0

}
+ ∂φ̄j,i (s) · 1

{
µi (s) = 0

}
. Then compute the first-

order derivative of ϕj,i (s) as

∂ϕj,i (s) = ∂F ϕj,i (s) · 1
{

µi (s) > 0
}
+ ∂B ϕj,i (s) · 1

{
µi (s) < 0

}
+ ∂ϕ̄j,i (s) · 1

{
µi (s) = 0

}
.

2.2. Given ϕj,i (s), solve ω j,i (s) using (63) with the left-hand side equal to zero. In an upwind finite difference scheme,
the algorithm follows Section D.1.2. Thus the dynamic equation (63) can be expressed an a linear system of equations

0 =
(

Ai
)T

ω j,i + ∂ϕj,i,

which gives rise to !
j,i

.
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2.3. Given the solutions to ω j,i (s) and ϕj,i (s), solve φj+1,i (s) using (62) with ∂φ(s,t)
∂t = 0. The finite difference system is

expressed as

1
∆

(
φj+1,i − φj,i

)
+ ρφj+1,i = Ui + Aiφj+1,i + d̃i, (86)

where d̃i is the vector form of

ξ i
[
1 + I{s≥0}e f

]
s +

[
(1− ηl) y

(
ui (s)

)
− I{s<0}∆ri · s + I{s≥0}r

a,i · e f · s
]
·
ˆ ∞

s̄

[
∂φi (s) f (s) + ∂V (s)ω (s)

]
ds.

Then one can solve Œj+1,i using (86).

2.4. If Œj+1,i is close enough to Œj,i, then proceed to Step 3. Otherwise set j := j + 1 and proceed to 2.1.

3. Solve ∆r and ξ. Given the solutions of the previous steps, compute the left-hand sides of equation (61) and (65),
which is denoted as SR (∆ri, ξ i). If SR (∆ri, ξ i) is close enough to zero, then stop. Otherwise, update

[
∆ri+1, ξ i+1] =[

∆ri, ξ i]− κ

[
∂SR(∆ri ,ξ i)

∂∆ri ,
∂SR(∆ri ,ξ i)

∂ξ i

]
, set i := i + 1 and proceed to Step 1.

G.4 Additional Figures: Optimal Spread
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