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This paper examines the asymptotic behavior of the posterior distribution
of a possibly nondifferentiable function g(θ), where θ is a finite-dimensional pa-
rameter of either a parametric or semiparametric model. The main assumption
is that the distribution of a suitable estimator θ̂n, its bootstrap approximation,
and the Bayesian posterior for θ all agree asymptotically.

It is shown that whenever g is locally Lipschitz, though not necessarily
differentiable, the posterior distribution of g(θ) and the bootstrap distribution
of g(θ̂n) coincide asymptotically. One implication is that Bayesians can inter-
pret bootstrap inference for g(θ) as approximately valid posterior inference in
a large sample. Another implication—built on known results about bootstrap
inconsistency—is that credible intervals for a nondifferentiable parameter g(θ)
cannot be presumed to be approximately valid confidence intervals (even when
this relation holds true for θ).

Keywords: Bootstrap, Bernstein–von Mises Theorem, Directional Differentiability,
Posterior Inference.

1 Introduction
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on transformations g(θ) that are locally Lipschitz continuous but possibly nondifferentiable.
Some stylized examples are

|θ|,max{0, θ},max{θ1, θ2}.

More generally, our framework covers value functions of stochastic mathematical programs
(Shapiro (1991)), which appear in the study of the bounds of the identified set in partially
identified models.1

The potential nondifferentiability of g(·) challenges the frequentist inference. For ex-
ample, different forms of the bootstrap lose their consistency whenever differentiability is
compromised; see Dümbgen (1993), Beran (1997), Andrews (2000), Hong and Li (2018),
and Fang and Santos (2019). To our knowledge, the literature has not yet explored how
the Bayesian posterior of g(θ) relates to either the sampling or the bootstrap distribution
of available plug-in estimators when g is allowed to be nondifferentible.

This paper studies these relations in large samples. The main assumptions are that: (i)
there is an estimator for θ, denoted θ̂n, which is

√
n-asymptotically distributed according to

some random vector Z (not necessarily Gaussian), (ii) the bootstrap consistently estimates
the asymptotic distribution of θ̂n and (iii) the Bayesian posterior distribution of θ coincides
with the asymptotic distribution of θ̂n; i.e., the Bernstein–von Mises Theorem holds for θ.2

This paper shows that—after appropriate centering and scaling—the posterior distri-
bution of g(θ) and the bootstrap distribution of g(θ̂n) are asymptotically equivalent. This
means that the bootstrap distribution of g(θ̂n) contains, in large samples, approximately
the same information as the posterior distribution for g(θ).3 Indisputably, these asymptotic
relations are straightforward to deduce for (fully or directionally) differentiable functions.
However, our main result shows that the asymptotic equivalence between the bootstrap and
posterior distributions holds more broadly, highlighting that such a relation is better under-
stood as a consequence of the continuous mapping theorem, as opposed to differentiability
and the delta-method.

1For example, treatment effect bounds (Manski (1990), Balke and Pearl (1997)); bounds in
auction models (Haile and Tamer (2003)); bounds for impulse-response functions (Giacomini and
Kitagawa (2018), Gafarov, Meier, and Montiel Olea (2018)) and forecast-error variance decompo-
sitions (Faust (1998)) in Structural Vector Autoregressions. Other examples of value functions of
stochastic programs that arise in different applications in economics and statistics are the welfare
level attained by an optimal treatment assignment rule in the treatment choice problem (Manski
(2004)) and the eigenvalues of a random symmetric matrix (Eaton and Tyler (1991)).

2See, for example, DasGupta (2008), p. 291 for a Bernstein–von Misses theorem for regular
parametric models where Z is Gaussian; Ghosal, Ghosh, and Samanta (1995), p. 2147–2150 for a
Bernstein–von Mises theorem for a class of parametric models whose likelihood ratio process is not
Locally Asymptotically Normal; and Castillo and Rousseau (2015), p. 2357 for a Bernstein–von
Mises theorem for semiparametric models where an efficiency theory at rate

√
n is available.

3Other results in the literature concerning the relations between bootstrap and posterior infer-
ence have focused on the Bayesian interpretation of the bootstrap in finite samples, for example
Rubin (1981), or on how the parametric bootstrap output can be used for efficient computation of
the posterior, for example Efron (2012).
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The distinction between the local Lipschitz property and directional differentiability
emphasized in our main result is not just a technical refinement. We believe that such
a distinction is practically useful, for example, when conducting Bayesian estimation and
inference of the bounds of the identified set in partially identified models, as recently sug-
gested by Kline and Tamer (2016) and Giacomini and Kitagawa (2018). The bounds of the
identified set are typically value functions of stochastic mathematical programs for which
standard constraint qualifications suffice to verify the local Lipschitz property.4 In contrast,
directional differentiability requires additional conditions, which can be quite difficult to
verify even in specific applications.5 The local Lipschitz property allows us to relate robust
Bayes procedures to bootstrap based approaches for estimation/inference.

Implications: The main results of this paper provide two useful and general insights.
First, Bayesians can interpret bootstrap-based estimation/inference for g(θ) as approxi-
mately Bayesian in a large sample. For example, under regularity conditions ensuring con-
vergence in distribution to imply convergence in mean, an estimator for g(θ) built upon the
bootstrap distribution of g(θ̂n) (e.g., the mean of the bootstrap draws) can be interpreted
as an approximately Bayes estimator for g(θ) (e.g., the posterior mean estimator). Hence,
decision-theoretic optimality of the Bayes estimator can be attached to the bootstrap-based
estimator for g(θ) in large samples irrespective of g(θ) being differentiable or not. This
means that Bayesians can use bootstrap draws to conduct approximate posterior estima-
tion/inference for g(θ), if computing θ̂n is simpler than Markov Chain Monte Carlo (MCMC)
sampling.

Second, we show that whenever nondifferentiability causes the bootstrap confidence in-
terval to cover g(θ) less often than desired—which is known to happen even under mild
departures from differentiability—a credible interval based on the quantiles of the posterior
will have distorted frequentist coverage as well. In the case where g(·) only has directional
derivatives, as in the pioneering work of Hirano and Porter (2012), the unfortunate fre-
quentist properties of credible intervals can be attributed to the fact that the posterior
distribution of g(θ) does not coincide with the asymptotic distribution of g(θ̂n).6

The rest of this paper is organized as follows. Section 2 presents a formal statement of the
main results. Section 3 presents an illustrative example: the absolute value transformation.

4See Theorem 4.2 in Fiacco and Ishizuka (1990) and Proposition 6 in Morand, Reffett, and
Tarafdar (2015)

5We discuss this point in the framework of set-identified Structural Vector Autoregressions in
Section 2 and in the Appendix.

6Woutersen and Ham (2016) refer to the confidence interval for g(θ) based on draws from the
bootstrap distribution of g(θ̂n) as the ADR bootstrap and credit Runkle (1987). They show that
a projection confidence set for g(θ) based on draws from the bootstrap distribution of θ̂n will have
correct frequentist coverage even if g is not differentiable. The assumptions in our paper imply
that the Bayesian credible set for g(θ) formed in this way attains the frequentist coverage for g(θ)
in large samples. However, the posterior probability on the projection credible set can be strictly
larger than the nominal credibility attached to the credible set of θ.
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Section 4 concludes. All the proofs are collected in the Appendix.

2 Main Results

Let Xn = {X1, . . . Xn} be a sample of size n from the model f(Xn | η), where η is a
possibly infinite dimensional parameter taking values in some space S. We assume there
is a finite-dimensional parameter of interest, θ : S → Θ ⊆ Rp, and some estimator θ̂n of
θ. Let θ0 denote the true parameter—that is, θ0 ≡ θ(η0) with data generated according to
f(Xn|η0). Consider the following assumptions:

Assumption 1. The function g : Rp → R is locally Lipschitz at (or near) θ0. That is,
there exists a neighborhood V0 of θ0 and a constant c0 > 0 such that

|g(x)− g(y)| ≤ c0||x− y|| ∀ x, y ∈ V0.

See Clarke (1990), Chapter 1, p. 9 for a textbook reference.
Assumption 1 implies—by means of the well-known Rademacher’s Theorem (Evans and

Gariepy (2015), p. 81)—that g is differentiable almost everywhere in a neighborhood of θ0.
Thus, the functions considered in this paper allow only for mild departures from differen-
tiability near θ0.7 We have made local Lipschitz continuity our starting point—as opposed
to some form of directional differentiability—to emphasize that the asymptotic relation be-
tween Bootstrap and Bayes inference does not hinge on delta-method considerations. Later,
we will also present economically relevant examples where the local Lipschitz property is
easier to verify than directional differentiability.

Assumption 2. The sequence Zn ≡
√
n(θ̂n − θ0) d→ Z.

Despite being high-level, there are well-known conditions for parametric or semipara-
metric models under which Assumption 2 obtains (see, for example, Newey and McFadden
(1994) p. 2146). The convergence at rate

√
n is used for notational simplicity, but it is not

relevant for deriving our main results.8

The asymptotic distribution of Zn is typically normal, but our main theorems do not
exploit this feature (and thus, we have decided to leave the distribution of Z unspecified).

7Moreover, we assume that g is defined everywhere in Rp which rules out examples such as the
ratio of means θ1/θ2, θ2 6= 0 discussed in Fieller (1954) and weakly identified Instrumental Variables
models.

8An additional motivation for using
√
n is that the Bernstein –von Mises theorem for θ, which

will be invoked in Assumption 3, is usually verified at this rate. Examples of the Bernstein–von
Mises theorem at rates different to

√
n appear on Bochkina and Green (2014)).
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In order to state the next assumption, we introduce additional notation. Define the set

BL(1,Rp) ≡
{
f : Rp → R

∣∣∣ sup
a∈Rp

|f(a)| ≤ 1, and

|f(a1)− f(a2)| ≤ ||a1 − a2||, ∀a1, a2

}
.

Let φ∗n and ψ∗n be random vectors whose distribution depends on the data Xn. The bounded
Lipschitz distance between the distributions induced by φ∗n and ψ∗n (conditional on the data
Xn) is defined as

β(φ∗n, ψ∗n; Xn) ≡ sup
f∈BL(1,Rp)

∣∣∣E[f(φ∗n)|Xn]− E[f(ψ∗n)|Xn]
∣∣∣.

The random vectors φ∗n and ψ∗n are said to converge in bounded Lipschitz distance in prob-
ability if β(φ∗n, ψ∗n; Xn) p→ 0 as n→∞.9

Let P denote some prior for θ and let θP∗n denote the random variable with law equal
to the posterior distribution of θ in a sample of size n. Let θB∗n denote the random variable
with law equal to the bootstrap distribution of θ̂n in a sample of size n.

Remark 1. In a parametric model there are different ways of bootstrapping the distri-
bution of θ̂n. One possibility is a parametric bootstrap, which consists in generating draws
(x1, . . . xn) from the model f(xi; θ̂n) followed by an evaluation of the ML estimator for each
draw (Van der Vaart (2000) p. 328). Another possibility is the multinomial bootstrap, which
generates draws (x1, . . . xn) from its empirical distribution. Different options are also avail-
able in semiparametric models. We do not take a stand on the specific bootstrap procedure
used by the researcher as long as it is consistent.

The following assumption restricts the prior P for θ and the bootstrap procedure for
θ̂n:

Assumption 3. The centered and scaled random variables

ZP∗n ≡
√
n(θP∗n − θ̂n) and ZB∗n ≡

√
n(θB∗n − θ̂n),

converge (in the bounded Lipschitz distance in probability) to the asymptotic distribution
of θ̂n, denoted Z, which is independent of the data. That is,

β(ZP∗n , Z; Xn) p→ 0 and β(ZB∗n , Z; Xn) p→ 0.
9 For a more detailed treatment of the bounded Lipschitz distance over probability measures see

the ‘β’ metric defined in p. 394 of Dudley (2002). It is well-known that convergence in distribution
is equivalent to convergence in the bounded Lipschitz distance; for example, see Lemma 2.2 in
Van der Vaart (2000).

5



Sufficient conditions for Assumption 3 to hold are the consistency of the bootstrap for the
distribution of θ̂n (Horowitz (2001), Van der Vaart and Wellner (1996) Chapter 3.6, Van der
Vaart (2000) p. 340) and the Bernstein–von Mises Theorem for θ (see DasGupta (2008) for
parametric versions and Castillo and Rousseau (2015) for semiparametric ones).10,11

The following theorem shows that under the first three assumptions, the Bayesian poste-
rior for g(θ) and the frequentist bootstrap distribution of g(θ̂n) converge (after appropriate
centering and scaling). Note that for any measurable function g(·), be it differentiable or
not, the posterior distribution of g(θ) can be defined as the image measure induced by the
distribution of θP∗n under the mapping g(·).

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Then,

β(
√
n(g(θP∗n )− g(θ̂n)),

√
n(g(θB∗n )− g(θ̂n)); Xn) p→ 0.

That is, after centering and scaling, the posterior distribution g(θ) and the bootstrap dis-
tribution of g(θ̂n) are asymptotically close to each other in terms of the bounded Lipschitz
distance in probability.

Proof. See Appendix A.1.

The intuition behind Theorem 1 is the following. The centered and scaled posterior and
bootstrap distributions can be written as

√
n(g(θP∗n )− g(θ̂n)) =

√
n(g(θ̂n + ZP∗n /

√
n)− g(θ̂n)),

√
n(g(θB∗n )− g(θ̂n)) =

√
n(g(θ̂n + ZB∗n /

√
n)− g(θ̂n)).

Since ZP∗n and ZB∗n both converge to a common limit and θ̂n is asymptotically close to
θ0, we can apply an argument analogous to the one used in the proof of the (Lipschitz)
continuous mapping theorem to get the desired result, but focusing on a neighborhood
around θ0 (where we have Lipschitz continuity).12 A crucial step is to show that ZP∗n and

10The Bernstein–von Mises Theorem is oftentimes stated in terms of almost-sure convergence of
the posterior to a Gaussian distribution (DasGupta (2008) p. 291) or possibly to a non-Gaussian
limit (Ghosal et al. (1995)) in terms of the total variation distance. This mode of convergence
(total variation metric) implies convergence in the bounded Lipschitz distance in probability. In
this paper, all the results concerning the asymptotic behavior of the posterior are presented in
terms of the bounded Lipschitz distance. This facilitates comparisons with the bootstrap.

11Z∗Pn and Z∗Bn could be defined as general conditional distributions that depend on Xn that
have a limit Z. We focus on bootstrap and posterior draws because we are specifically interested in
their behavior and also because there are well known conditions in parametric and semiparametric
models to verify our assumption.

12 To the best of our knowledge Theorem 1 does not follow directly from the existing literature.
First, we are assuming the g is locally Lipschitz at θ0. Second, even if we were willing to assume
that g is globally, rather than locally, Lipschitz, the continuous mapping theorem in Proposition
10.7 in Kosorok (2008) does not imply our result. The reason is that we are interested in the limit
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ZB∗n converge unconditionally and, therefore, are tight; see Lemma 1. This means that the
asymptotic relation between the bootstrap and Bayes distributions is a consequence of a
(locally Lipschitz) continuous mapping theorem, and not of the delta-method.

Application to Set-Identified Structural VARs: One illustration of the useful-
ness of Theorem 1 is robust Bayes analysis of set-identified structural vector autoregres-
sion (VARs). Consider an n-dimensional structural VAR with p lags; i.i.d. structural
innovations—denoted εt—distributed according to an independent multivariate normal; and
unknown n× n structural matrix B:

Yt = A1Yt−1 + . . .+ApYt−p +Bεt, E[εt] = 0n×1, E[εtε′t] ≡ In. (2.1)

Define the (k, i, j)-coefficient of the structural impulse-response function to be the scalar
parameter

λk,i,j(A,B) ≡ e′iCk(A)Bej ,

where ei and ej denote the i-th and j-th column of the identity matrix In and Ck(A) are
the reduced-form moving average coefficients. The structural parameters are set-identified
by sign restrictions

S(θ)Bej ≥ 0,

where S(θ) is an m × n matrix whose entries are allowed to depend on the reduced-
form parameters of the structural vector autoregression: θ ≡ (vec(A)′, vech(Σ)′)′, A ≡
(A1, A2, . . . , Ap),Σ ≡ BB′.

Gafarov et al. (2018) show that, given reduced form parameter θ, the upper bound of
the identified set for λk,i,j is given by the solution of the program

g(θ) ≡ max
x∈Rn

e′iCk(A)x, s.t. x′Σ−1x = 1, S(θ)x ≥ 0. (2.2)

Giacomini and Kitagawa (2018) have recently suggested estimating the impulse-response
identified set by reporting the posterior mean of g(θ) (starting from a prior over θ), and

of the transformation √
n(g(θ̂P∗n )− g(θ̂n)),

which depends on n. Unfortunately, a direct application of Kosorok’s theorem does not imply that
the distribution of the random variable above is close to

√
n(g(θ̂n + Z/n)− g(θ̂n)),

which would be sufficient to establish our theorem, as both Z∗Pn and Z∗Bn converge to Z. Kosorok’s
theorem only allows us to show that both

g(
√
n(θ̂∗Pn − θ̂n)), g(

√
n(θ̂∗Bn − θ̂n))

converge in bounded Lipschitz distance to g(Z).
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have shown that the posterior distribution of the upper and lower bounds can be used to
construct a robust credible set for λk,i,j .

In this context, Theorem 1 is relevant for a number of reasons. Firstly, standard results
in nonlinear optimization imply that a sufficient condition for the value function in (2.2) to
be locally lipschitz at θ is for the Mangasarian-Fromowitz constraint qualification to hold
at an optimal solution (Proposition 6 in Morand et al. (2015)).13 Theorem 1 thus implies
that for a large class of priors on θ, the bootstrap distribution of the plug-in estimator is
asymptotically equivalent to the posterior distribution of g(θ).

Moreover, under regularity conditions that ensure convergence in distribution implies
convergence in mean, an estimator for g(θ) built upon the bootstrap distribution of g(θ̂n)
(e.g., the mean of the bootstrap draws) can be interpreted as an approximately Bayes
estimator for g(θ) (e.g., the posterior mean estimator). Hence, decision-theoretic optimality
of the Bayes estimator can be attached to the bootstrap-based estimator for g(θ) in large
samples irrespective of g(θ) being differentiable or not. Consequently, if one is concerned
with point estimation of the lower or upper bound of the impulse response identified set,
then Theorem 1 suggests that the posterior mean estimator considered in Giacomini and
Kitagawa (2018) can be well replicated by the ‘bootstrap’ mean estimator.

Although the asymptotic equivalence between the posterior and the bootstrap distribu-
tions can be shown under full or directional differentiability, verifying such properties for
value functions is known to be complicated. For example, Morand et al. (2015) argue that
‘because the MFCQ is not sufficient to guarantee the uniqueness of KKT multipliers, it is
very difficult to obtain directional derivatives and sharp characterizations of the generalized
gradient’.14

Finally, it is worth mentioning that the arguments above carry over to the more general
framework concerning inference about the value function of a nonlinear program.

Failure of Bootstrap/Bayes Inference: Theorem 1 established the large-sample
equivalence between the bootstrap distribution of g(θ̂n) and the posterior distribution of
g(θ). We now use this theorem to make a concrete connection between the coverage of
bootstrap-based confidence intervals and the coverage of Bayesian credible intervals based
on the quantiles of the posterior.

We start by assuming that a nominal 100(1−α)% bootstrap confidence interval fails to
cover g(θ) at a point of nondifferentiability. Then, we show that a 100(1−α− ε)% credible
interval based on the quantiles of the posterior distribution of g(θ) will also fail to cover

13In addition to the choice set being nonempty and uniformly compact at θ. We verify all these
conditions in Lemma 6 of the Appendix.

14Indeed, standard theorems concerning the directional differentiability of the value function
(Theorem 4.2 in Fiacco and Ishizuka (1990)) use the Mangasarian-Fromowitz constraint qualifi-
cation to provide bounds on the directional derivatives. Establishing directional differentiability,
however, requires verifying additional properties about the set of Lagrange multipliers or making
additional assumptions on the sign restrictions under consideration (Gafarov et al. (2018)).
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g(θ) for any ε > 0.15

Set-up for Theorem 2: Let qBα (Xn) be defined as:

qBα (Xn) ≡ inf
c
{c ∈ R | PB∗(g(θB∗n ) ≤ c |Xn) ≥ α}.

The quantile based on the posterior distribution qPα (Xn) is defined analogously. A nominal
100(1−α)% two-sided confidence interval for g(θ) based on the bootstrap distribution g(θB∗n )
can be defined as follows

CSBn (1− α) ≡
[
qBα/2(Xn) , qB1−α/2(Xn)

]
.

This is a typical confidence interval based on the percentile method of Efron, p. 327 in
Van der Vaart (2000).16

Definition. We say that the nominal 100(1− α)% bootstrap confidence interval fails to
cover the parameter g(θ) at θ by at least 100dα% (0 < dα < 1− α) if

lim sup
n→∞

Pθ
(
g(θ) ∈ CSBn (1− α)

)
≤ 1− α− dα, (2.3)

where Pθ refers to the distribution of (X1, X2, . . .) under the parameter θ.

The next theorem shows the coverage probability of the Bayesian credible interval for
g(θ) in relation to the coverage probability of its bootstrap confidence interval.

Theorem 2. Suppose that the nominal 100(1− α)% bootstrap confidence interval fails to
cover g(θ) at θ by at least 100dα%. Suppose in addition that for any 0 < ε < α

Pθ[qPα−ε(Xn) ≤ qBα (Xn) ≤ qPα+ε(Xn)]→ 1.

That is, the α-quantile of the bootstrap is in between the α − ε and α + ε quantiles of the
posterior of g(θ) with high probability. Then for any 0 < ε < α:

lim sup
n→∞

Pθ
(
g(θ) ∈

[
qP(α+ε)/2(Xn) , qP1−(α+ε)/2(Xn)

])
≤ 1− α− dα.

Thus, the nominal 100(1− α− ε)% credible interval based on the quantiles of the posterior
fails to cover g(θ) at θ by at least 100(dα − ε)%.

15The adjustment factor ε is introduced because the quantiles of both the bootstrap and the
posterior for nondifferentiable functions might remain random even in large samples.

16We focus on the percentile method rather than other bootstrap confidence intervals, such as the
‘root method’, for two reasons. First, to the best of our knowledge, there are no theoretical results
showing that alternative forms of bootstrap confidence intervals can outperform the percentile
method when conducting inference on nondifferentiable functions. Second, the Bayesian analogues
of some of these procedures need not have correct Bayesian credibility.
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Proof. See Appendix A.2.

This result is not a direct corollary of Theorem 1 because convergence in distribution
does not guarantee that the quantiles of the bootstrap distribution of g(θ̂n) are close to the
quantiles of the posterior of g(θ). Theorem 2 takes the closeness of the quantiles as given
and establishes the frequentist coverage property of the Bayes credible interval based on the
quantiles of the posterior.17

Remark 2. The desired closeness of quantiles can be established under a few more regu-
larity assumptions. In particular, in the online Appendix B.2, we establish the closeness of
bootstrap/posterior quantiles as required by Theorem 2 under the assumption that g is di-
rectionally differentiable.18 That is, we assume there is a continuous function g′θ0

: Rp → R
such that for any compact set K ⊆ Rp and any sequence of positive numbers tn → 0:19

sup
h∈K

∣∣t−1
n (g(θ0 + tnh)− g(θ0))− g′θ0

(h)
∣∣→ 0.

Proposition 1 in Dümbgen (1993) and equation A.41 in Theorem A.1 in Fang and Santos
(2019) imply that, under directional differentiability, the limiting distribution of g(θ) is
g′θ0

(Z + Zn) − g′θ0
(Zn).20 A (Lipschitz) continuity on the c.d.f of this limiting distribution

then gives the required closeness in quantiles.21

Posterior Distribution of g(θP∗) under Directional Differentiability: The
limiting distribution g′θ0

(Z + Zn) − g′θ0
(Zn) allows us to characterize and compare large

sample approximations of g(θP∗n ) with and without directional differentiability.
17It immediately follows that the reverse also applies. If the 100(1 − α)%–credible interval fails

to cover the parameter g(θ) at θ, then so must the 100(1− α− ε)%–bootstrap confidence interval.
Note that our approximation holds for any fixed ε, but we cannot guarantee that our approximation
holds if we take the limit.

18If instead of assuming directional differentiability, we assume that posterior distribution√
n(g(θP∗n −g(θ̂n) admits a p.d.f that is uniformly bounded for all n, we can also verify the conditions

of Theorem 2. See Theorem 3 in section B.4 of the Appendix.
19Equivalently, one could say there is a continuous function g′θ : Rp → R such that for any

converging sequence hn → h:∣∣∣∣√n(g(θ0 + hn√
n

)
− g(θ0)

)
− g′θ0 (hn)

∣∣∣∣→ 0.

See p. 479 in Shapiro (1990). The continuous, not necessarily linear, function g′θ(·) will be referred
to as the (Hadamard) directional derivative of g at θ0.

20For the sake of completeness, Lemma 4 in Appendix B.2 shows that if Assumptions 1, 2 and 3
hold and g is directionally differentiable (in the sense defined in Remark 2), then,

β(
√
n(g(θP∗n )− g(θ̂n)), g′θ0 (Z + Zn)− g′θ0 (Zn) ; Xn) p→ 0

holds, where Zn =
√
n(θ̂n − θ0) and Z are as defined in Assumption 2.

21See Assumption 4 in Appendix B.2 for the details.
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If g′θ0
(·) is linear (which is the case if g is fully differentiable), then the derivative can

be characterized by a vector g′θ0
and so

√
n(g(θP∗n )− g(θ̂n)) converges to

g′θ0
(Z + Zn)− g′θ0

(Zn) = g′θ0
(Z).

This is the same limit as one would get from applying the delta-method to g(θ̂n). Thus,
under full differentiability, the posterior distribution of g(θ) can be approximated as

g(θP∗n ) ≈ g(θ̂n) + 1√
n
g′θ0

(Z).

Moreover, this distribution coincides with the asymptotic distribution of the plug-in esti-
mator, g(θ̂n), by a standard delta-method argument.

If g′θ0
is nonlinear, then the limiting distribution of

√
n(g(θP∗n ) − g(θ̂n)) becomes a

nonlinear transformation of Z. This nonlinear transformation need not be Gaussian, and
need not be centered at zero (even if Z is). Moreover, the nonlinear transformation g′θ0

(Z+
Zn) − g′θ0

(Zn) is different from the asymptotic distribution of the plug-in estimator g(θ̂n)
which is g′θ0

(Z).22 Thus, one can say that for directionally differentiable functions

g(θP∗n ) ≈ g(θ̂n) + 1√
n

(g′θ0
(Z + Zn)− g′θ0

(Zn)), where Zn =
√
n(θ̂n − θ0).

3 Illustration of main results for |θ|
The main result of this paper, Theorem 1, can be illustrated in the following simple para-
metric environment. Let Xn = (X1, . . . Xn) be an i.i.d. sample of size n from the statistical
model:

Xi ∼ N (θ, 1).

Consider the following family of priors for θ:

θ ∼ N (0, (1/λ2)),

where the precision parameter satisfies λ2 > 0. The transformation of interest is the absolute
value function:

g(θ) = |θ|.

It is first shown that when θ0 = 0 this environment satisfies Assumptions 1, 2 and 3. Then,
the bootstrap distribution for g(θ̂n) and posterior distributions of g(θ) are explicitly com-
puted and compared.

22This follows from an application of the delta-method for directionally differentiable functions
in Shapiro (1991) or from Proposition 1 in Dümbgen (1993).
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Relation to main assumptions: The transformation g is Lipschitz continuous and dif-
ferentiable everywhere, except at θ0 = 0. At this particular point in the parameter space, g
has directional derivative g′0(h) = |h|. Thus, Assumption 1 is satisfied.

We consider the Maximum Likelihood estimator, which is θ̂n = (1/n)
∑n
i=1 Xi so

√
n(θ̂n − θ) ∼ Z ∼ N (0, 1). This means that Assumption 2 is satisfied.
This environment is analytically tractable so the distributions of θP∗n and θB∗n can be

computed explicitly. The posterior distribution for θ is

θP∗n |Xn ∼ N
( n

n+ λ2 θ̂n,
1

n+ λ2

)
,

which implies that

√
n(θP∗n − θ̂n)|Xn ∼ N

( λ2

n+ λ2
√
nθ̂n,

n

n+ λ2

)
.

Consequently,
β
(√

n(θP∗n − θ̂n) , N (0, 1);Xn
)

p→ 0.

This implies that under, θ0 = 0, the first part of Assumption 3 holds.23

Second, consider a parametric bootstrap for the sample mean, θ̂n. We decided to focus
on the parametric bootstrap to keep the exposition as simple as possible. The parametric
bootstrap is implemented by generating a large number of draws (xj1, . . . , xjn), j = 1, . . . , J
from the model

xji ∼ N (θ̂n, 1), i = 1, . . . n,

recomputing the ML estimator for each of the draws. This implies that the bootstrap
distribution of θ̂n is

θB∗n ∼ N (θ̂n, 1/n),

so, for the parametric bootstrap it is straightforward to see that

β
(√

n(θB∗n − θ̂n) , N (0, 1);Xn
)

= 0.

This means that the second part of Assumption 3 holds.
23The last equation follows from the fact that for two Gaussian real-valued random variables

X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2) we have that∣∣∣E[f(X)]− E[f(Y )]

∣∣∣ ≤√ 2
π

∣∣∣σ2
1 − σ2

2

∣∣∣+
∣∣∣µ1 − µ2

∣∣∣.
Therefore:

β
(√

n(θP∗n − θ̂n) , N (0, 1);Xn
)
≤
√

2
π

∣∣∣ n

n+ λ2 − 1
∣∣∣+
∣∣∣ λ2

n+ λ2

√
nθ̂n

∣∣∣.
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Asymptotic Behavior of Posterior/Bootstrap Inference for g(θ) = |θ|: Since
Assumptions 1, 2 and 3 are satisfied, Theorem 1 holds.

In this example, the posterior distribution of g(θP∗n )|Xn can be characterized explicitly
as ∣∣∣ 1√

n+ λ2
Z∗ + n

n+ λ2 θ̂n

∣∣∣, Z∗ ∼ N (0, 1)

and therefore
√
n(g(θP∗n )− g(θ̂n)) can be written as

∣∣∣ √
n√

n+ λ2
Z∗ + n

n+ λ2
√
nθ̂n

∣∣∣− ∣∣∣√nθ̂n∣∣∣, Z∗ ∼ N (0, 1). (3.1)

Theorem 1 shows that when θ0 = 0 and n is large enough, this expression can be approxi-
mated in the bounded Lipschitz distance in probability by∣∣∣Z + Zn

∣∣∣− ∣∣∣Zn∣∣∣ =
∣∣∣Z +

√
nθ̂n

∣∣∣− ∣∣∣√nθ̂n∣∣∣, Z ∼ N (0, 1), (3.2)

which corresponds to the bootstrap distribution of θ̂n.
Moreover, conditional on the data, the distribution of (3.1) has density equal to a shift of

a folded normal and can bounded above by a constant that does not depend on n. Theorem
3 in Section B.4 of the Appendix implies that the assumptions of Theorem 2 are verified;
that is, the quantiles of (3.1) and (3.2) are close to each other.

Observe that at θ0 = 0 the sampling distribution of the plug-in ML estimator for |θ| is

√
n(|θ̂n| − |θ0|) ∼ |Z|.

Thus, the approximate distribution of the posterior differs from the asymptotic distribution
of the plug-in ML estimator and the typical Gaussian approximation for the posterior will
not be appropriate.

Graphical interpretation of Theorem 1: One way to illustrate Theorem 1 is to
compute the 95% credible intervals for |θ| when θ0 = 0 using the quantiles of the posterior.
We can then compare the 95% credible intervals to the 95% confidence intervals from the
bootstrap distribution.

Observe from (3.2) that the approximation to the centered and scaled posterior and
bootstrap distributions depends on the data via

√
nθ̂n. Thus, in Figure 1 we report the 95%

credible and confidence intervals for data realizations
√
nθ̂n ∈ [−3, 3]. In all four plots the

bootstrap confidence intervals are computed using the parametric bootstrap. Posterior cred-
ible intervals are presented for four different priors for θ: N (0, 1/5), N (0, 1/10), γ(2, 2)− 3
and (β(2, 2)−0.5)×5. The posterior for the first two priors is obtained using the expression
in (3.1), while the posterior for the last two priors is obtained using the Metropolis–Hastings

13



algorithm (Geweke (2005), p. 122).

Coverage of Credible Intervals: In this example, the two-sided confidence interval
based on the quantiles of the bootstrap distribution of |θ̂n| fails to cover with the nominal
probability |θ| when θ = 0. Theorem 2 showed that the two-sided credible intervals based
on the quantiles of the posterior should exhibit the same problem. This is illustrated in
Figure 2. Thus, a frequentist cannot presume that a credible interval for |θ| based on the
quantiles of the posterior will deliver a desired level of coverage.

As Liu, Gelman, and Zheng (2015) observe, although it is common to report credible
intervals based on the α/2 and 1−α/2 quantiles of the posterior, a Bayesian might find these
credible intervals unsatisfactory. In this problem, it is perhaps more natural to consider one-
sided credible intervals or Highest Posterior Density intervals. In the online Appendix C
we consider an alternative example, g(θ) = max{θ1, θ2}, where the decision between two-
sided and one-sided credible intervals is less obvious, but the two-sided credible interval still
experiences the same problem as the bootstrap.
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4 Conclusion

This paper studied the asymptotic behavior of the posterior distribution of parameters of the
form g(θ), where g(·) is locally Lipschitz continuous but possibly nondifferentiable. We have
shown that the bootstrap distribution of g(θ̂n) and the posterior of g(θ) are asymptotically
equivalent.

One implication from our results is that Bayesians can interpret bootstrap inference for
g(θ) as approximately valid posterior inference in large samples. In fact, Bayesians can use
bootstrap draws to conduct approximate posterior inference for g(θ) whenever bootstrapping
g(θ̂n) is more convenient than MCMC sampling. This reinforces observations in the statistics
literature noting that by “perturbing the data, the bootstrap approximates the Bayesian
effect of perturbing the parameters” (Hastie, Tibshirani, Friedman, and Franklin (2005),
p. 236). Our results also provide a better understanding of what type of statistics could
preserve the large-sample equivalence between bootstrap and posterior resampling methods,
a question that has been explored by Lo (1987).

Another implication from our main result—combined with known results about boot-
strap inconsistency—is that it takes only mild departures from differentiability (such as
directional differentiability) to make the posterior distribution of

√
n(g(θ) − g(θ̂n)) behave

differently than the limit of
√
n(g(θ̂n)− g(θ)). We showed that whenever nondifferentiabil-

ity causes a bootstrap confidence interval to cover g(θ) less often than desired, a credible
interval based on the quantiles of the posterior will have distorted frequentist coverage as
well.
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A Main Theoretical Results.

A.1 Proof of Theorem 1

Lemma 1. If β(Z∗n, Z∗; Xn) p→ 0, then Z∗n converge in distribution to Z∗ unconditionally,
i.e.

sup
f∈BL(1,Rp)

∣∣∣E[f(Z∗n)]− E[f(Z∗)]
∣∣∣→ 0, as n→∞.

Proof. Define
An ≡ sup

f∈BL(1,Rp)

∣∣∣E[f(Z∗n)|Xn]− E[f(Z∗)|Xn]
∣∣∣.

This random variable is bounded by 2 and converges to zero in probability by assumption.
Theorem 4.1.4 of Chung (2001) (p. 71), implies that An converges in L1-norm to zero; i.e.,
E[An]→ 0 as n→∞.

For any f ∈ BL(1,Rp),

An ≥
∣∣∣E[f(Z∗n)|Xn]− E[f(Z∗)|Xn]

∣∣∣.
Taking expectation on both sides

E[An] ≥ E
[∣∣∣E[f(Z∗n)|Xn]− E[f(Z∗)|Xn]

∣∣∣],
≥
∣∣∣E[E[f(Z∗n)|Xn]− E[f(Z∗)|Xn]

]∣∣∣,
=
∣∣∣E[f(Z∗n)]− E[f(Z∗)]

∣∣∣.
Consequently,

sup
f∈BL(1,Rp)

∣∣∣E[f(Z∗n)]− E[f(Z∗)]
∣∣∣ ≤ E[An]→ 0.

By part (iii) of Lemma 2.2 (Portmanteau) in Van der Vaart (2000) (p. 6), Z∗n converges to
Z∗ in distribution (unconditionally).

Proof of Theorem 1. Theorem 1 follows from Lemma 1. Note first that Assumptions 1, 2
and 3 imply that the assumptions of Lemma 1 are verified for both θP∗n and θB∗n . Define

An ≡ sup
f∈BL(1,Rp)

∣∣∣E[f(Z∗Pn )|Xn]− E[f(Z∗Bn )|Xn]
∣∣∣,

Bn ≡ sup
f∈BL(1,Rp)

∣∣∣E[f(
√
n(g(θ∗Pn )− g(θ̂n))) |Xn]

−E[f(
√
n(g(θ∗Bn )− g(θ̂n))) |Xn]

∣∣∣,
where Z∗Bn ≡

√
n(θ∗Bn − θ̂n) and Z∗Pn =

√
n(θ∗Pn − θ̂n). We break the proof of the Theorem
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into 8 steps.

Step 1: Fix ε > 0. Lemma 1 implies that both Z∗Pn and Z∗Bn are tight, as they converge in
distribution (unconditionally) to some random element Z∗. Then, there exists a compact
subset Kε ⊆ Rp such that P[Z∗Pn ∈ Kε] ≥ 1− ε and P[Z∗Bn ∈ Kε] ≥ 1− ε for all n.

Step 2: By Assumption 1, g is locally Lipchitz at θ0, then there exists δ0 > 0 such that:

|g(x)− g(y)| ≤ c0||x− y|| x, y ∈ V0 ≡ {z : ||z − θ0|| < δ0}.

Define V1 ≡ {θ : ||θ− θ0|| < δ0/2} ⊂ V0. By Assumption 2, there exists N1 ≡ N1(δ0, ε) such
that P[θ̂n ∈ V1] ≥ 1− ε for all n ≥ N1.

Step 3: Consider M ≡ sup{||a|| : a ∈ Kε} and define ∆n : Rp × Rp → R

∆n(a, b) ≡
√
n(g(b+ a/

√
n)− g(b)).

For each b ∈ V1 and n > N2 ≡ (2M/δ0)2, we claim that ∆n(·, b) is a c0-Lipschitz function
in Kε. This means that for each b ∈ V1 and n sufficiently large

|∆n(a1, b)−∆n(a2, b)| ≤ c||a1 − a2||, ∀a1, a2 ∈ Kε.

It is then sufficient to show that
b+ a/

√
n ∈ V0

for all a ∈ Kε and n > N2. This is true because if any two points

b+ a1/
√
n and b+ a2/

√
n

both belong to V0 (which is a neighborhood of θ0), the locally Lipschitz property of g at θ0

readily gives

|
√
n(g(b+ a1/

√
n)− g(b))−

√
n(g(b+ a2/

√
n)− g(b))| ≤ c0||a1 − a2||.

23



If b ∈ V1, n > 2, and a ∈ Kε

||b+ a/
√
n− θ0|| ≤ ||b− θ0||+ ||a/

√
n||

≤ δ0/2 + ||a/
√
n||,

(as b ∈ V1)

≤ δ0/2 +M/
√
n,

(as a ∈ Kε)

≤ δ0,

(as n > N2).

Step 4: For each n > N2 and b ∈ V1, there exists Fn(·, b) : Rp → R such that Fn(·, b) is a
c0-Lipschitz function and Fn(a, b) = ∆n(a, b) for all a ∈ Kε (See McShane (1934), Whitney
(1934)), i.e. Fn(·, b) is a c0-Lipschitz extension of ∆n(·, b)|Kε .

Step 5: For each n > N2, b ∈ V1 and f ∈ BL(1,R), we have that 1
c̃f ◦ Fn(·, b) ∈ BL(1,Rp),

where c̃ ≡ max{c0, 1}. Therefore,∣∣∣∣E [f ◦ Fn(Z∗Pn , b)
c̃

− f ◦ Fn(Z∗Bn , b)
c̃

∣∣∣Xn

]∣∣∣∣
is smaller than or equal to

sup
f∈BL(1,Rp)

∣∣∣E[f(Z∗Pn )|Xn]− E[f(Z∗Bn )|Xn]
∣∣∣ ≡ An.

Consequently:

1{θ̂n ∈ V1}

∣∣∣∣∣E
[(

f ◦ Fn(Z∗Pn , θ̂n)
c̃

− f ◦ Fn(Z∗Bn , θ̂n)
c̃

) ∣∣∣Xn

]∣∣∣∣∣ ≤ An.
Since 1{θ̂n ∈ V1} is Xn-measurable

∣∣∣E[1{θ̂n ∈ V1}

(
f ◦ Fn(Z∗Pn , θ̂n)

c̃
− f ◦ Fn(Z∗Bn , θ̂n)

c̃

) ∣∣∣Xn
]∣∣∣ ≤ An.
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Step 6: Let N3 ≡ max{N1, N2}. For each f ∈ BL(1,R)∣∣∣E[f(
√
n(g(θ∗Pn )− g(θ̂n))) |Xn]− E[f(

√
n(g(θ∗Bn )− g(θ̂n))) |Xn]

∣∣∣
= c̃ ·

∣∣∣∣∣E
[
f(
√
n(g(θ̂n + Z∗Pn /

√
n)− g(θ̂n)))

c̃

∣∣∣Xn

]

− E

[
f(
√
n(g(θ̂n + Z∗Bn /

√
n)− g(θ̂n)))

c̃
|Xn

]∣∣∣∣∣
= c̃ ·

∣∣∣∣∣E
[
f ◦∆n(Z∗Pn , θ̂n)

c̃

∣∣∣Xn
]
− E

[f ◦∆n(Z∗Bn , θ̂n)
c̃

∣∣∣Xn

]∣∣∣∣∣
≤ |I1|+ |I2|,

where

I1 ≡ c̃ · 1{θ̂n ∈ V1} ·

(
E

[
f ◦∆n(Z∗Pn , θ̂n)

c̃

∣∣∣Xn

]
− E

[
f ◦∆n(Z∗Bn , θ̂n)

c̃

∣∣∣Xn

])
,

I2 ≡ c̃ · 1{θ̂n /∈ V1} ·

(
E

[
f ◦∆n(Z∗Pn , θ̂n)

c̃

∣∣∣Xn

]
− E

[
f ◦∆n(Z∗Bn , θ̂n)

c̃

∣∣∣Xn

])
.

For the second term, I2, |I2| ≤ 1{θ̂n /∈ V1} · 2 since f ∈ BL(1,R). For the first term,
I1, Fn(·, θ̂n) is a well-defined c0-Lipschitz function since θ̂n ∈ V1. Since 1{θ̂n ∈ V1} is
Xn-measurable, we can further decompose I1 as the sum of I3 + I4 + I5 where

I3 ≡ c̃ · E
[
1{θ̂n ∈ V1} ·

(
f ◦∆n(Z∗Pn , θ̂n)

c̃
− f ◦ Fn(Z∗Pn , θ̂n)

c̃

) ∣∣∣Xn
]
,

I4 ≡ c̃ · E
[
1{θ̂n ∈ V1} ·

(
f ◦ Fn(Z∗Bn , θ̂n)

c̃
− f ◦∆n(Z∗Bn , θ̂n)

c̃

) ∣∣∣Xn
]
,

I5 ≡ c̃ · E
[
1{θ̂n ∈ V1} ·

(
f ◦ Fn(Z∗Pn , θ̂n)

c̃
− f ◦ Fn(Z∗Bn , θ̂n)

c̃

) ∣∣∣Xn
]
.

From The definition of Fn (as extension of ∆n)

I3 = c̃ · E
[
1{Z∗Pn /∈ Kε} · 1{θ̂n ∈ V1} ·

(
f ◦∆n(Z∗Pn , θ̂n)

c̃
− f ◦ Fn(Z∗Pn , θ̂n)

c̃

) ∣∣∣Xn
]
,

I4 = c̃ · E
[
{Z∗Bn /∈ Kε} · 1{θ̂n ∈ V1} ·

(
f ◦ Fn(Z∗Bn , θ̂n)

c̃
− f ◦∆n(Z∗Bn , θ̂n)

c̃

) ∣∣∣Xn
]
.

and so
|I3|+ |I4| ≤ E[1{Z∗Pn /∈ Kε} · 2 |Xn] + E[1{Z∗Bn /∈ Kε} · 2 |Xn].
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In addition, by Step 5,
|I5| ≤ c̃ ·An.

Collecting the inequalities∣∣∣E[f(
√
n(g(θ∗Pn )− g(θ̂n))) |Xn]− E[f(

√
n(g(θ∗Bn )− g(θ̂n))) |Xn]

∣∣∣
≤ |I1|+ |I2|,

≤ |I3|+ |I4|+ |I5|+ 1{θ̂n /∈ V1} · 2,

≤ E[1{Z∗Pn /∈ Kε} · 2 |Xn] + E[1{Z∗Bn /∈ Kε} · 2 |Xn] + c̃ ·An + 1{θ̂n /∈ V1} · 2.

Taking the supremum over f ∈ BL(1,R)

Bn ≤ E[1{Z∗Pn /∈ Kε} · 2 |Xn] + E[1{Z∗Bn /∈ Kε} · 2 |Xn] + c̃ ·An + 2 · 1{θ̂n /∈ V1}.

Applying expectation:

E[Bn] ≤ 2 · P[Z∗Pn /∈ Kε] + 2 · P[Z∗Bn /∈ Kε] + c̃ · E[An] + 2 · P[θ̂n /∈ V1].

Step 7: For any n > N3 (which was previously defined as the maximum of N1 and N2),
using Step 1 and Step 2 in Step 6

E[Bn] ≤ 4 · ε+ c̃ · E[An] + 2 · ε.

Assumption 3 and the triangle inequality imply that An converges to zero in probability.
Since An is also bounded by 2, once again applying Theorem 4.1.4 of Chung (2001), we
conclude that An converges in L1-norm to zero: E[An]→ 0. Then,

lim supE[Bn] ≤ 6 · ε+ c̃ · lim supE[An] = 6 · ε

Thus, lim supE[Bn] ≤ 0, which implies that limE[Bn] = 0 since Bn ≥ 0.

Step 8: Since Bn is a random variable bounded by 2, and it converge to zero in L1-norm,
we conclude, by a standard application of Markov’s inequality, Bn converges to zero in
probability.

These steps prove Theorem 1.
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A.2 Proof of Theorem 2

Proof of Theorem 2: Define, for any 0 < β < 1, the critical values cB∗β (Xn) and cP∗β (Xn)
as:

cB∗β (Xn) ≡ inf
c
{c ∈ R | PB∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ β},

cP∗β (Xn) ≡ inf
c
{c ∈ R | PP∗(

√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn) ≥ β}.

Note that the critical values cB∗β (Xn), cP∗β (Xn) and the quantiles for g(θB∗n ) and g(θP∗n ) are
related through the equation:

qBβ (Xn) = g(θ̂n) + cB∗β (Xn)/
√
n,

qPβ (Xn) = g(θ̂n) + cP∗β (Xn)/
√
n.

This implies that:

CSBn (1− α) =
[
g(θ̂n) + cB∗α/2(Xn)/

√
n , g(θ̂n) + cB∗1−α/2(Xn)/

√
n
]
,

CSPn (1− α− ε) =
[
g(θ̂n) + cP∗α/2+ε/2(Xn)/

√
n , g(θ̂n) + cP∗1−α/2−ε/2(Xn)/

√
n
]
.

By assumption of the theorem for every 0 < ε < α and δ > 0 there exists N(ε, δ) such that

Pθ[cP∗α−ε(Xn) ≤ cB∗α (Xn) ≤ cP∗α+ε(Xn)] ≥ 1− δ, ∀n ≥ N(ε, δ).

This implies

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) = Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn), cP∗α−ε(Xn) ≤ cB∗α (Xn))

+Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn), cP∗α−ε(Xn) > cB∗α (Xn)),

≤ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ,

and

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn)) = Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn), cB∗α (Xn) ≤ cP∗α+ε(Xn))

+Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn), cB∗α (Xn) > cP∗α+ε(Xn)),

≤ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) + δ.
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Thus, for n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ, (A.1)

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ. (A.2)

Consequently:

Pθ
(
g(θ) ∈ CSBn (1− α)

)
= Pθ

(
g(θ) ∈

[
g(θ̂n) + cB∗α/2(Xn)/

√
n , g(θ̂n) + cB∗1−α/2/

√
n
])

= Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α/2(Xn))

− Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗1−α/2(Xn))

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗α/2+ε/2(Xn))

− Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗1−α/2−ε/2(Xn))− δ

(Replacing α by α/2, ε by ε/2 and δ by δ/2 in (B.10) and

replacing α by 1− α/2, ε by ε/2 and δ by δ/2 in (B.9))

= Pθ
(
g(θ) ∈ CSPn (1− α− ε)

)
− δ.

Therefore, for every 0 < ε < α:

1− α− dα ≥ lim sup
n→∞

Pθ
(
g(θ) ∈ CSBn

)
≥ lim sup

n→∞
Pθ
(
g(θ) ∈ CSPn (1− α− ε)

)
,

which implies that

1− α− ε− (dα − ε) ≥ lim sup
n→∞

Pθ
(
g(θ) ∈ CSPn (1− α− ε)

)
.

This implies that if the bootstrap fails at θ by at least 100dα% given the nominal
confidence level 100(1 − α)%, then the confidence interval based on the quantiles of the
posterior will fail at θ—by at least 100(dα − ε)%—given the nominal confidence level (1 −
α− ε).
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B Additional Results (intended for online publi-

cation only)

B.1 Bootstrap and Posterior quantiles

This section establishes the closeness between bootstrap/posterior quantiles as assumed in
Theorem 2 for directional differentiable functions. For the sake of generality, we provide a
slightly more general result based on high-level assumptions that we then verify for direc-
tionally differentiable g(·).

Assumption 4. There exists a function hθ0(Z,Xn) such that:

i) β(
√
n(g(θB∗n )− g(θ̂n)), hθ0(Z,Xn); Xn) p→ 0.

ii) The cumulative distribution function of Y ≡ hθ0(Z,Xn) conditional on Xn, denoted
Fθ0(y|Xn), is Lipschitz continuous in y—almost surely in Xn for every n—with a
constant k that does not depend on Xn.

The first part of Assumption 4 simply requires the distribution of
√
n(g(θB∗

n )− g(θ̂n)), con-
ditional on the data, to have a well-defined limit (which is neither assumed nor guaranteed
by Theorem 1).

We now establish a Lemma based on a high-level assumption implied by the second
part of Assumption 4. In what follows we use PZ to denote the distribution of the random
variable Z (which is independent of the data Xn for every n).

Assumption 5. The function hθ(Z,Xn) is such that for all positive (ε, δ) there exists
ζ(ε, δ) > 0 and N (ε, δ) for which

Pθ
(

sup
c∈R

PZ
(
c− ζ(ε, δ) ≤ hθ(Z,Xn) ≤ c+ ζ(ε, δ)

∣∣∣Xn
)
> ε
)
< δ,

provided n ≥ N (ε, δ).

Assumption 5 is implied by the second part of Assumption 4:

PZ
(
c− ζ(ε, δ) ≤ hθ(Z,Xn) ≤ c+ ζ(ε, δ)

∣∣∣Xn
)
,

equals:
Fθ(c+ ζ(ε, δ)|Xn)− Fθ(c− ζ(ε, δ)|Xn) ≤ 2ζ(ε, δ)k.

Last inequality holds since, by assumption, Fθ(y|Xn) is Lipschitz continuous—for almost
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every Xn for every n—with a constant k that does not depend on Xn. By choosing ζ(ε, δ)
equal to ε/4k, then

PZ
(
c− ζ(ε, δ) ≤ hθ(Z,Xn) ≤ c+ ζ(ε, δ)

∣∣∣Xn
)
≤ ε

2 ,

for every c, implying that Assumption 5 holds.

We now show that any random variable satisfying the weak convergence assumption in
the first part of Assumption 4 has a conditional α-quantile that—with high probability—lies
in between the conditional (α− ε) and (α+ ε)-quantiles of the limiting distribution.

Lemma 2. Let θ∗n denote a random variable whose distribution, P ∗, depends on Xn =
(X1, . . . , Xn) and let Z be the limiting distribution of Zn ≡

√
n(θ̂n − θ) as defined in As-

sumption 2. Suppose that

β(
√
n(g(θ∗n)− g(θ̂n)), hθ(Z,Xn);Xn) p→ 0.

Define c∗α(Xn) and cα(Xn) as the critical values such that:

c∗α(Xn) ≡ inf
c
{c ∈ R | P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α}.

cα(Xn) ≡ inf
c
{c ∈ R | P∗(hθ(Z,Xn) ≤ c |Xn) ≥ α}.

Suppose hθ(Z,Xn) satisfies Assumption 5. Then for any 0 < ε < α and δ > 0 there exists
N (ε, δ) such that for n > N(ε, δ):

Pθ(cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn)) ≥ 1− δ.

Proof. We start by deriving a convenient bound for the difference between the conditional
distributions of

√
n(g(θ∗n) − g(θ̂n)) and the distribution of hθ(Z,Xn). Define the random

variables:
W ∗n ≡

√
n(g(θ∗n)− g(θ̂n)), Y ∗n ≡ hθ(Z,Xn).

Denote by PnW and PnY the probabilities that each of these random variables induce over the
real line. Let c ∈ R be some constant. By applying Lemma 5 in Appendix B.3 to the set
A = (−∞, c) it follows that for any ζ > 0:

|PnW ((−∞, c)|Xn)− PnY ((−∞, c)|Xn)|

≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + max{(PnY (Aζ \A|Xn), PnY ((Ac)ζ \Ac|Xn)}

= 1
ζ
β(W ∗n , Y ∗n ;Xn) + max{PnY ( [c, c+ ζ) |Xn), PnY ( (c− ζ, c) |Xn)}
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≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + PZ (c− ζ ≤ hθ(Z,Xn) ≤ c+ ζ |Xn)

where for any set A, we define Aδ ≡ {y ∈ Rk : ‖x−y‖ < δ for some x ∈ A} (see Lemma
5). Therefore:

|P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn)− PZ (hθ(Z,Xn) ≤ c |Xn) |

≤ 1
ζ
β(
√
n(g(θ∗n)− g(θ̂n)) , hθ(Z,Xn);Xn)

+ sup
c∈R

PZ (c− ζ ≤ hθ(Z,Xn) ≤ c+ ζ |Xn)

We use this relation between the conditional c.d.f. of
√
n(g(θ∗n) − g(θ̂n)) and the con-

ditional c.d.f. of hθ(Z,Xn) to show that quantiles of these distributions should be close to
each other.

To simplify the notation, define the functions:

A1(ζ,Xn) ≡ 1
ζ
β(
√
n(g(θ∗n)− g(θ̂n)) , hθ(Z,Xn);Xn),

A2(ζ,Xn) ≡ sup
c∈R

PZ (c− ζ ≤ hθ(Z,Xn) ≤ c+ ζ |Xn)

Observe that if the data Xn were such that A1(ζ,Xn) < ε/2 and A2(ζ,Xn) < ε/2 then
for any c ∈ R:

|P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn)− PZ (hθ(Z,Xn) ≤ c |Xn) |

≤ A1(ζ,Xn) +A2(ζ,Xn)

< ε.

This would imply that for any c ∈ R:

− ε < P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn)− PZ (hθ(Z,Xn) ≤ c |Xn) < ε. (B.1)

We now show that this inequality implies that:

cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn),

whenever Xn is such that A1(ζ,Xn) < ε/2 and A2(ζ,Xn) < ε/2. To see this, evaluate
equation (B.1) at cα+ε(Xn). This implies that:

−ε < P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ cα+ε(Xn) |Xn)− PZ (hθ(Z,Xn) ≤ cα+ε(Xn) |Xn)

≤ P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ cα+ε(Xn) |Xn)− (α+ ε).
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Consequently:

cα+ε(Xn) ∈ {c ∈ R | P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α}.

Since:
c∗α(Xn) ≡ inf

c
{c ∈ R | P∗(

√
n(g(θ∗n)− g(θ̂n)) ≤ c |Xn) ≥ α},

it follows that
c∗α(Xn) ≤ cα+ε(Xn).

To obtain the other inequality, evaluate equation (B.1) at c∗α(Xn). This implies that:

−ε < PZ (hθ(Z,Xn) ≤ c∗α(Xn) |Xn)− P∗(
√
n(g(θ∗n)− g(θ̂n)) ≤ c∗α(Xn) |Xn)

≤ PZ (hθ(Z,Xn) ≤ c∗α(Xn) |Xn)− α,

it follows that
cα−ε(Xn) ≤ c∗α(Xn).

This shows that whenever the data Xn is such that A1(ζ,Xn) < ε/2 and A2(ζ,Xn) <
ε/2

cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn).

To finish the proof, note that by Assumption 5 there exists ζ∗ ≡ ζ(ε/2, δ/2) and N (ε/2, δ/2)
that guarantees that if n > N (ε/2, δ/2):

Pnθ (A2(ζ∗, Xn) > ε/2) < δ/2.

Also, by the convergence assumption of this Lemma, there is N (ζ∗, ε/2, δ/2) such that for
n > N(ζ∗, ε/2δ/2):

Pnθ (A1(ζ∗, Xn) > ε/2 ) < δ/2.

It follows that for n > max{N (ζ∗, ε/2, δ/2),N (ε/2, δ/2)} ≡ N (ε, δ)

Pθ(cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn))

≥ Pθ(A1(ζ∗, Xn) < ε/2 and A2(ζ∗, Xn) < ε/2)

= 1− Pθ(A1(ζ∗, Xn) > ε/2 or A2(ζ∗, Xn) > ε/2)

≥ 1− Pθ(A1(ζ∗, Xn) > ε/2)− Pθ(A2(ζ∗, Xn) > ε/2)

≥ 1− δ.

We have shown that if
√
n(g(θ∗n) − g(θ̂n)) is any random variable satisfying the as-

sumptions of Lemma 2, its conditional α-quantile lies—with high probability—between the
conditional (α − ε) and (α + ε) quantiles of the limiting distribution hθ(Z,Xn). The next
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Lemma considers the case in which θ∗n is either θB∗n or θP∗n and characterizes the asymptotic
behavior of the c.d.f. of

√
n(g(θ̂n)−g(θ)) evaluated at bootstrap and posterior quantiles. The

main result is that the c.d.f. evaluated at the bootstrap α-quantile is—in large samples—
close to same c.d.f. evaluated at the (α − ε) and (α + ε) posterior quantiles. We note that
this result could not be obtained directly from the fact that the bootstrap and posterior
quantiles converge in probability to each other, as some additional regularity in the limit-
ing distribution is needed. This is why it was important to establish Lemma 2 before the
following Lemma.

Lemma 3. Suppose that Assumptions 1, 2, 3 and 4 hold. Fix α ∈ (0, 1). Let cB∗α (Xn) and
cP∗α (Xn) denote critical values satisfying:

cB∗α (Xn) ≡ inf
c
{c ∈ R | PB∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ α},

cP∗α (Xn) ≡ inf
c
{c ∈ R | PP∗(

√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn) ≥ α}.

Then, for any 0 < ε < α and δ > 0 there exists N(ε, δ) such that for all n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ, (B.2)

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ. (B.3)

Proof. Let θ∗ denote either θP∗n or θB∗n . Let cα(Xn) and c∗α(Xn) be defined as in Lemma 2.
Under Assumptions 1, 2, 3 and 4, the conditions for Lemma 2 are satisfied. It follows that
for any 0 < ε < α and δ > 0 there exists N (ε, δ) such that for all n > N (ε, δ):

Pθ(cα+ε/2(Xn) < c∗α(Xn)) ≤ δ/2 and Pθ(c∗α(Xn) < cα−ε/2(Xn)) ≤ δ/2.

Therefore:

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn))

= Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn) and cα+ε/2(Xn) ≥ c∗α(Xn))

+ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn) and cα+ε/2(Xn) < c∗α(Xn))

(by the additivity of probability measures)

≤ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn)) + Pθ(cα+ε/2(Xn) < c∗α(Xn))

(by the monotonicity of probability measures)

≤ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn)) + δ/2. (B.4)
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Also, we have that:

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn))

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn) and c∗α(Xn) ≥ cα−ε/2(Xn))

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn) and c∗α(Xn) ≥ cα−ε/2(Xn))

= Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn)) + Pθ(c∗α(Xn) ≥ cα−ε/2(Xn))

− Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn) or c∗α(Xn) ≥ cα−ε/2(Xn))

(using P (A ∩B) = P (A) + P (B)− P (A ∪B))

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn))− (1− Pθ(c∗α(Xn) ≥ cα−ε/2(Xn)))

(since Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn) or c∗α(Xn) ≥ cα−ε/2(Xn)) ≤ 1)

= Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn))− Pθ(c∗α(Xn) < cα−ε/2(Xn))

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −c∗α(Xn))− δ/2. (B.5)

Replacing c∗α by cB∗α in (B.5) and c∗α by cP∗α and α by α − ε in (B.4) implies that for
n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn))− δ/2

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα−ε/2(Xn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ/2.

Combining the previous two equations gives that for n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ.

This establishes equation (B.2). Replacing θ∗n by θB∗n in (B.4) and replacing θ∗n by θP∗n , α
by α+ ε (B.5) implies that for n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) + δ/2

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cα+ε/2(Xn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ/2

and combining the previous two equations gives that for n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ,

which establishes equation (B.3).
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B.2 Posterior Distribution of g(θP∗) under directional dif-
ferentiability

Lemma 4. let Z be the limiting distribution of Zn ≡
√
n(θ̂n− θ) as defined in Assumption

2. Let Z∗ be a random variable independent of both Xn = (X1, . . . , Xn) and Z and let θ0

denote the parameter that generated the data. Suppose that g is directionally differentiable
in the sense defined in Remark 2 of the main text. Then, Assumption 4 (i) holds with
hθ0(Z,Zn) = g′θ0

(Z∗ + Zn)− g′θ0
(Zn).

Proof. We start by analyzing the limiting distribution of both:

√
n(g(θ0 + Z∗√

n
+ Zn√

n
)− g(θ0))

and
√
n(g(θ0 + Zn√

n
)− g(θ0))

as a function of (Z∗, Zn). Note that the delta-method for directionally differentiable func-
tions (e.g., Theorem 2.1 in Fang and Santos (2019)) and the continuity of the directional
derivative implies that jointly:

√
n(g(θ0 + Z∗√

n
+ Zn√

n
)− g(θ0)) d→ g′θ0

(Z∗ + Z)

g′θ0
(Z∗ + Zn) d→ g′θ0

(Z∗ + Z)
√
n(g(θ0 + Zn/

√
n)− g(θ0)) d→ g′θ0

(Z)

g′θ0
(Zn) d→ g′θ0

(Z)

where Z is independent of Z∗. Note that the joint (and unconditional) convergence in
distribution above implies that:

An ≡
√
n(g(θ0 + Z∗√

n
+ Zn√

n
)− g(θ̂n))

and
Bn ≡ g′θ0

(Z∗ + Zn)− g′θ0
(Zn)

are such that |An − Bn| = op(1), where the op(1) term refers to convergence in probability
unconditional on the data as a function of Z∗ and Zn.

Note that for any two random variables An and Bn we have that for any ε

sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣

is bounded above by:
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ε+ 2PZ
∗
[ |An −Bn| > ε |Xn],

where the probability is taken over the distribution of Z∗, denoted PZ∗ .24 Note that the
unconditional convergence in probability result for |An −Bn| implies that:

Eθ[PZ
∗
[ |An −Bn| > ε |Xn]]→ 0,

as the expectation is taken over different data realizations. Note that in light of the inequal-
ities above we have that:

Pθ

(
sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣ > 2ε

)
(B.6)

is bounded above by:

Pθ
(
ε+ 2PZ

∗
[ |An −Bn| > ε |Xn] > 2ε

)
,

which equals

Pθ
(
PZ

∗
[ |An −Bn| > ε |Xn] > ε/2

)
.

Thus, by Markov’s inequality:

Pθ

(
sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣ > 2ε

)
≤ 2Eθ[PZ

∗
[ |An −Bn| > ε |Xn]]/ε.

Implying that:
sup
BL(1)

∣∣∣E[f(An)|Xn]− E[f(Bn)|Xn]
∣∣∣ p→ 0,

as desired.25

B.3 Additional Lemmas

Lemma 5. Let W ∗n , Y ∗n be random variables dependent on the data Xn = (X1, X2, . . . Xn)
inducing the probability measures PnW and PnY respectively. Let A ⊂ Rk and let Aδ = {y ∈
Rk : ‖x− y‖ < δ for some x ∈ A}. Then,

24This is a common bound used in bootstrap analysis; see for example, Theorem 23.9 p. 333 in
Van der Vaart (2000).

25We are extremely thankful to an anonymous referee who suggested major simplifications to the
previous version of the proof of this Lemma.
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|PnW (A|Xn)− PnY (A|Xn)| ≤ 1
δ

sup
f∈BL(1)

∣∣E[f(W ∗n)|Xn]− E[f(Y ∗n )|Xn]
∣∣

+ max{PnY (Aδ\A|Xn), PnY ((Ac)δ\Ac|Xn)}

Proof. To show this Lemma we use an argument analogous to that in Dudley (2002) p. 395.
Define f(x) ≡ max(0, 1− ‖x−A‖/δ). Then, δf ∈ BL(1) and:

PnW (A|Xn) =
∫
A

dPnW |Xn

≤
∫
fdPnW |Xn

( since f is nonnegative and f(x) = 1 over A )

=
∫
Aδ
fdPnY |Xn + 1

δ

(∫
Aδ
δfdPnW |Xn −

∫
Aδ
δfdPnY |Xn

)
≤
∫
Aδ
dPnY |Xn + 1

δ
sup

f∈BL(1)

∣∣∣E[f(W ∗n) |Xn]− E[f(Y ∗n ) |Xn]
∣∣∣

= PnY (Aδ|Xn) + 1
δ

sup
f∈BL(1)

∣∣∣E[f(W ∗n) |Xn]− E[f(Y ∗n ) |Xn]
∣∣∣

It follows that:

PnW (A|Xn)− PnY (A|Xn) ≤ 1
δ

∣∣E[f(W ∗n)|Xn]− E[f(Y ∗n )|Xn]
∣∣+ (PnY (Aδ|Xn)− PnY (A|Xn))

An analogous argument can be made for Ac. In this case we get:

PnW (Ac|Xn)−PnY (Ac|Xn) ≤ 1
δ

∣∣E[f(W ∗n)|Xn]−E[f(Y ∗n )|Xn]
∣∣+(PnY ((Ac)δ|Xn)−PnY (Ac|Xn)),

which implies that:

PnW (A|Xn)−PnY (A|Xn) ≥ −1
δ

∣∣E[f(W ∗n)|Xn]−E[f(Y ∗n )|Xn]
∣∣−(PnY ((Ac)δ|Xn)−PnY (Ac|Xn))

The desired result follows.

Lemma 6. Let S(θ) be an m × n matrix of sign restrictions whose entries depend on the
finite dimensional parameter θ ≡ (vec(A)′, vech(Σ)′)′. Given Σ is invertible, consider the
program

g(θ) ≡ max
x∈Rn

e′iCk(A)x, s.t. x′Σ−1x = 1, S(θ)x ≥ 0, (B.7)

where ei denotes the i-th column of the identity matrix of dimension n. Suppose

1. {x ∈ Rn | S(θ)x ≥ 0} is nonempty in a neighborhood of θ.
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2. S(θ) is a continuously differentiable function of θ,

3. There exists an optimal solution x∗(θ) to (B.7) for which its corresponding active
constraints S∗(θ) ∈ Rm∗×n (m∗ ≤ m) can be written as positive linear combination
of a full row-rank matrix S̃∗(θ) ∈ Rr×n, r ≤ m∗ and S̃∗(θ)x∗(θ) = 0r×1. That is,
there exists α ∈ Rr×m

∗

+ s.t.

S̃∗(θ)′α = S∗(θ)′,

and
S̃∗(θ)x∗(θ) = 0r×1.

Then g(θ) is locally Lipschitz.

Proof. DefineD(θ) ≡ {x ∈ Rn|x′Σ−1x = 1, S(θ)x ≥ 0}. Assumption 1 of the current lemma
implies that D(θ) is nonempty in a neighborhood of θ. We use Proposition 6 from Morand
et al. (2015) to prove that g(θ) is a locally Lipschitz function. Thus, we need to verify
that (i) D(θ) is uniformly compact near θ and (ii) the Mangasarian-Fromowitz constraint
qualification (MFCQ) holds at some optimal solution x∗(θ). This second requirement is
equivalent to verifying:

1. The gradient of the equality constraints (∇xhj(x∗(θ), θ) for j = 1, .., q) are linear
independent vectors. In our problem we only have one equality constraint that is
defined by h(x, θ) ≡ x′Σ−1x− 1. Since ∇xh(x, θ) = 2Σ−1x and x∗(θ)′Σ−1x∗(θ) = 1,
it follows that ∇xh(x∗(θ), θ) 6= 0 verifies this linear independent condition.

2. There exists y ∈ Rn such that, ∇xgi(x∗(θ), θ)·y < 0 for all i ∈ I ≡ {i|gi(x∗(θ), θ) = 0}
and ∇xhj(x∗(θ), θ) · y = 0 for all j = 1, . . . , q. In our problem we have m-inequality
constraints gi(x, θ) ≡ −e′iS(θ)x for i = 1, ...,m and only one equality constraint
h(x, θ) = x′Σ−1x − 1. Under the assumption of this lemma, we have that at x∗(θ)
the set I has m∗ elements that are defined by the active constraints (the rows of
S∗(θ)). Then, the verification of this condition is equivalent to −S∗(θ)y < 0 and
Σ−1x∗(θ) · y = 0. We will verify this condition in step 2.

Step 1: Define

D(θ, δ) ≡
⋃

{θ̃:||θ̃−θ||<δ}

D(θ̃) ⊆ E(θ, δ) ≡
⋃

{θ̃:||θ̃−θ||<δ}

E(θ̃)

where E(θ̃) ≡ {x ∈ Rn | x′Σ̃−1x = 1}. It is sufficient to show that for δ small enough,
there exists Mθ(δ) > 0 such that E(θ̃) ⊆ B0(Mθ(δ)) for all θ̃ such that ||θ̃ − θ|| < δ; where
B0(Mθ(δ)) is an open ball centered at 0 with radius M(δ). This is sufficient since

Closure(D(θ, δ)) ⊆ Closure(E(θ, δ)) ⊆ Closure(B0(Mθ(δ))) = {x | ||x′x|| ≤Mθ(δ)},
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implies that the closure of D(θ, δ) is a subset of a compact subset, which implies the uniform
compactness of D(θ).

For each θ̃ = (vec(Ã)′, vech(Σ̃)′)′ consider the optimization problem

v(Σ̃) ≡ max
x∈Rn

x′x, s.t. x′Σ̃−1x = 1.

The necessary first-order conditions for this problem are

(In − λΣ̃−1)x = 0,

where λ is a scalar lagrange multiplier. The first-order conditions are thus satisfied by pairs
(λ∗, x∗) where λ∗ is the eigenvalue of Σ̃ and x∗ is its corresponding eigenvector. By the
definition of the eigenvector

Σ̃−1x∗ = (1/λ∗)x∗,

Thus,
x∗′x∗ = λ∗.

This means that value of the program above is given by

v(Σ̃) = maxeig(Σ̃).

Consequently,
x ∈ E(θ̂) =⇒ ||x′x|| ≤

(
maxeig(Σ̃)

)1/2
.

Since Σ is invertible, there exists δ small enough and a constant c such that

1/maxeig(Σ̃) = mineig(Σ̃−1) > c, for all ||θ̃ − θ|| ≤ δ.

Then, E(θ̃) ⊂ B0(c−1/2) for all θ̃ such that ||θ̃ − θ|| < δ.

Step 2: We now show that the MFCQ holds at a solution x∗(θ) that satisfies our assump-
tions. Let S∗(θ) denote the matrix of active constraints at x∗(θ), that is

S∗(θ)x∗(θ) = 0m∗×1.

We have assumed there exists a full-row rank matrix S̃∗(θ) of dimension r×n, r ≤ m∗, and
a matrix α of dimension r ×m∗ with nonnegative entries such that

S̃∗(θ)′α = S∗(θ)′, S̃∗(θ)x∗(θ) = 0r×1

The full row-rank assumption about S̃∗(θ) implies r ≤ n − 1 (if not x∗(θ) = 0 and this
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contradicts x∗(θ)′Σ−1x∗(θ) = 1).
We now argue that S̃∗(θ)′ ∈ Rn×r and Σ−1x∗(θ) are linearly independent. Suppose this

is not the case. Since S̃∗(θ)′ has full column rank and x∗(θ) 6= 0 (as x∗(θ)′Σ−1x∗(θ) = 1)
then there must exist β ∈ Rr such that

S̃∗(θ)′β = Σ−1x∗(θ).

This implies
(x∗)′S̃∗(θ)′β = x∗(θ)′Σ−1x∗(θ) = 1,

but the left-hand side in the equation is equal to (S̃∗(θ)x∗)′β, which is zero by the definition
of S̃∗(θ) and so we get the required contradiction.

Linear independence implies that

[Σ−1x∗, S̃∗(θ)′],

has column rank (r + 1) ≤ n. This means that for any vector c ∈ Rr with strictly positive
entries there exists y(c) ∈ Rn such that

[Σ−1x∗, S̃∗(θ)′]′y(c) = [0, c′]′.

Consequently,
S∗(θ)y(c) = (α′S̃∗(c))y(c) = α′c > 0.

and
(Σ−1x∗)′y(c) = 0.

Thus, the MFCQ condition is satisfied.
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B.4 Alternative Statement for Theorem 2

Theorem 3. Suppose that the nominal 100(1 − α)% bootstrap confidence interval fails
to cover g(θ) at θ by at least 100dα%. Suppose in addition that for each n the probability
density function of

√
n(g(θP∗n )− g(θ̂n)) is uniformly bounded. If the Assumptions 1, 2 and

3 hold. Then for any 0 < ε < α:

Pθ[qPα−ε(Xn) ≤ qBα (Xn) ≤ qPα+ε(Xn)]→ 1 as n→∞.

That is, the α-quantile of the bootstrap is in between the α − ε and α + ε quantiles of the
posterior of g(θ) with high probability. And

lim sup
n→∞

Pθ
(
g(θ) ∈

[
qP(α+ε)/2(Xn) , qP1−(α+ε)/2(Xn)

])
≤ 1− α− dα.

Thus, the nominal 100(1− α− ε)% credible interval based on the quantiles of the posterior
fails to cover g(θ) at θ by at least 100(dα − ε)%.

Proof. Step 1: We will first prove the closeness in quantiles.
We start by deriving a convenient bound for the difference between the conditional

distributions of
√
n(g(θB∗n )− g(θ̂n)) and the distribution of

√
n(g(θP∗n )− g(θ̂n)). Define the

random variables:

W ∗n ≡
√
n(g(θB∗n )− g(θ̂n)), Y ∗n ≡

√
n(g(θP∗n )− g(θ̂n)).

Denote by PnW and PnY the probabilities that each of these random variables induce over the
real line. Let c ∈ R be some constant. By applying Lemma 5 in Appendix B.3 to the set
A = (−∞, c) it follows that for any ζ > 0:

|PnW ((−∞, c)|Xn)− PnY ((−∞, c)|Xn)|

≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + max{(PnY (Aζ \A|Xn), PnY ((Ac)ζ \Ac|Xn)}

= 1
ζ
β(W ∗n , Y ∗n ;Xn) + max{PnY ( [c, c+ ζ) |Xn), PnY ( (c− ζ, c) |Xn)}

≤ 1
ζ
β(W ∗n , Y ∗n ;Xn) + PZ

(
c− ζ ≤

√
n(g(θP∗n )− g(θ̂n)) ≤ c+ ζ |Xn

)
where for any set A, we have defined Aζ ≡ {y ∈ Rk : ‖x − y‖ < ζ for some x ∈ A} (as in
Lemma 5). Therefore:∣∣∣P∗ (√n(g(θB∗n )− g(θ̂n)) ≤ c |Xn

)
− PZ

(√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn

)∣∣∣
≤ 1
ζ
β(
√
n(g(θB∗n )− g(θ̂n)) ,

√
n(g(θP∗n )− g(θ̂n));Xn)
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+ sup
c∈R

PZ
(
c− ζ ≤

√
n(g(θP∗n )− g(θ̂n)) ≤ c+ ζ |Xn

)
We use this relation between the conditional c.d.f. of

√
n(g(θB∗n ) − g(θ̂n)) and the

conditional c.d.f. of
√
n(g(θP∗n ) − g(θ̂n)) to show that the quantiles of these distributions

should be close to each other.
To simplify the notation, define the functions:

A1(ζ,Xn) ≡ 1
ζ
β(
√
n(g(θB∗n )− g(θ̂n)) , hθ(Z,Xn);Xn),

A2(ζ,Xn) ≡ sup
c∈R

PZ
(
c− ζ ≤

√
n(g(θP∗n )− g(θ̂n)) ≤ c+ ζ |Xn

)
.

Observe that if the data Xn were such that A1(ζ,Xn) < ε/2 and A2(ζ,Xn) < ε/2 then for
any c ∈ R:∣∣∣P∗ (√n(g(θB∗n )− g(θ̂n)) ≤ c |Xn

)
− PZ

(√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn

)∣∣∣
≤ A1(ζ,Xn) +A2(ζ,Xn)

< ε.

This would imply that for any c ∈ R:

− ε < P∗
(√

n(g(θB∗n )− g(θ̂n)) ≤ c |Xn
)
− PZ

(√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn

)
< ε.

(B.8)
We now show that this inequality implies that:

cP∗α−ε(Xn) ≤ cB∗α (Xn) ≤ cP∗α+ε(Xn),

whenever Xn is such that A1(ζ,Xn) < ε/2 and A2(ζ,Xn) < ε/2. To see this, evaluate
equation (B.8) at cP∗α+ε(Xn). This implies that:

−ε < P∗
(√

n(g(θB∗n )− g(θ̂n)) ≤ cP∗α+ε(Xn) |Xn
)
− PZ

(√
n(g(θP∗n )− g(θ̂n)) ≤ cP∗α+ε(Xn) |Xn

)
≤ P∗

(√
n(g(θB∗n )− g(θ̂n)) ≤ cP∗α+ε(Xn) |Xn

)
− (α+ ε).

Consequently:

cP∗α+ε(Xn) ∈ {c ∈ R | P∗(
√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ α}.

Since:
cB∗α (Xn) ≡ inf

c
{c ∈ R | P∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ α},
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it follows that
cB∗α (Xn) ≤ cP∗α+ε(Xn).

To obtain the other inequality, evaluate equation (B.1) at cB∗α (Xn). This implies that:

−ε < PZ
(√

n(g(θP∗n )− g(θ̂n)) ≤ cB∗α (Xn) |Xn
)
− P∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ cB∗α (Xn) |Xn)

≤ PZ
(√

n(g(θP∗n )− g(θ̂n)) ≤ cB∗α (Xn) |Xn
)
− α,

and so, by analogous reasoning, we get:

cP∗α−ε(Xn) ≤ cB∗α (Xn).

Now we can finish the proof. Since the probability distribution function of
√
n(g(θP∗n )−

g(θ̂n)) is uniformly bounded, there exists K > 0 such that:

P(
√
n(g(θP∗n )− g(θ̂n) |Xn) ∈ [a, b]) ≤ K · |a− b|, ∀a, b ∈ R.

This implies that
A2(ζ∗, Xn) < 2ζ∗ ·K.

Given ε > 0, we can choose ζ∗ = ε/(2K) that satisfies

P(A2(ζ∗, Xn) > ε) = 0.

Since assumptions 1, 2 and 3 hold, by Theorem 1, we have that there exists N (ζ∗, ε/2, δ/2)
such that for n > N(ζ∗, ε/2, δ/2):

Pnθ (A1(ζ∗, Xn) > ε/2 ) < δ/2.

It follows that for n > N (ε/2, δ/2)} ≡ N (ε, δ)

Pθ(cα−ε(Xn) ≤ c∗α(Xn) ≤ cα+ε(Xn))

≥ Pθ(A1(ζ∗, Xn) < ε/2 and A2(ζ∗, Xn) < ε/2)

= 1− Pθ(A1(ζ∗, Xn) > ε/2 or A2(ζ∗, Xn) > ε/2)

≥ 1− Pθ(A1(ζ∗, Xn) > ε/2)− Pθ(A2(ζ∗, Xn) > ε/2)

≥ 1− δ.

Step 2: Now, we prove that when the bootstrap confidence interval fails to cover g(θ), then
the posterior credible set also fails to cover.

Define, for any 0 < β < 1, the critical values cB∗β (Xn) and cP∗β (Xn) as:
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cB∗β (Xn) ≡ inf
c
{c ∈ R | PB∗(

√
n(g(θB∗n )− g(θ̂n)) ≤ c |Xn) ≥ β},

cP∗β (Xn) ≡ inf
c
{c ∈ R | PP∗(

√
n(g(θP∗n )− g(θ̂n)) ≤ c |Xn) ≥ β}.

Note that the critical values cB∗β (Xn), cP∗β (Xn) and the quantiles for g(θB∗n ) and g(θP∗n ) are
related through the equation:

qBβ (Xn) = g(θ̂n) + cB∗β (Xn)/
√
n,

qPβ (Xn) = g(θ̂n) + cP∗β (Xn)/
√
n.

This implies that:

CSBn (1− α) =
[
g(θ̂n) + cB∗α/2(Xn)/

√
n , g(θ̂n) + cB∗1−α/2(Xn)/

√
n
]
,

CSPn (1− α− ε) =
[
g(θ̂n) + cP∗α/2+ε/2(Xn)/

√
n , g(θ̂n) + cP∗1−α/2−ε/2(Xn)/

√
n
]
.

By step 1 we have that every 0 < ε < α and δ > 0 there exists N(ε, δ) such that

Pθ[cP∗α−ε(Xn) ≤ cB∗α (Xn) ≤ cP∗α+ε(Xn)] ≥ 1− δ, ∀n ≥ N(ε, δ).

This implies

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) = Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn), cP∗α−ε(Xn) ≤ cB∗α (Xn))

+Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn), cP∗α−ε(Xn) > cB∗α (Xn)),

≤ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ,

and

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn)) = Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn), cB∗α (Xn) ≤ cP∗α+ε(Xn))

+Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn), cB∗α (Xn) > cP∗α+ε(Xn)),

≤ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) + δ.

Thus, for n > N(ε, δ):

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≤ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α−ε(Xn)) + δ, (B.9)

Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α (Xn)) ≥ Pθ(

√
n(g(θ̂n)− g(θ)) ≤ −cP∗α+ε(Xn))− δ. (B.10)
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Consequently:

Pθ
(
g(θ) ∈ CSBn (1− α)

)
= Pθ

(
g(θ) ∈

[
g(θ̂n) + cB∗α/2(Xn)/

√
n , g(θ̂n) + cB∗1−α/2/

√
n
])

= Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗α/2(Xn))

− Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cB∗1−α/2(Xn))

≥ Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗α/2+ε/2(Xn))

− Pθ(
√
n(g(θ̂n)− g(θ)) ≤ −cP∗1−α/2−ε/2(Xn))− δ

(Replacing α by α/2, ε by ε/2 and δ by δ/2 in (B.10) and

replacing α by 1− α/2, ε by ε/2 and δ by δ/2 in (B.9))

= Pθ
(
g(θ) ∈ CSPn (1− α− ε)

)
− δ.

Therefore, for every 0 < ε < α:

1− α− dα ≥ lim sup
n→∞

Pθ
(
g(θ) ∈ CSBn

)
≥ lim sup

n→∞
Pθ
(
g(θ) ∈ CSPn (1− α− ε)

)
,

which implies that

1− α− ε− (dα − ε) ≥ lim sup
n→∞

Pθ
(
g(θ) ∈ CSPn (1− α− ε)

)
.

This implies that if the bootstrap fails at θ by at least 100dα% given the nominal
confidence level 100(1 − α)%, then the confidence interval based on the quantiles of the
posterior will fail at θ—by at least 100(dα − ε)%—given the nominal confidence level (1 −
α− ε).
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