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Abstract

This Master Project scrutinizes the underlying theoretical arguments within Bayraktar and Yang’s
(2011) (4) model and tests if it is robust with newer 2017 data. We demonstrate all the related strong
mathematical foundations to understand their model. We also observe that the matching between the
observed and estimated data is not as good as expected with the Ford Motor Company data yet being
better for the SPX Index data. Thus we claim for the model to be improved with more recent research.

Introduction

In January 2017 the Economic Report for the President was published in the U.S. Congress (31). In
its chapter 6, it discusses on the one hand the importance of the derivatives used to hedge against risks and on
the other hand, their drawbacks such as concentrating risk rather than dispersing it and increasing exposure
to risky assets. The fear of default risk led to a general unwillingness to enter into any additional transactions
when the financial crisis exploded. The Dodd-Frank Act reformed the OTC market in derivatives in order
to increase transparency to protect investors against a systemic risk generated by a new fear of default risk.
Nevertheless, the new U.S. administration tries to dismantle the Dodd-Frank Act1 so the importance of
default risk arises not only as a theoretical issue but also as a economic policy-making concern.

The 2008-2009 financial crisis highlighted that default risk is a crucial component that links credit
and equity derivatives and not considering this relationship could generate systemic risk2. One way to model
the relationship is given by intensity-based approach models. The element of surprise in this approach makes
it attractive for modelling the default probability: at any instant there is a probability that an obligor will
default and default is defined here as the first jump of a Cox Process with intensity λ which measures the
price of credit risk or probability of default. As mentioned by Schoutens and Cariboni (2009) (33),
the element of surprise is captured by the jump since sudden events in reality cause important changes on
the view on the company´s probability of default. Examples of this are a discovery of fraud, a default of a
competitor, a terrorist attack, the end of a price bubble, etc.

Bayraktar and Yang (2011) (4) produce an intensity-based approach model in order to establish a
unified framework that links credit and equity derivatives. The main model’s feature is that the goodness of

1https://www.theguardian.com/commentisfree/2017/feb/06/dismantling-dodd-frank-donald-trump-gift-wall-street
2Defined by Freixas et. al. (2015) (20) as the risk of threats to financial stability that impair the functioning of the financial

system as a whole with significant adverse effects on the broader economy.
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fitting for the Ford Motor Company’s stock options3 and the SPX Index Options is remarkable. It outperforms
previous models by showing that they have the best fitness regarding the implied volatility curves and surface,
accounting for an implied volatility skew. Their model is free of arbitrage and the surface is generated under
a risk-neutral measure. The importance of the implied volatility relies, as stated by Arratia (2014) (2), in
that it is a forward looking measure since it represents the volatility of the asset into the future time until
expiration of the option contract4.

In this Master Project we are going in detail through Bayraktar and Yang’s (2011) (4) model in
order to tackle not only its theoretical issues but also its empirical methodology. We want to see whether
the goodness of fitting is robust by using 2017 data. The remainder of this Master Project is structured as
follows. In the next section we review the related literature. In section 3 we analyze in detail the underlying
theoretical features of the model used by Bayraktar and Yang (2011) (4) and formulate the hypothesis. In
section 4 we explain the methodology of calibration of, among other parameters, the probability of default
from bond data and the rest of the parameters from stock option data. In the section 5 we discuss our results
and in the next section we develop our conclusions. The appendix contains figures and tables.

Review of the literature

The literature is vast considering the approach of the default time. As stated in Jeanblanc and
Rutkowski (1999) (24), Schoutens and Cariboni (2009) (33) and Fouque et. al. (2011) (22), there are
two main approaches to model default time: the structural approach and the intensity-based, hazard rate or
reduced form approach. In the first approach default occurs when the firm’s asset value hits a lower boundary.
The main difference between this approach and the second one is that in the former the time of default is
announced or predictable whereas in the latter it is not. This is, the default time is endogenous in the first
approach and exogenous in the second one. Bayraktar and Yang (2011) (4) employ the second approach to
develop their model.

The unified framework feature of these authors is highlighted by Chung and Kwok (2014) (14).
They perform numerical valuations of the derivative prices using standard numerical integration quadrature
or a Fast Fourier transform algorithm. Yamazaki (2013) (38) develops a jump to default exponential Lévy
model in order to get a unified framework to explain the linkages between equity and credit derivatives,
setting a variance gamma process and a Brownian motion as the driving factors of the model. Dyrssen et.
al. (2014) (18) also stand out that companies’ equity and debt are linked so a unified framework is crucial
for risk management and hedging. In their theoretical working paper they find conditions ensuring that the
option price at the default boundary coincides with the recovery payment and study the spatial convexity of
the option price. For a broader view concerning the modeling of the interrelationships between equity and
credit derivatives and its application, the thesis of Chun (2015) (15) is self-contained.

Bayraktar and Yang’s (2011) (4) model is employed an modified by Takeyama, et. al. (2011) (36).
These authors demonstrate that the model has to be changed with an appropriate description of the term
structure by replacing the Vasicek model for interest rate with the Hull and White model. Instead of using
prices, they work directly with the observed and estimated implied volatilities to obtain the parameters of
their model and they refer this strategy as the reverse modeling of the probability of default. Choi and Sircar
(2013) (13) extend the model assuming that the intensity is a function of the stock index variance and an
idiosyncratic firm component, i.e., the intensity is endogenous. The index and its variance follow a stochastic
volatility model and both the market factor and the idiosyncratic one are affine jump diffusions.

A more recent working paper developed by Chang and Orosi (2016) (10) questions the assumption
3The reason why this company was examined is given in the Appendix.
4It differs from historical volatility because the latter is estimated from past returns.
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that states that the stock falls to 0 when the default occurs, because there could be a positive equity recovery
at default that may be ignored because bankruptcy may not mean that the firm is insolvent or due to strategic
bankruptcy. Consequently, the option implied default probability could be biased and their study take it into
account allowing positive stock price at default.

Another direction through the default risk is given by Capponi and Larsson (2011) (8). They show
and endogenous interaction between a stock and a defaultable bond by developing an equilibrium model that
contains the relationship between cyclicality properties of the default intensity, behaviour of investors and
risk preferences. The probabilistic model is the same as the one used by Bayraktar and Yang (2011) (4)
though they investigate how the size of the jump is affected by the risk aversion of the agents to propose
measures of systemic risk.

Theoretical discussion and formulation of Hypothesis

The Model

The Model we are going to develop in this section is a Risk Neutral Model from Bayraktar and Yang (2011)
(4). The probability space is (Ω,H,P). On the one hand, we have five correlated standard Brownian Motions
~Wt = (W 0

t ,W
1
t ,W

2
t ,W

3
t ,W

4
t ) characterized by a positive definite correlation matrix of the following form

E
[
~Wt
~Wt
′]

=


1 ρ1 ρ2 ρ3 ρ4
ρ1 1 ρ12 ρ13 ρ14
ρ2 ρ21 1 ρ23 ρ24
ρ3 ρ31 ρ32 1 ρ34
ρ4 ρ41 ρ42 ρ43 1

× t
with ρij = ρji ∀i 6= j and i ∈ {0, 1, 2, 3, 4}, j ∈ {0, 1, 2, 3, 4}.

On the other hand we have a Cox Process (time-changed Poisson Process or doubly stochastic
Poisson Process) Ñt , N

(∫ t
0 λsds

)
. The difference between the traditional Poisson Process and the Cox

Process is that the latter’s intensity is not constant, instead is a Stochastic Process λt (Schönbucher, 2003
(34)) so it entails a more general definition. Also, the intensity is never negative: λt ≥ 0. Then, following
Cont and Tankov (2004)(16), let (τi)i≥1 be a sequence of independent exponential random variables with
intensity λt and Tn =

∑n
i=1 τi. The process (Nt, t ≥ 0) defined by

Ñt =
∑
n≥1

1t≥Tn

is a Cox Process with intensity or hazard rate λt, where 1t≥Tn=

 1 if Tn ≤ t

0 if Tn > t > 0

This is, the indicator function establishes that if the jumps occur before t, then it is equal to 1,
otherwise it is equal to 0. τi is the time of the jumps exhibited by the Cox Process. ∆Ñt = Ñt− Ñt− denotes
the jump size of Ñt at time t, given that its trajectories are, with probability one, right continuous5 and
piecewise constant. Let τ1 = τ the time of default. Thus, according to Bayraktar (2008) (3) Bayraktar and
Yang (2011) (4) the time of the first jump of Ñt is denoted by the stopping (or hitting) time:

τ = inf{t ∈ R+|Ñt = 1}
5Cont and Tankov (2004)(16) warn about this defition since is is not the same as left continuous. Intuitively, right continuous

is called cadlag and it means "after" while left continuous is called caglad and it means "before". With left continuous sample
paths, the jumps are predictable, a feature that does not happen when modeling defaults. However, with right continuous ones,
jumps are sudden, unforeseeable events so the choice of right-continuity is natural.
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where n = 1. τ is assumed to be exogenous: it is independent of asset prices and/or of the value of the firm.
In line with Elliot et al. (2006) (19)

Ñt = 1t≥T1 = 1τ≤t =
{

1 and ∆Ñt = 1 if T1 = τ1 = τ ≤ t
0 and ∆Ñt = 0 if T1 = τ1 = τ > t

Then λt is the hazard rate of τ . Following Shreve (2004) (35) and Schönbucher, 2003 (34), the countdown
process e−

∫ t
0
λsds is the expected time between the jumps. Additionally, as Cont and Tankov (2004)(16)

point out, the first jump time on [0, T ] of the Cox Process is a uniformly distributed random variable U
conditionally to Ñt = 1. If we set T = 1, then we can rewrite the first jump of Ñt as the first time the
countdown process e−

∫ t
0
λsds hits the level U as Schönbucher, 2003 (34)

τ = inf
{
t ∈ R+

∣∣∣e−∫ t0 λsds ≤ U}
Let A = − ln(1 − U). (1 − U) is also a uniform on [0, 1] so also we can set A = − lnU . Then

P (A ≤ a) = P (− ln(1 − U) ≤ a) = P (1 − U ≤ e−a) = P (U ≤ 1 − e−a) = 1 − e−a which is the cumulative
distribution function of a unit exponential random variable. Thus, we can also rewrite the first jump of Ñt as
the first time the hazard process e−

∫ t
0
λsds is greater or equal to the random level a ∼ Exp(1) as in Linetsky

(2005) (26) and Carr and Linetsky (2006) (9) by taking logs to the left and right hand side of the former
definition

τ = inf
{
t ∈ R+

∣∣∣ ∫ t

0
λsds ≥ a

}
This three definitions are equivalent and any of the three can be found in the literature. Therefore, we can
follow Linetsky (2005) (26) so at the time of bankruptcy τ , the stock price jumps to the bankruptcy state Θ
where it remains forever. Θ is called the cemetery state and is identified as Θ = 0. The stock price subject to
bankruptcy, or defaultable stock as called in Bayraktar (2008) (3), is modeled subject to a diffusion process
(Xt, t ≥ 0). Using Bayraktar and Yang (2011) (4) notation, (Xt, t ≥ 0) is the pre-bankruptcy stock price
process so

Xt =
{

Xt and Xt = Xt− if τ > t

Θ = 0 and Xt 6= Xt− if τ ≤ t

At the time of default, the stock price jumps down to 0. Let Γt =
∫ t∧τ

0 λudu. The correct way of writing an
stochastic differential equation is as modelled as Björk (2011) (7)

dXt = rtXt−dt+ σtXt−dW
0
t +Xt−dΓt + µXt−dÑt

whereXt− can be replaced byXt next to the dt and dW 0
t terms since both the time t and the Brownian Motion

W 0
t do not exhibit jumps. Bielecki and Rutkowski (2002) (5) establish that

∫ t∧τ
0 λudu =

∫ t
0 λu1{τ>t}du. Thus,

if Ñt has a jump at time t, then Γt = 0 and the size of the jump of X, given that ∆Ñt = 1, is

∆Xt = µXt−

so µ is the relative jump size of the stock price or the jump volatility of X. The sign of µ determines the sign
of the jump: if µ > 0 then all jumps are upwards whereas if µ < 0. all jump are downwards. In particular
we see that if µ = −1 then, if there is a jump at t, we obtain ∆Xt = −Xt−.

This is, if τ ≤ t, then t ∧ τ = τ , Ñt = 1 and

Xt = Xt− + ∆Xt = Xt− −Xt− = Θ = 0

In other words, if µ = −1, then the stock price will jump to zero at the first jump of Ñ and the stock
price will stay forever at the value zero, just as we have explained before. Consequently, Bayraktar and
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Yang (2011) (4) modeled the stock price with an equivalent representation as the solution of the following
stochastic differential equation

dXt = Xt(rtdt+ σtdW
0
t − dMt)

with X0 = x. Mt is the compensated bankruptcy jump process as in Linetsky (2005) (26) and

Mt = Ñt −
∫ t∧τ

0
λudu

The discounted stock price X̃t = Xt exp(−
∫ t

0 rsds) is a Martingale 6 under the measure P. Thereby,

dX̃t = X̃t(σtdW 0
t − dMt)

Moreover, by the definition above we can state that Ñt = Ñt∧τ . Then we have:

E
[
Ñt −

∫ t∧τ

0
λudu

∣∣∣Hs] = E[Ñt − Ñs + Ñs|Hs]− E
[∫ s∧τ

0
λudu

∣∣∣Hs]− E
[∫ t∧τ

s∧τ
λudu

∣∣∣Hs]

E
[
Ñt −

∫ t∧τ

0
λudu

∣∣∣Hs] = Ñs −
∫ s∧τ

0
λudu+ E[Ñt∧τ − Ñs∧τ |Hs]− E

[∫ t∧τ

s∧τ
λudu

∣∣∣Hs]
The last two terms are equal7 so Mt is a Martingale. The authors are using this equivalent representation
and, as Björk (2011) (7) point it out, it is called the semimartingale decomposition of X dynamics. If τ > t,
then t ∧ τ = t, Ñt = 0, Xt = Xt, X0 = x and8 d

(∫ t
0 λudu

)
= λtdt, then

dXt = Xt((rt + λt)dt+ σtdW
0
t )

Applying Itô’s fórmula to f(t,Xt) = ln(Xt) gives the solution for the pre-bankruptcy stock price, this is, the
stock price without jumps

Xt = X0 exp
{∫ t

0
σsdW

0
s +

∫ t

0

(
rs + λs −

σ2
s

2

)
ds

}

In this model, the interest rate rt, the intensity λt and the volatility σt are stochastic processes.

Interest Rate

The interest rate rt is modeled as an Ornstein-Uhlenbeck (Vasicek) process

drt = (α− βrt)dt+ ηdW 1
t

where α > 0, β > 0 and η > 0 are parameters and r0 = r.

Applying Itô’s formula with f(t, rt) = eβtrt gives the result for the interest rate

rt = α

β
+
(
r − α

β

)
e−βt + ηe−βt

∫ t

0
eβsdW 1

s

As in Papageorgiu and Sircar (2008) (29), this interest rate has the favorable property that is mean-reverting
around its long run mean α

β
.

6Because, as Privault (2016) (30) shows in the Itô multiplication table, dt× dt = dW 0
t × dt = dÑt× dt = d

∫ t∧τ
0 λudu× dt =

d
∫ t

0 λu1{τ>t}du× dt = λt1{τ>t}dt× dt = 0.
7Because, as Fouque et. al. (2011) (22) point out, the increment Ñt∧τ − Ñs∧τ is Poisson distributed with parameter∫ t∧τ

s∧τ λudu.8By the Leibniz Integral Rule.
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Intensity

The intensity λt = f(Yt, Zt) is modeled as a strictly positive, bounded, smooth function that depends on two
stochastic processes: Yt and Zt. We follow Fouque et. al. (2003) (21) for the description of both processes

dYt = 1
ε

(m− Yt)dt+ ν
√

2√
ε
dW 2

t (1)

dZt = δc(Zt)dt+
√
δg(Zt)dW 3

t (2)

with Y0 = y and Z0 = z.

The first factor Yt driving the intensity λt is a fast mean reverting Ornstein-Uhlenbeck (Vasicek)
process. 1/ε is the rate of mean reversion of this process, around its long run mean m, with ε > 0 being a
small parameter which corresponds to the fast or short time scale of this process.

The second factor Zt driving the intensity λt is a slowly varying diffusion process where δ > 0 is a
small parameter which corresponds to the slow or long time scale of this process. The authors assume that
the functions c and g satisfy Lipschitz continuity and growth conditions so Zt has a unique solution. As
Fouque, et. al. (2011) (22) remark, their particular form does not play a role in the perturbation method
analyzed after.

The solution for the first factor is obtained by following the same procedure as for the interest rate
and starting by applying Itô’s formula with f(t, Yt) = e

1
ε tYt. Then we get

Yt = m+ (y −m)e− 1
ε t + ν

√
2√
ε
e−

1
ε t

∫ t

0
e

1
ε sdW 2

s

Note that since ε is small, 1
ε is high, so the smaller the ε, the faster the mean reversion around the long run

mean m, i.e., as ε→ 0⇒ Yt → m.

Similarly, the solution for the second factor is obtained applying Itô’s formula with f(t, Yt) = eδtZt,
getting

Zt = ze−δt + δe−δt
∫ t

0
eδs(Zs + c(Zs))ds+

√
δe−δt

∫ t

0
eδsg(Zs)dW 3

s

For Zt, is the other way around: the smaller the δ, the slower the mean reversion and as δ → 0⇒ Zt → Z0 = z.

Volatility

The volatility is modeled as σt = σ(Ỹt) and its diffusion process is

dỸt =
(

1
ε

(m̃− Ỹt)−
ν̃
√

2√
ε

Λ(Ỹt)
)
dt+ ν̃

√
2√
ε
dW 4

t

where Λ is a smooth, bounded function and it is the market price of volatility risk. The authors assume also
that the function σ is bounded and smooth. Here, as for the intensity, the factor Ỹt driving the volatility σt
is fast mean reverting as Yt. The solution is obtained with the same procedure and results as Yt

Ỹt = m+ (ỹ −m)e− 1
ε t + ν

√
2√
ε
e−

1
ε t

(∫ t

0
e

1
ε sdW 4

s −
∫ t

0
e

1
ε sΛ(Ỹt)ds

)
The fact that the volatility is a stochastic process makes the market to be incomplete as mentioned by Fouque
et. al. (2011) (22): there is a whole family of equivalent martingale measures and derivatives securities cannot
be perfectly hedged with just the stock and bond.
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Equity and Credit Derivatives

For this subsection, it is important to understand the flows of information. The authors assume that F =
{Ft, t ≥ 0} is the filtration of the standard Brownian Motions ~Wt. The filtration generated by Ñt is I =
{It, t ≥ 0}. In addition, G = {Gt, t ≥ 0} is the enlargement of F such that Gt = Ft ∨ It, t ≥ 0. This
enlargement joins the information given by the standard Brownian Motions and the information given by the
Cox Process. As Lando (1998) (25) points out, Gt corresponds to knowing the evolution of the state variables
up to time t and whether default has occurred or not. Notice that if Ñt = 0, the relevant information of the
model only depends on the standard Brownian Motions since there are no jumps, i.e. there is no default.

The authors price European Options and Bonds of the same company.

European Call Option

The price of a European Call Option with maturity T and strike Price K is given by

C(t;T,K) = E

[
exp

(
−
∫ T

t

rsds

)
(XT −K)+

1{τ>T}

∣∣∣∣Gt
]

+ E

[
exp

(
−
∫ T

t

rsds

)
(XT −K)+

1{τ≤T}

∣∣∣∣Gt
]

This is, this price considers the expected present value of the payoff (XT − K)+ when there is no default
1{τ>T} and when there is default before maturity 1{τ≤T}, given the information by Gt. Yet, as we have seen
above, XT = XT with no default and XT = 0 when there is default so the second term of the right hand
side is always equal to zero. Thus we only have that the price is

C(t;T,K) = E

[
exp

(
−
∫ T

t

rsds

)
(XT −K)+

1{τ>T}

∣∣∣∣Gt
]

We can simplify this last expression by putting all in terms of Ft. This is due to Hull and White (1995)
(23) who emphasize that the stochastic processes may change between when we move from the default free
scenario to the vulnerable one. Therefore, we follow Lando’s (1998) (25) procedure. First of all, we have
that, given t < T

E[1{τ>T}|FT ∨ It] = E[1{τ>T} × 1{τ>t}|FT ∨ It] = 1{τ>t}E[1{τ>T}|FT ∨ It] (3)

the last equality is because 1{τ>t} is F ∨I−measurable, i.e., the economic agents will observe default when it
happens or when it does not occur up to t as Elliot et al. (2006) (19) remark. Then, i) by using the definition
of the conditional expected value of an indicator function, ii) the definition of conditional probability, and
iii) {τ > T} ⊂ {τ > t} we have

E[1{τ>T}|FT ∨ It] = Pr(τ > T |FT ∨ It) = Pr({τ > T} ∩ {τ > t}|FT )
Pr(τ > t|FT ) = Pr({τ > T}|FT )

Pr(τ > t|FT )

The last two conditional probabilities in the numerator and denominator are called by Schönbucher (2003) (34)
conditional survival probabilities. As Papageorgiu and Sircar (2008) (29) establish, this are the probabilities
that the default time will be greater than t or T respectively, conditional on the information given by Ft
and FT respectively. Furthermore, following Schönbucher (2003) (34), for a Cox Process, the probability of
n = 0 jumps is equal to:

Pr(Ñt = 0) = E

[
1
n!

(∫ t

0
λsds

)n
exp

(
−
∫ t

0
λsds

)]
= E

[
exp

(
−
∫ t

0
λsds

)]
and given that

∫ t
0 λsds is Ft−measurable

Pr(Ñt = 0|Ft) = E
[
exp

(
−
∫ t

0
λsds

) ∣∣∣∣Ft] = exp
(
−
∫ t

0
λsds

)
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This last result works for t and T . Therefore

Pr({τ > t}|Ft) = Pr(Ñt = 0|Ft) = exp
(
−
∫ t

0
λsds

)

Pr({τ > T}|FT ) = Pr(ÑT = 0|FT ) = exp
(
−
∫ T

0
λsds

)
Hence

Pr({τ > T}|FT )
Pr(τ > t|FT ) =

exp
(
−
∫ T

0 λsds
)

exp
(
−
∫ t

0 λsds
) = exp

(
−
∫ T

t

λsds

)

Replacing this last term in (3) we get

E[1{τ>T}|FT ∨ It] = 1{τ>t}E[1{τ>T}|FT ∨ It] = 1{τ>t} exp
(
−
∫ T

t

λsds

)
(4)

Now, the European call option C(t;T,K) with maturity T and strike K can be simplified by using the law
of total expectations

E

[
exp

(
−
∫ T

t

rsds

)
(XT −K)+

1{τ>T}

∣∣∣∣Gt
]

= E

[
E

[
exp

(
−
∫ T

t

rsds

)
(XT −K)+

1{τ>T}

∣∣∣∣FT ∨ It
] ∣∣∣∣Gt

]

And given that exp
(
−
∫ T
t
rsds

)
and (XT −K)+ are FT ∨ It−measurable

= E

[
exp

(
−
∫ T

t

rsds

)
(XT −K)+E

[
1{τ>T}

∣∣∣∣FT ∨ It] ∣∣∣∣Gt
]

Then, by applying (4) we obtain

= E

[
exp

(
−
∫ T

t

rsds

)
(XT −K)+

1{τ>t} exp
(
−
∫ T

t

λsds

)∣∣∣∣Gt
]

And given that 1{τ>t} is Gt−measurable we obtain

C(t;T,K) = E

[
exp

(
−
∫ T

t

rsds

)
(XT −K)+

1{τ>T}

∣∣∣∣Gt
]

= 1{τ>t}E

[
exp

(
−
∫ T

t

(rs + λs)ds
)

(XT −K)+
∣∣∣∣Gt
]

Nonetheless, we still have the conditional expectation with respect to Gt. We want to replace it with Ft.
Given that the inner part of the last expectation is Ft−measurable and that Ft ⊆ Gt, we apply the Tower
Property of conditional expectations and we finally obtain Bayraktar and Yang (2011) (4) result

C(t;T,K) = E

[
exp

(
−
∫ T

t

rsds

)
(XT −K)+

1{τ>T}

∣∣∣∣Gt
]

= 1{τ>t}E

[
exp

(
−
∫ T

t

(rs + λs)ds
)

(XT −K)+
∣∣∣∣Ft
]

European Put Option

The price of a European Put Option with maturity T and strike Price K is given by

Put(t;T,K) = E

[
exp

(
−
∫ T

t

rsds

)
(K −XT )+

1{τ>T}

∣∣∣∣Gt
]

+ E

[
exp

(
−
∫ T

t

rsds

)
(K −XT )+

1{τ≤T}

∣∣∣∣Gt
]

8



This is, this price considers the expected present value of the payoff (K − XT )+ when there is no default
1{τ>T} and when there is default before maturity 1{τ≤T}, given the information by Gt. Yet, as we have seen
above, XT = XT without default and XT = 0 when there is default so the price is

Put(t;T,K) = E

[
exp

(
−
∫ T

t

rsds

)
(K −XT )+

1{τ>T}

∣∣∣∣Gt
]

+ E

[
exp

(
−
∫ T

t

rsds

)
K1{τ≤T}

∣∣∣∣Gt
]

This is different from the call option price since there is no recovery if the issuer goes bankrupt with a call
option whereas there is recovery with a put option. The first term of the put option can be calculated exactly
as the call option above, getting

E

[
exp

(
−
∫ T

t

rsds

)
(K −XT )+

1{τ>T}

∣∣∣∣Gt
]

= 1{τ>t}E

[
exp

(
−
∫ T

t

(rs + λs)ds
)

(K −XT )+
∣∣∣∣Ft
]

In the second term notice that 1{τ≤T} = 1− 1{τ>T} so replacing this in the second term we have

E

[
exp

(
−
∫ T

t

rsds

)
K1{τ≤T}

∣∣∣∣Gt
]

= KE

[
exp

(
−
∫ T

t

rsds

)(
1− 1{τ>T}

) ∣∣∣∣Gt
]

= KE

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣Gt
]
−KE

[
exp

(
−
∫ T

t

rsds

)
1{τ>T}

∣∣∣∣Gt
]

Nonetheless, we still have the conditional expectation with respect to Gt. We want to replace it with Ft. For
the positive term we recall that, as in Bielecki et. al. (2006) (6), B(t;T ) = exp

(
−
∫ T
t
rsds

)
is the price of

a default-free zero-coupon bond with maturity T at time t by definition, that is, on τ > t. This is defined
with a deterministic interest rate, but here we are dealing with a stochastic one so we have to work with
conditional expectations. Therefore, applying the Tower Property, since Ft ⊆ Gt, and knowing that 1{τ>t}
is Ft−measurable we get

KE

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣Gt
]

= KE

[
E

[
exp

(
−
∫ T

t

rsds

)
1{τ>t}

∣∣∣∣Gt
]
Ft

]
= 1{τ>t}KE

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣Ft
]

For the negative term we follow the same procedure as for the call option9 and then we finally obtain the
following result10

Put(t;T,K) =1{τ>t}

{
E

[
exp

(
−
∫ T

t

(rs + λs)ds
)

(K −XT )+
∣∣∣∣Ft
]

+KE

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣Ft
]
−KE

[
exp

(
−
∫ T

t

(rs + λs)ds
)∣∣∣∣Ft

]}

Put-Call Parity

The Put-Call Parity defines the relationship between an European Call Option and an European Put Option,
both with identical strike price K and the same underlying asset. With the above expressions of both options

9Instead of (XT −K)+ we have hear a payoff equal to 1.
10This is different from Linetsky (2005) (26) where the put pricing formula consists on two parts: the present value of the put

payoff given no bankruptcy (the first expected value in our expression, multiplied by the indicator function) and the present
value of the recovery in the event of bankruptcy (the two last terms in our expression, without the indicator function). This
difference appears because his model is developed with a constant interest rate, uncorrelated with the stochastic intensity.

9



we can obtain the parity

C(t;T,K)− Put(t;T,K) =1{τ>t}E
[

exp
(
−
∫ T

t

(rs + λs)ds
)

(XT −K)+
∣∣∣∣Ft
]

− 1{τ>t}

{
E

[
exp

(
−
∫ T

t

(rs + λs)ds
)

(K −XT )+
∣∣∣∣Ft
]

−KE

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣Ft
]

+KE

[
exp

(
−
∫ T

t

(rs + λs)ds
)∣∣∣∣Ft

]}

C(t;T,K)− Put(t;T,K) =1{τ>t}E
[

exp
(
−
∫ T

t

(rs + λs)ds
)

((XT −K)+ − (K −XT )+)
∣∣∣∣Ft
]

− 1{τ>t}

{
KE

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣Ft
]

+KE

[
exp

(
−
∫ T

t

(rs + λs)ds
)∣∣∣∣Ft

]}
And since (XT −K)+ − (K −XT )+ = XT −K, we get

C(t;T,K)− Put(t;T,K) =1{τ>t}E
[

exp
(
−
∫ T

t

(rs + λs)ds
)

(XT −K)
∣∣∣∣Ft
]

− 1{τ>t}

{
KE

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣Ft
]

+KE

[
exp

(
−
∫ T

t

(rs + λs)ds
)∣∣∣∣Ft

]}
By subtracting properly, we get

C(t;T,K)− Put(t;T,K) = 1{τ>t}

{
E

[
exp

(
−
∫ T

t

(rs + λs)ds
)
XT

∣∣∣∣Ft
]
−KE

[
exp

(
−
∫ T

t

rsds

)∣∣∣∣Ft
]}

Finally, since E
[
exp

(
−
∫ T
t

(rs + λs)ds
)
XT

∣∣∣∣Ft] is the present value of the stock price discounted by the

interest rate adjusted by the intensity given the information up to t (this is, it is equal to Xt) and B(t;T ) =

E
[
exp

(
−
∫ T
t
rsds

) ∣∣∣∣Ft] is the risk-free zero coupon bond with maturity T at time t, we obtain the Put-Call

Parity associated to the model

C(t;T,K)− Put(t;T,K) = 1{τ>t}[Xt −KB(t;T )]

Defaultable Bond

The defaultable bond has maturity T and par value of 1 dollar. If the issuer company defaults prior to
maturity, the holder of the bond recovers a constant fraction (1− l) of the pre-default value, with l ∈ [0, 1].
l is the loss given default. The price of this bond, similar in Papageorgiu and Sircar (2008) (29), is

Bc(t;T ) = E

[
exp

(
−
∫ T

t

rsds

)
1{τ>T} + exp

(
−
∫ τ

t

rsds

)
1{τ≤T}(1− l)Bc(τ−;T )

∣∣∣∣Gt
]

Duffie and Singleton (1999) (17) give an heuristic explanation of the following equality, which is the
same as in Lando (1998) (25) and Bayraktar and Yang (2011) (4) result on τ > t

Bc(t;T ) =E

[
exp

(
−
∫ T

t

rsds

)
1{τ>T} + exp

(
−
∫ τ

t

rsds

)
1{τ≤T}(1− l)Bc(τ−;T )

∣∣∣∣Gt
]

= 1{τ>t}E

[
exp

(
−
∫ T

t

(rs + lλs)ds
)∣∣∣∣Ft

]

10



They state that the market value of the defaultable bond at time t obeys the last equality. The
r.h.s. of this equality shows that in the event of no default, the contingent claim (the bond) pays 1 at time
T . This claim may be priced as if it were default-free by replacing the usual short-term interest rate process
rt with the default-adjusted short-rate process rt + lλt where lλt is the mean-loss rate. Discounting at the
default-adjusted short-rate process therefore accounts on τ > t for both the probability and timing of default,
as well as for the effect of losses on default.

The expressions obtained for the Equity and Credit Derivatives cannot be solved analytically so we
have to use an asymptotic expansion to get the results.

Pricing Equation

Notice that up to this section, all the expressions for the state variables of the Model have been turned only
dependent of a drift and standard Brownian Motion. With this in mind, let P ε,δ be the hedging portfolio of
a payoff h(XT ) denoted by

P ε,δ(t,Xt, rt, Yt, Ỹt, Zt) = E

[
exp

(
−
∫ T

t

(rs + lλs)ds
)
h(XT )

∣∣∣∣∣Ft
]

(5)

If l = 1 and h(XT ) = (XT − K)+, then P ε,δ is the price of a Call Option on a defaultable stock. Also, if
h(XT ) = 1, then P ε,δ is the price of a defaultable bond.

To characterize P ε,δ, we have to use the Multidimensional Version of the Feynman-Kac Theorem,
as in Nualart (1997) (28). We start with the dynamics of the stochastic processes (vector) described within
the Model

dst = u(st, t)dt+ v(st, t)dBt

where st, Bt is a vector of dimension m of uncorrelated standard Brownian Motions and u(st, t) are each
vectors of dimension n and v(st, t) is a matrix of size n×m. u(st, t) is the drift and v(st, t) is the volatility
of st. In other words,

d


s1t
s2t
...
snt

 =


u1t
u2t
...
unt

 dt+


v11t v12t · · · v1mt
v21t v22t · · · v2mt
...

...
. . .

...
vn1t vn2t · · · vnmt

× d

B1t
B2t
...

Bmt


We can associate to the diffusion process a second order differential operator or generator process that is

A =
n∑
i=1

ui
∂

∂si
+ 1

2

n∑
i=1

n∑
j=1

(vv′)ij
∂2

∂si∂sj

where ui = ui(st, t), vi = vi(st, t) and (vv′)ij is element ij of the matrix vv′ of size n× n. The matrix vv′ is
a symmetric and non negative definite matrix.

The Feynman-Kac Theorem states that the partial differential equation (PDE) in V (st, t), the
hedging portfolio, is given by

∂V

∂t
+AV (st, t)− r(st, t)V (st, t) = 0

and with a boundary condition the solution can be found.

On the following we avoid the sub-index t and capital letters to simplify the notation. In the model
n = m = 5, s = (x, r, y, ỹ, z)′, u = (r+f(y, z), α−βr, 1

ε (m−y), 1
ε (m̃− ỹ)− ν̃

√
2√
ε

Λ(ỹ), δc(z))′ where λ = f(y, z)

11



and11

v(s) =



σ(ỹ)x 0 0 0 0
ηρ1 η

√
1− ρ2

1 0 0 0
ν
√

2√
ε
ρ2

ν
√

2√
ε

A ν
√

2√
ε

B 0 0

ν̃
√

2√
ε
ρ4

ν̃
√

2√
ε

C ν̃
√

2√
ε

D ν̃
√

2√
ε

E 0
√
δg(z)ρ3

√
δg(z) F

√
δg(z) G

√
δg(z) H

√
δg(z) I


where A = ρ12 − ρ1ρ2√

1− ρ2
1
, B =

√
1− ρ2

2 − A
2
, C = ρ14 − ρ1ρ4√

1− ρ2
1
, D =

ρ24 − ρ1ρ4 − A C
B

,

E =
√

1− ρ2
4 − C

2
− D

2
, F = ρ13 − ρ1ρ3√

1− ρ2
1
, G = ρ23 − ρ2ρ3 − (ρ12 − ρ1ρ2)(ρ13 − ρ1ρ3)

B
,

H =
ρ34 − ρ3ρ4 − C F − D G

E
, I =

√
1− ρ2

3 − F
2
− G

2
− H

2
Then we have

v(s)v(s)′ =



σ(ỹ)2x2 σ(ỹ)xηρ1 σ(ỹ)xν
√

2√
ε
ρ2 σ(ỹ)xν̃

√
2√
ε
ρ4 σ(ỹ)x

√
δg(z)ρ3

σ(ỹ)xηρ1 η2 η
ν
√

2√
ε
ρ12 η

ν̃
√

2√
ε
ρ14 η

√
δg(z)ρ13

σ(ỹ)xν
√

2√
ε
ρ2 η

ν
√

2√
ε
ρ12

2ν2

ε

2νν̃
ε
ρ24

ν
√

2√
ε

√
δg(z)ρ23

σ(ỹ)xν̃
√

2√
ε
ρ4 η

ν̃
√

2√
ε
ρ14

2νν̃
ε
ρ24

2ν̃2

ε

ν̃
√

2√
ε

√
δg(z)ρ34

σ(ỹ)x
√
δg(z)ρ3 η

√
δg(z)ρ13

ν
√

2√
ε

√
δg(z)ρ23

ν̃
√

2√
ε

√
δg(z)ρ34 δg(z)2


Therefore, using u and v(s)v(s)′ we obtain

A =(r + f(y, z))x ∂

∂x
+ (α− βr) ∂

∂r
+ 1
ε

(m− y) ∂
∂y

+
(

1
ε

(m̃− ỹ)− ν̃
√

2√
ε

Λ(ỹ)
)
∂

∂ỹ
+ δc(z) ∂

∂z
+

1
2σ(ỹ)2x2 ∂

2

∂x2 + 1
2η

2 ∂
2

∂r2 + ν2

ε

∂2

∂y2 + ν̃2

ε

∂2

∂ỹ2 + 1
2δg(z)2 ∂

2

∂z2 + σ(ỹ)xηρ1
∂2

∂x∂r
+ σ(ỹ)xν

√
2√
ε
ρ2

∂2

∂x∂y
+

σ(ỹ)xν̃
√

2√
ε
ρ4

∂2

∂x∂ỹ
+ σ(ỹ)x

√
δg(z)ρ3

∂2

∂x∂z
+ η

ν
√

2√
ε
ρ12

∂2

∂r∂y
+ η

ν̃
√

2√
ε
ρ14

∂2

∂r∂ỹ
+ η
√
δg(z)ρ13

∂2

∂r∂z
+

2νν̃
ε
ρ24

∂2

∂y∂ỹ
+ ν
√

2√
ε

√
δg(z)ρ23

∂2

∂y∂z
+ ν̃
√

2√
ε

√
δg(z)ρ34

∂2

∂ỹ∂z

Having V = P ε,δ, it can be characterized as a solution of both the PDE

∂P ε,δ

∂t
+AP ε,δ − (r + lf(y, z))P ε,δ = 0 (6)

and the boundary condition:
P ε,δ(T, x, r, y, ỹ, z) = h(x)

Notice that the PDE in this case is employing the default-adjusted short-rate r+ lf(y, z) since this
rate is using for discount. Consequently, Bayraktar and Yang (2011) (4) factorize the components of (6) in

11The correlated Standard Brownian Motions above have been expressed in terms of uncorrelated Standard Brownian Motions
to get v(s). Also, we started from the matrix v(s)v(s)′ below and then applied a Cholesky Decomposition to obtain v(s).
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the partial differential operator Lε,δ in terms of the parameters ε and δ as

Lε,δ , 1
ε
L0 + 1√

ε
L1 + L2 +

√
δM1 + δM2 +

√
δ

ε
M3 (7)

where L0, L1, L2,M1,M2,M3 are the factors defined by the authors, obtaining

Lε,δP ε,δ(t, x, r, y, ỹ, z) = 0 (8)

and the boundary condition:
P ε,δ(T, x, r, y, ỹ, z) = h(x)

Asymptotic Expansion

According to Malhalm (2005) (27), although we cannot get analytic results for the Equity and Credit Deriva-
tives prices, we can have approximate analytic answers. We have to use Perturbation Methods which try to
exploit the smallness of an inherent parameter in order to achieve this.

Observe that in (7) the operator terms that are associated with the parameter ε are diverging when
ε→ 0 while the terms associated with only the parameter δ are small when δ → 0. These give rise respectively
to a singular perturbation problem and a regular perturbation problem. Nevertheless, the model has been
re-scaled so the singular perturbation problem can be solved as a regular perturbation problem, changing
the terms to get equated to 0 as we see below.

Expansion in the Slow-Scale

First of all, Bayraktar and Yang (2011) (4) apply an Expansion Method of P ε,δ in powers of
√
δ

P ε,δ = P ε0 +
√
δP ε1 + δP ε2 +· · · =

∞∑
i=0

(
√
δ)iP εi

By inserting this only considering it up to the first correction P ε1 in (8) as in Fouque et. al. (2003) (21) and
following Malhalm (2005) (27) we get

0 =1
ε
L0(P ε0 +

√
δP ε1 ) + 1√

ε
L1(P ε0 +

√
δP ε1 ) + L2(P ε0 +

√
δP ε1 )+

√
δM1(P ε0 +

√
δP ε1 ) + δM2(P ε0 +

√
δP ε1 ) +

√
δ

ε
M3(P ε0 +

√
δP ε1 )

Now we have to get the (
√
δ)0 and (

√
δ)1 terms and equate them to 0

(
√
δ)0) :

(
1
ε
L0 + 1√

ε
L1 + L2

)
P ε,δ0 = 0 (9)

(
√
δ)1) :

(
1
ε
L0 + 1√

ε
L1 + L2

)
P ε,δ1 +

(
M1 + 1√

ε
M3

)
P ε,δ0 = 0 (10)

and since P ε,δ0 is the solution within the Perturbation Methods (if
√
δ → 0, then P ε,δ = P ε0 ), it satisfies the

boundary condition
P ε,δ0 (T, x, r, y, ỹ, z) = h(x)

so P ε,δ1 does not
P ε,δ1 (T, x, r, y, ỹ, z) = 0
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Expansion in the Fast-Scale

Secondly, Bayraktar and Yang (2011) (4) apply an Expansion Method of P ε0 and P ε1 in powers of
√
ε

P ε0 = P0,0 +
√
εP1,0 + εP2,0 +· · · =

∞∑
i=0

(
√
ε)iPi,0

P ε1 = P0,1 +
√
εP1,1 + εP2,1 +· · · =

∞∑
i=0

(
√
ε)iP0,i

Thereby, the complete expression for the pricing equation is

P ε,δ =
∞∑
i=0

∞∑
j=0

(
√
ε)i(
√
δ)jPi,j (11)

The leading term will simply be denoted by P0 = P0,0.

By inserting P ε0 only considering it up to the third correction P3,0 in (9) and following the same
steps as above we get

0 =1
ε
L0(P0 +

√
εP1,0 + εP2,0 + ε3/2P3,0) + 1√

ε
L1(P0 +

√
εP1,0 + εP2,0 + ε3/2P3,0)+

L2(P0 +
√
εP1,0 + εP2,0 + ε3/2P3,0)

Now we have to get the (
√
ε)−2, (

√
ε)−1, (

√
ε)0 and (

√
ε)1 terms and equate them to 0

(
√
ε)−2 : L0P0 = 0 (12)

(
√
ε)−1 : L0P1,0 + L1P0 = 0 (13)

(
√
ε)0 : L0P2,0 + L1P1,0 + L2P0 = 0 (14)

(
√
ε)1 : L0P3,0 + L1P2,0 + L2P1,0 = 0 (15)

Recall that L0 and L1 contain derivatives with respect to y and ỹ so these are two ordinary differential
equations. Therefore, by (12) we have that L1P0 = 0 in (13) so L0P1,0 = 0. This is, P0 and P1,0 do not
depend on y and ỹ. Thus, P0 = P0(t, x, r, z) and P1,0 = P1,0(t, x, r, z). For this last reason, L1P1,0 = 0 and
(14) turns to be

L0P2,0 + L2P0 = 0
L0P2,0 = −L2P0

The latter is a Poisson Equation for P2,0 with respect to y and ỹ, i.e., P2,0 is the unknown. Therefore, L2P0
must satisfy the solvability or centering condition

〈L2P0〉 = 0

where 〈·〉 denotes the averaging with respect to the invariant distribution12 of (y, ỹ), whose density is given by
a bi-variate normal distribution function13, since the standard Brownian Motions W 2

t and W 4
t are correlated.

Since P0 does not depend on y and ỹ we have

〈L2P0〉 =
∫
L2P0Ψ(y, ỹ)dydỹ = P0

∫
L2Ψ(y, ỹ)dydỹ = 〈L2〉P0 = 0 (16)

12An invariant distribution is also called a stationary or equilibrium distribution, i.e, a distribution that starts at t = 0 remains
the same when t > 0. In this case, it is invariant with respect to 1

ε
.

13Its density is captured in expression (3.11) by Bayraktar and Yang (2011) (4). However, there is a typo since it has to be
divided by

√
1− ρ2

2,4

14



Recall that L2 contains derivatives with respect to t, x, and r and also contain functions of y and ỹ. Thus,
this last equality intuitively means that in order to find the solution of P2,0, all the first order, second order
and cross derivatives (changes) of P0(t, x, r, z) with respect to t, x, and r must, on average, do not change
with movements on y and ỹ.14

Using the Poisson Equation and subtracting (16) we can deduce that

P2,0 = −L−1
0 (L2 − 〈L2〉)P0 (17)

The expression (15) is another Poisson Equation for P3,0 with respect to y and ỹ, i.e., P3,0 is the unknown.
The solvability or centering condition for this equation requires, employing (17), that

〈L2P1,0〉 = −〈L1P2,0〉 = 〈L1L−1
0 (L2 − 〈L2〉)〉P0

which along the terminal condition P1,0(T, x, r, z) = 0 define completely P1,0. The solvability condition (16)
and the terminal condition P0(T, x, r, z) = h(x) define completely the leading order term P0.

Finally, by inserting P ε1 in (10) only considering it up to the second correction P2,1, we get

0 =1
ε
L0(P0,1 +

√
εP1,1 + εP2,1) + 1√

ε
L1(P0,1 +

√
εP1,1 + εP2,1) + L2(P0,1 +

√
εP1,1 + εP2,1)

+M1(P0 +
√
εP1,0 + εP2,0) + 1√

ε
M3(P0 +

√
εP1,0 + εP2,0)

Now we have to get the (
√
ε)−2, (

√
ε)−1 and (

√
ε)0 terms and equate them to 0

(
√
ε)−2 : L0P0,1 = 0 (18)

(
√
ε)−1 : L0P1,1 + L1P0,1 +M3P0 = 0 (19)

(
√
ε)0 : L0P2,1 + L1P1,1 + L2P0,1 +M1P0 +M3P1,0 = 0 (20)

Recall that M3 contain derivatives with respect to y and ỹ so M3P0 = M3P1,0 = 0. Thereby, by (18)
we have that L1P0,1 = 0 in (19) so L0P1,1 = 0. This is, P0,1 and P1,1 do not depend on y and ỹ. Thus,
P0,1 = P0,1(t, x, r, z) and P1,1 = P1,1(t, x, r, z). For this reason, L1P1,1 = 0 and (20) turns to be

L0P2,1 + L2P0,1 +M1P0 = 0

L0P2,1 = −L2P0,1 −M1P0

The latter is a Poisson equation for P2,1 with respect to y and ỹ, i.e., P2,1 is the unknown. Therefore,
L2P0,1 +M1P0 must satisfy the solvability or centering condition

〈L2P0,1 +M1P0〉 = 0

and since P0 and P0,1 do not depend on y and ỹ

〈L2〉P0,1 = −〈M1P0〉

This last expression and the terminal condition P0,1(T, x, r, z) = 0 define completely P0,1. 〈L2〉 and 〈L1L−1
0 (L2−

〈L2〉)〉 are defined by Bayraktar and Yang (2011) (4)15

14For a mathematical explanation see Fouque et. al. (2011) (22).
15Expressions (3.13) and (3.22).
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Explicit Pricing Formula

Considering (11) for i = j = 0, i = 1, j = 0 and i = 0, j = 1, the first order approximation of P ε,δ is given by

P̃ ε,δ = P0 +
√
εP1,0 +

√
δP0,1 (21)

This is, the approximation is the sum of three terms: the leading term, the first order fast scale correction
and the first order slow scale correction. These three terms do not depend on y and ỹ (fast mean reverting
factors) as we have seen in the last subsection so the size of the fluctuations of the derivatives’ price does
not change a lot. Additionally, this three terms have been completely well defined above by solvability and
terminal conditions.

In order to compute the expectation in (5) we can use a change of probability measure. Therefore,
with PT known as the T -forward measure (Fouque, et. al., 2011 (22)), we have to use a Radon–Nikodym
derivative

ξT = dPT

dP
=

exp
(
−
∫ T

0
rsds

)
B(0, T )

and the Radon–Nikodym derivative restricted to Ft as defined in Fouque, et. al. (2011) (22)16 where B(t, T )
is the risk-free zero coupon bond defined above

ξt = dPT

dP

∣∣∣∣
Ft

= E(ξT |Ft) =
exp

(
−
∫ t

0
rsds

)
B(t, T )

B(0, T )

where ξt is the Radon–Nikodym process. Thereby, (5) turns to

P ε,δ(t,Xt, rt, Yt, Ỹt, Zt) =E

[
exp

(
−
∫ T

t

(rs + lλs)ds
)
h(XT )

∣∣∣∣∣Ft
]

=

E

[
exp

(
−
∫ T

t

rsds

)
exp

(
−
∫ T

t

lλsds

)
h(XT )

∣∣∣∣∣Ft
]

=

E

[
exp

(∫ t

0
rsds

)
exp

(
−
∫ T

0
rsds

)
exp

(
−
∫ T

t

lλsds

)
h(XT )

∣∣∣∣∣Ft
]

=

B(t, T )
B(t, T )E

[
exp

(∫ t

0
rsds

)
exp

(
−
∫ T

0
rsds

)
B(0, T )
B(0, T ) exp

(
−
∫ T

t

lλsds

)
h(XT )

∣∣∣∣∣Ft
]

= B(t, T )
ξt

E

[
ξT exp

(
−
∫ T

t

lλsds

)
h(XT )

∣∣∣∣∣Ft
]

The last equality is because ξt is Ft−measurable. Using the Lemma that establishes that for any adapted
and integrable process Ct, ET (Ct|Fs) = 1

ξs
E(ξtCt|Fs)17 we finally get

P ε,δ(t,Xt, rt, Yt, Ỹt, Zt) =B(t, T )
ξt

E

[
ξT exp

(
−
∫ T

t

lλsds

)
h(XT )

∣∣∣∣∣Ft
]

= B(t, T )ET
[

exp
(
−
∫ T

t

lλsds

)
h(XT )

∣∣∣∣∣Ft
]

= B(t, T )F ε,δ(t,Xt, rt, Yt, Ỹt, Zt)

where F ε,δ being the price with the forward measure. Henceforth, Bayraktar and Yang (2011) (4) show that
the deviations of P̃ ε,δ from P ε,δ are bounded and small. Moreover, they develop closed-form expressions for
each of the three terms of (21).

16Expression 12.106.
17Expression 1.59 in Fouque, et. al. (2011) (22).
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HYPOTHESIS

Given the framework above, (21) is the proper price approximation and in order to get the best fitting, we
only have to estimate the following parameters for European Call Options18

{λ̄(z), V ε1 (z), V ε2 , V ε3 (z), V ε4 , V ε5 , V ε6 , V δ1 (z), V δ2 (z)}

Methodology

In this section we follow the methodology of calibration performed by Bayraktar and Yang (2011)
(4). We perform cross-sectional estimations: estimations of the parameters while considering the different
maturity times at a fixed moment in time (a fixed day). The parameters that will be estimated on a daily
basis are given by the hypothesis. We are going to work with Ford Motor Company Stock and SPX Index
European Call Options. Therefore, l = 1 and h(XT ) = (XT −K)+ in (5).

Data Description

• The daily closing stock price data comes from finance.yahoo.com.

• We use the U.S. government treasury yield data with maturities (number of observations)19: 1 month,
3months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 years, 20 years, 30 years.

• The stock option and corporate bond data are obtained from Bloomberg. Regarding the stock option
data, Bayraktar and Yang (2011) (4) are able to use the OptionMetrics under WRDS database where
the observed implied volatilities are already calculated. On the other hand, we have to apply the
Black-Scholes formula to obtain the implied volatilities from the Bloomberg stock option data prices
and we used the estimated parameter r, explained in the next subsection, to compute it. The number
of available bond quotes and bond maturities vary and there are around 15 data points per day for
bond data.

• ρ̄1 and σ̄2 are obtained as (i) the correlation between the 1-month treasury bonds as a proxy for the
risk-free spot rate and the stock price, and (ii) as the estimated standard deviation from historical stock
price data, respectively.

The Parameter Estimation

The parameters of the interest rate model (α, β, η, r) are obtained by non-linear least squares estimation of
the Treasury Yield Curve of the corresponding day of analysis 20.

However, the U.S. government Treasury yield curve data has only 10 observations. To have more
observations we use linear interpolation21, as in Chakroun and Abid, 2013 (11) getting 360 observations
(monthly maturities) for the yield curve. Then following Rogers and Stummer (2000) (32), first we define for

18These are inside each term of (21) and are defined by propositions 3.1, 3.2 and 3.3 by Bayraktar and Yang (2011) (4). Each
parameter is variable in a time dimension since they are defined by integrals over the fast mean reverting stochastic processes.
However, within a day, they are constant.

19This data set is available at: https://www.treasury.gov/resource-center/data-chart-center/interest-
rates/Pages/TextView.aspx?data=yield.

20Van Elen (2010) (37) asserts that since there are 3 dimensions (yield, time to maturity and time), there is also a time series
estimation method where the Vasicek model has to be discretized and then run an AR(1) model for the interest rate, rather
than using the yield curve data, and maturity time is fixed.

21R(t) = R(ti) +
[

(t−ti)
(ti+1−ti)

]
× [R(ti+1 − R(ti)] where i is the market observation index with time to maturity ti and R(t)

corresponds to maturity t where ti ≤ t ≤ ti+1
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day t and maturity Tj a vector (RTjt )Mj=1 that will be the yield to maturity, where M = 360. Recall that RTjt
is obtained by the affine structure of the Vasicek model. Thereby, the cross-section of the returns that will
be estimated by non-linear least squares is22

R
Tj
t =

(
α

β
− η2

2β2

)
+
(
r − α

β
+ η2

β2

)
(1− e−β(Tj−t))
β(Tj − t)

− η2

4β3(Tj − t)

(
1− e−2β(Tj−t)

)
where Tj − t is the only explanatory variable.

Step 1. Estimation of λ̄(z), V ε3 (z) and V δ2 (z) from the corporate bond price data

This step entails two sub-steps. The first sub-step consists in fixing a value of λ̄(z) and then estimating
a V ε3 (z) and V δ2 (z) by linear least-squares estimation23 with robust errors. The second substep consist in
estimating λ̄(z) by non-linear least squares estimation24 with robust errors subject to λ̄(z) ∈ [0, 1].

Step 2. Estimation of V ε1 (z), V ε2 , V ε4 , V ε5 , V ε6 , V δ1 (z) from the equity option data

While Bayraktar and Yang (2011) (4) work again with a cross-section estimation, in this step we perform a
slightly different estimation due to our data set. As Chiarella et. al. (2007) (12) state, for each expiration
date Ti, options with strike prices Kij are traded. Then the cross-section estimation has two dimensions:
different maturities and different strike prices. We perform again a non-linear least squares estimation25 with
robust errors on expression (4.6) in Bayraktar and Yang (2011) (4) since it gives us lower residual sum of
squares.

Fitting the Implied Volatility of the Index Options

Since there is no default risk with Index Options because it does not depend on a particular defaultable
company but on an equity index, λ̄ = 0. Then (21) becomes P̃ ε,δ = P0 +

√
εP1,0 and

√
εP1,0 only will depend

on 5 factors26. Thus, we only have to perform the second step to obtain the estimated coefficients.

Results

Bayraktar and Yang (2011) (4) do not report the results of their estimations. They just show the
value of the estimated coefficients, so we only are able to compare our estimated coefficients with theirs in
terms of the magnitude.

The results of the yield curve estimation are reported in tables A.1. and A.2. We can see that the
estimated coefficients are all significant and in figure A.1. it is shown that both estimated yield curves fit
appropriately the observed interpolated yield curves27. Yet, the estimated parameters are different from the
ones reported by Bayraktar and Yang (2011) (4).

22r should be rt but since t is fixed, then rt = r is a constant here.
23Where the left hand side is Bcobs(t, Ti)−B

c
0(t, Ti, λ̄(z)) and the right hand side is the addition of the two terms of expression

(4.2) in Bayraktar and Yang (2011) (4).
24Where the left hand side is Bcobs(t, Ti) and the right hand side is as the r.h.s. in expression (4.1) in Bayraktar and Yang

(2011) (4) but plugging in the estimated coefficients V ε3 (z) and V δ2 (z).
25Weighted as in expression (4.4) in Bayraktar and Yang (2011) (4).
26g1, g2, g4, g5, and g6, as defined by Bayraktar and Yang (2011) (4) in expression (4.5) and Appendix B.
27The parameter r is a monthly rate so we turn it daily for the subsequent subsections.
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For the Ford Motor Company Stock Call Options, the first step estimations in table A.3. shows very
strongly significative coefficients, all of them positive. The price of credit risk λ̄(z) = 0.0223 is very close to
Bayraktar and Yang’s (2011) (4) (0.027)28. However, considering also the second step significant coefficients
in table A.4., we obtain different results from the authors’ for the rest of parameters, much greater in absolute
value29.

With these parameters we generate the estimated implied volatility surface in figure A.3. for the
April 26, 2017. We can see that it is similar to the observed one and it shows curvature but not as much
as the observed and as Bayraktar and Yang’s (2011) (4) since both volatility surfaces are more curved and
smoother than the estimated in figure A.3. Also, in figure A.4. we can see that the goodness of fit is not
as good as in Bayraktar and Yang (2011) (4) and is better the greater the maturity. Nevertheless, in their
figure, these authors only show the points that have good fit, not all the points for all the strikes within each
maturity.

For the SPX Index Call Options, the estimated coefficients in table A.5. are all strongly significant.
Bayraktar and Yang (2011) (4) do not report the values of this coefficients. In addition, we can see on figures
A.5. and A.6., in most of the maturities the estimated Implied Volatility Curve is on top of the observed one,
or very close to it so the goodness of fit is better than for the Ford Motor Company. This could be because
there are less parameters to estimate. Thus, the fit given by the Bayraktar and Yang’s (2011) (4) model is
satisfactory. However, the fit shown in their working paper with 2007 data is better than with our 2017 data.

Conclusions

The academic literature is still growing regarding the relationship between credit and equity deriva-
tives where jump stochastic processes are crucial. Bayraktar and Yang (2011) (4) model is one of many
models that wants to contribute to a unified framework able to explain this interaction.

In this Master Project we have explained all the mathematical theory beneath their model finding
that there are strong fundamental bricks that support their theoretical model. We also have performed their
methodology to compare their results with ours and we can reject the formulated hypothesis since the fitting
is not as good as expected. This comparison brings us to Fouque et. al. (2011) (22) critic of this type of
models: Bayraktar and Yang (2011) (4) model has a great fit with the data they used for two days, April 4
and June 8 of 2007. This type of modelling is endogenous to the financial industry viewpoint of a model’s
usefulness defined by simply mapping from prices to parameters. Nonetheless, there is a trade-off between
goodness of fit and the stability of the parameters through time. Bayraktar and Yang (2011) (4) model goes
just to one extreme because the financial industry may mistrust any model that does not fit a given day’s
data perfectly. In this way, our results show that the parameters are not stable through time, since we use
newer data.

There are many ways to improve Bayraktar and Yang (2011) (4) model. As cited in the review of
the literature, we can change the Vasicek model for more appropriate term structure models. We can also
make the intensity endogenous30. In addition, we can allow a positive equity recovery and we can adhere all
this within an equilibrium model in order to assess macroeconomic implications of the interaction between
credit an equity derivatives and their economic policy responses. Furthermore, the methodology has to be
complemented with a time-series analysis to get a better equilibrium between goodness of fit and the stability
of the parameters.

28But this comes from the fact that we fix the value of this coefficient in the first sub-step and the value that we can fix it is
an arbitrary value between 0 and 1.

29(V ε1 (z), V ε2 , V ε3 (z), V ε4 , V ε5 , V ε6 , V δ1 (z), V δ2 (z)}) = (0.9960, 0.0014, 0.0009, 0.0104, 0.6514, 0.3340, 0.1837, 0.0001)
302005-2009 were bad years for Ford Motor Company but since then until know its average stock price (USD 13,63) is higher

than the average on those years (USD 7,41). Thus, the intensity should change between good and bad times.

19



References
[1] Acharya, V.V., S. Schaefer and Y. Zhang, "Liquidity Risk and Correlation Risk: A Clinical Study of the

General Motors and Ford Downgrade of May 2005", Working Paper, London Business School, 2008.

[2] Arratia, A., Computational Finance: An Introductory Course with R, Atlantis Press, 29, 75019 Paris,
France, 2014.

[3] Bayraktar, E., "Pricing Options on Defaultable Stocks", Applied Mathematical Finance, 15(3), 2008.

[4] Bayraktar, E. and B. Yang, "A Unified Framework for Pricing Credit and Equity Derivatives", Mathe-
matical Finance, Vol. 21 No. 3, July 2011.

[5] Bielecki, T.R. and M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, New York: Springer,
2002.

[6] Bielecki, T.R. M. Jeanblanc and M. Rutkowski, "Credit Risk", Lecture of M. Jeanblanc, Lisbonn, June
2006.

[7] Björk, T., "An Introduction to Point Processes from a Martingale Point of View", Lecture Notes, 2011.

[8] Capponi, A., and M. Larsson, "Default and Systemic Risk in Equilibrium", An International Journal of
Mathematics, Statistics and Finance Economics, November 2012.

[9] Carr, P. and V. Linetsky, "A Jump to Default Extended CEV Model: An Application of Bessel Processes",
Financial Stoch., 10, 2006.

[10] B. Y. Chang and G. Orosi, "Equity Option-Implied Probability of Default and Equity Recovery Rate",
Bank of Canada Staff Working Paper, 2016-58, December 2016.

[11] Chakroun, F. and F. Abid, "A methodology to estimate the interest rates yield curve in Illiquid Market:
the Tunisian case", The Macrotheme Review , 2(6), SP-IMT, 2013.

[12] Chiarella, C. M. Craddock and N. El-Hassan, "The Calibration of Stock Option Pricing Models us-
ing inverse problem methodology", School of Finance and Economics, University of Technology Sydney,
Australia, 2007.

[13] Choi, E. and R. Sircar, "Analysis of Systematic Risks in Multi-Name Credit and Equity Markets", SSRN,
August 20, 2013.

[14] Chung, T. K. and Y. K. Kwok, "Equity-credit modeling under affine jump-diffusion models with jump-
to-default", Journal of Financial Engineering, 01, 1450017, 2014.

[15] Chung, T. K. "Essays on Financial Markets: Pricing, Decision Making and Empirical Analysis", Tokyo
Metropolitan University Thesis for the degree of Doctor of Philosophy in the Graduate School of Social
Sciences Department of Business Administration, August 2015.

[16] Cont, R. and P. Tankov, Financial Modeling with Jump Processes, Boca Raton, FL: Chapman Hall,
2004.

[17] Duffie, D. and K. Singleton, "Modeling Term Structure of Defaultable Bonds", Review of Financial
Studies, 12(4), 1999.

[18] Dyrssen, H., E. Ekström, and J. Tysk, "Pricing equations in jump-to-default models", International
Journal of Theoretical and Applied Finance, Volume 17, Issue 03, May 2014.

[19] Elliot, R.J., M. Jeanblanc and M. Yor, "On Models of Default Risk", Mathematical Finance, 10(2), 2006.

[20] Freixas X., L. Laeven and J.L. Peydró, Systemic Risk, Crises, and Macroprudential Regulation, MIT
Press, June 2015.

20



[21] Fouque, J.-P., G. Papanicolau, R. Sircar, and K. Solna "Multiscale Stochastic Volatility Asymptotics",
SIAM J. Multiscale Model, Simul., 2(1) 2013.

[22] Fouque, J.-P., G. Papanicolau, R. Sircar, and K. Solna, Multiscale Stochastic Volatility for Equity,
Interest Rate and Credit Derivatives, Cambridge University Press, 29 sept. 2011.

[23] Hull, J. C. and A. White, "The Impact of Default Risk on Options and Other Derivative Securities",
Journal of Banking and Finance, 19,2, 1995.

[24] Jeanblanc, M. and M. Rutkowski, "Modelling of Default Risk: An Overview", Mathematical Finance:
Theory and Practice, October 27, 1999.

[25] Lando, D., "On Cox processes and credit risky securities", Review of Derivatives Research, vol. 2, 1998.

[26] Linetsky, V., "Pricing Equity Derivatives subject to Bankruptcy", Mathematical Finance, 16(2), 2006.

[27] Malham, S.J.A., "An Asymptotic Introduction Analysis", Lecture Notes, November 2005.

[28] Nualart, D., "Stochastic Processes", Lecture Notes, 1997.

[29] Papageorgiu, E. and R. Sircar, "Multiscale Intensity Based Models for Single Name Credit Derivatives",
Applied Mathematical Finance, 15(1), 2008.

[30] Privault, N., "Notes on Stochastic Finance", Lecture Notes, December 20, 2016.

[31] United States. Economic Report of the President together with the Annual Report if the Council of
Advisers. Washington: G.P.O., January 2017.

[32] Rogers, L.C.G. and W. Stummer, "Consistent fitting of one-factor models to interest rate data", Math-
ematics and Economics, 27 January 20, 2000.

[33] Schoutens, W. and J. Cariboni, Lévy Processes in Credit Risk, Wiley, 2009.

[34] Schönbucher, P.J., Credit Derivatives Pricing Models: Model, Pricing and Implementation, New York,
Wiley, 2003.

[35] Shreve, P.J., Stochastic Calculus in Finance II: Continuous Time Models, Springer, 2004.

[36] Takeyama, A., N. Constaninou, and D. Vinogradov., "A framework for extracting the probability of
default from listed stock option prices", SSRN, November 14, 2011.

[37] Van Elen, E.A.L.J., "Term structure forecasting: Does a good fit imply reasonable simulation results?,"
Network for Studies on Pensions, Aging and Retirement Bsc Thesis, Tilburg School of Economics and
Management, Tilburg University, July 24 2010.

[38] Yamazaki, A., "Exponential Lévy Models Extended by a Jump to Default", Applied Mathematical Fi-
nance, Vol. 20, No. 3, 2013.

21



Appendix

Ford Motor Company

The Ford Motor Company is a multinational firm dedicated in the manufacturing of commercial vehicles and
luxury cars. As of today, Ford is a public listed company which is traded in the NYSE and is part of the S&P
500. Its weight is of 0.21% in the index and it has an equity capitalization of USD 4,083 billion and debt
capitalization of USD 130 billion of which USD 93 billion are represented by bonds issued through capital
markets.

Describe by Acharya, et. al. (2008) (1) and Fouque et. al. (2011) (22), in May 2005, Ford and
GM companies were simultaneously downgraded to junk status and this caused a wide-spread sell-off in their
corporate bonds. The reason was that many funds and banks were worried that their exposure to default
risk was suddently very high.

As a response, Ford implemented a plan to return the company to profitability. The Plan, named
The Way Forward aimed to re-size the company to match market realities and to drop unprofitable and
inefficient product lines: eventually Ford closed 14 factories and cut over 30,000 jobs. In December 2006,
the company raised its debt capacity to about USD 25 billion: almost all corporate assets were necessary
as collateral for this amount. In November 2007, Ford and the trade unions (United Auto Workers) agreed
to a historic contract settlement, allowing the company to unload a lot of the economic burden given by
health care costs and other retirement benefits. Ford Motor Company funded the creation of an independent
company run by the Voluntary Employee Beneficiary Association (VEBA). The agreement was meant to
improve Ford’s balance sheet by shifting to this new company’s balance sheet the burden of retiree and
health care costs.

Ford would not have turned profitable until 2009. Through April 2009, Ford’s strategy of debt for
equity exchanges erased USD 9.9 billion in liabilities in order to leverage its cash position. For the first time
after four years, Ford Motor Company posted a profit of USD 2,7 billion profit for 2009.

Table A.1.: 26-04-2017 Yield Curve Estimation for the Ford Motor Company Stock Call Op-
tions

Coefficients Estimates Std. Error t-Statistic p-value
α 0.0609 0.0079 7.72 0.000***
β 0.0135 0.0068 2.00 0.047**
η 0.0213 0.0002 2.98 0.003***
r 0.7917 0.0180 43.92 0.000***

Table A.2.: 06-01-2017 Yield Curve Estimation for the SPX Index Call Options

Coefficients Estimates Std. Error t-Statistic p-value
α 0.0961 0.0042 22.95 0.000***
β 0.0200 0.0039 5.11 0.000***
η 0.0362 0.0001 14.65 0.000***
r 0.4004 0.0152 26.36 0.000***
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Figure A.1. Observed vs Estimated Yield Curves

Table A.3.: First Step Estimation for the Ford Motor Company Stock Call Options

Coefficients Estimates Std. Error t-Statistic p-value
λ̄(z) 0.0223 0.0006 34.51 0.000***
V ε3 (z) 0.8712 0.1246 6.99 0.000***
V δ2 (z) 0.1901 0.0282 6.73 0.000***

Table A.4.: Second Step Estimated Coefficients for the Ford Motor Company Stock Call Op-
tions

Coefficients Estimates Std. Error t-Statistic p-value
V ε1 (z) -0.1038 0.0344 -3.02 0.005**
V ε2 (z) 0.0404 0.0142 2.85 0.008**
V ε4 (z) 3.8464 0.6861 5.61 0.000***
V ε5 (z) 13.1405 2.4873 5.28 0.000***
V ε6 (z) -23.8566 14.0140 -1.70 0.099*
V δ1 (z) 27.5202 14.5997 1.88 0.069*

In the next two figures we show the fit to the implied volatility of the Ford Motor Company on
April 26, 2017 with maturities [23, 51, 142, 233, 268, 632] days. The model is calibrated across all maturities
but here we show the implied volatility fits separately. The parameters are: stock price x = 11.6, σ̄2 = 0.5,
r = 0.095, ρ̄1 = −0.6 and those in table 1. The black line with circles comes from the observed data whereas
the red line with stars is generated by Bayraktar and Yang (2011) (4) Model.
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Figure A.3.

Figure A.4.

In the next two figures we show the fit to the implied volatility of SPX on January 6, 2017 with
maturities [14, 25, 42, 53, 70, 84, 105, 112, 145, 161] days. The model is calibrated across all maturities but
here we show the implied volatility fits separately. The parameters are: stock price x = 2276.98, σ̄2 = 0.37,
r = 0.048, ρ̄1 = −0.53 and those in table 2. The black line with circles comes from the observed data whereas
the red line with stars is generated by Bayraktar and Yang (2011) (4) Model.
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Table A.5.: Estimated Coefficients for the SPX Index Call Options

Coefficients Estimates Std. Error t-Statistic p-value
V ε1 (z) 0.0870 0.0005 170.21 0.000***
V ε2 (z) 0.0138 0.0012 11.68 0.000***
V ε4 (z) 0.9700 0.0880 11.02 0.000***
V ε5 (z) 6.2370 0.5197 12.00 0.000***
V ε6 (z) 1.0475 0.0959 10.92 0.000***

Figure A.5.

Figure A.6.
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