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1 Introduction

One of the most interesting forms of non-linear regression models is the threshold re-

gression model developed by Tong (1983)1 This model has been enormously influential in

economics and has popularity in current applied econometric practice. The model splits

the sample into classes based on the value of an observed variable, whether or not it

exceeds some threshold. That is, the model internally sorts the data on the basis of some

threshold determinant into groups of observations, each of which obeys the same model.

Hansen (2011) provides an excellent literature review of these models in econometrics and

in empirical economics.

Hansen (1999) extended those models to a static panel data model, who proposes econo-

metric techniques for threshold effects with exogenous regressors and exogenous threshold

variable, where least squares estimation is proposed using fixed-effects transformation. A

challenging extension of Hansen’s (1999) work is considering lags of the dependent vari-

able as regressors in the panel data model, in other words considering a dynamic panel

threshold model. Hansen’s (1999) techniques cannot be used, because any transforma-

tion to eliminate the individual fixed specific effect introduce a correlation between the

transformed regressors and the transformed error term in the model.

The most popular approaches to estimate a dynamic panel data linear model are Instru-

mental Variables (IV) and General Method of Moments (GMM) using a first difference

transformation of the model, which uses higher lags as valid instruments. In the con-

text of threshold regression, Caner and Hansen (2002) proposed a two-stage least squares

estimation for a model with endogenous regressors and exogenous threshold variable. Nev-

ertheless this approach cannot be applied because it needs an explicit reduce form that

relates the endogenous variables with the instruments;2 reduced form equation which is

not available in the dynamic panel data model in first differences.

In the context of the dynamic panel data linear model, Hsiao, Pesaran and Tahmiscioglu

(2002) propose a maximum likelihood estimator using a first difference transformation.

This approach has the advantage that does not require instruments, but needs assumptions

on the initial conditions. Thus, upon Hansen (1999) and Hsiao et al. (2002) works, in this

paper we propose a maximum likelihood approach to estimate the threshold and slope

parameters in dynamic panel threshold models.

In empirical macroeconomics it is crucial to consider dynamics, because all macroeco-

nomic models exhibit dynamics, for example, one of the main implications of the neoclas-

1See Tong (2007) for the birth of the threshold model.
2Yu (2013) finds that the two-stage least squares estimator of Caner and Hansen (2002) of the threshold

parameter is inconsistent without the stronger assumption of the reduced form equation.
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sical growth model and indeed of all models is that exhibit transitional dynamics in which

the growth rate relies on the previous position of the economy.3 Thus, dynamic methods

are suitable for empirical macroeconomic models.

The outline of the paper is as follows. Section 2 introduces the dynamic panel threshold

model with fixed effects. Section 3 develops the estimation procedure for the threshold

and slope parameters via maximum likelihood of the model using first difference trans-

formations. Section 4 extends the model by allowing exogenous regressors. Section 5

discusses the estimation of a multiple threshold model. Section 6 establishes consistency

and the asymptotic distribution of the parameter estimates. Section 7 shows the perfor-

mance of the estimators proposed via a Monte Carlo experiments. Section 8 reports an

application to the threshold relationship between inflation and long-run economic growth.

Finally, section 9 concludes. Proofs of theorems are provided in the appendix.

2 Model

The observed data are from a balanced panel {yit, xit : 1 ≤ i ≤ n, 1 ≤ t ≤ T}. The

subscript i indexes the individual and the subscript t indexes time. The dependent variable

yit is scalar. The threshold variable qit = q(xit) is an element or function of the vector xit

of exogenous variables4 and is assumed to have a continuous distribution. The structural

equation of interest is

yit = αi + β1yit−11(qit ≤ γ) + β2yit−11(qit > γ) + uit, (1)

where the threshold parameter is γ ∈ Γ, and Γ is a strict subset of the support of qit. This

parameter is unknown and needs to be estimated. β = (β1, β2)
′ are the slope parameters

of interest assumed to be different one to each other; αi is the individual specific effect

assumed to be fixed and uit is the error term, assumed to be independently identically

normally distributed with mean 0 and variance σ2
u. We also assume the initial values, yi0

and xi0, are observable.

When the individual specific effects, αi, are fixed, the least-squared dummy variable

(LSDV) estimators of the linear version of model (1) leads to an inconsistency of the

3Other macroeconomic models, such the Phillips curve, Taylor rule, aggregate demand and aggregate
supply, include the lagged of the dependent variable as a regressor.

4Endogeneity of the threshold variable is an important unsolved topic in such models. Recent efforts
working on endogeneity in the threshold variable are Kourtellos et al. (2013), who propose a two stage
concentrated least squares method that involves an inverse Mills ratio bias correction term in each regime;
Yu and Phillips (2014), who propose an integrated difference kernel estimator; and Seo and Shin (2014),
who propose a GMM estimator in a dynamic panel threshold model.
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slope parameter estimator as n grows to infinity for a fixed T (Nickell, 1981). If the errors

uit are normally distributed, then the LSDV are also the maximum likelihood estimator

(MLE), conditional on the initial observation, yi0, the MLE also leads an inconsistency of

the slope parameter estimator, due to the classical incidental parameter problem in which

the number of parameters increases with the number of observations (Lancaster, 2000).

To address the incidental parameter problem we take the first difference to eliminate

the individual specific effect in model (1), and we get

yit − yit−1 = β1(yit−11(qit ≤ γ)− yit−21(qit−1 ≤ γ))

+ β2(yit−11(qit > γ)− yit−21(qit−1 > γ)) + uit − uit−1. (2)

To simplify notation, let ∆yit ≡ yit− yit−1, ∆y∗it−1(γ) ≡ yit−11(qit ≤ γ)− yit−21(qit−1 ≤
γ), ∆y+it−1(γ) ≡ yit−11(qit > γ)− yit−21(qit−1 > γ) and ∆uit ≡ uit − uit−1. Then equation

(2) becomes

∆yit = β1∆y
∗
it−1(γ) + β2∆y

+
it−1(γ) + ∆uit. (3)

Notice that for t = 2, 3, . . . , T , (3) is well defined, but not for ∆yi1 because ∆y∗i0(γ)

and ∆y+i0(γ) are missing; that is, yi,−1 is not available.

When the time period is fixed, or the panel covers only a short period, the MLE of

the dynamic panel linear model depends on the initial condition and the assumption on

the initial condition plays a crucial role in devising consistent estimates. Anderson and

Hsiao (1981) show under which assumptions the MLE leads to consistent or inconsistent

estimates of the slope parameter. This problem arises because the covariance matrix

depends on the initial conditions; if T grows to infinity the initial condition problem

disappears.

By continuous substitution of equation (3) for the first period, ∆yi1, the resulting

equation has an intractable form and depends on the structural parameters. Also, it is

clear that equation (3) does not depend on the individual specific fixed effect for all t.

Thus, to address the initial condition problem, we assume the process has started from a

finite period in the past, namely for given values of yi,−1 such that5

E(∆yi1|xi) = δ11(qi1 ≤ γ) + δ21(qi1 > γ),

where xi = (xi0, xi1, ..., xiT )′. This assumption imposes the restriction that the expected

5It is enough to assume that E(∆yi1) = δ, for empirical applications it simplifies the procedure.
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changes in the initial endowments are the same across all individuals in each regime, but

does not necessarily require if the process has reached stationarity.6 In the dynamic panel

linear model, Hsiao et al. (2002) assume E(∆yi1) = b, while Blundell and Smith (1991)

assume E(yi0) = b; however, Blundell and Smith (1991) assume random effects models,

where there is no incidental parameter issue. Then the marginal distribution of ∆yi1

conditional on xi can be written as

∆yi1 = δ11(qi1 ≤ γ) + δ21(qi1 > γ) + υi1. (4)

The auxiliary external parameters, δ = (δ1, δ2)
′, can be a function of the structural

parameters, but similar to Hsiao et al. (2002) we can treat the external parameters as

free parameters in the sense they do not depend on the structural parameters.

3 Estimation

In this section we propose a Maximum Likelihood approach to estimate equations (3) and

(4) together.

3.1 Maximum Likelihood Function

Under the strict exogeneity of xit and by construction, E(υi1|xi) = 0, Eυ2i1 = σ2
υ. We also

assume Cov(υi1,∆ui2|xit) = −σ2
u and Cov(υi1,∆uit|xit) = 0, for t = 3, ..., T , i = 1, ..., n;

that is, we assume homoscedasticity across regimes.

Let ∆yi = (∆yi1,∆yi2, ...,∆yiT )′ and ∆ui = (υi1,∆ui2, ...,∆uiT )′. The Jacobian of the

transformation from ∆ui to ∆yi is unity and the joint probability distribution function

of ∆yi and ∆ui are therefore the same. The covariance matrix of ∆ui has the form

Ω = σ2
u



ω −1 0 . . . 0

−1 2 −1

0 −1 2
...

. . . −1

0 −1 2


= σ2

uΩ
?, (5)

where ω = σ2
υ/σ

2
u.

Under the assumption that uit is independent normal, the joint probability distribution

6Sufficient conditions for the stationarity of the process in the autoregressive threshold model are
|β1| < 1 and |β2| < 1 (see Enders and Granger (1998) and Caner and Hansen (2001)).
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function of ∆yi conditional on xi is given by7

L(δ, β, γ, σ2
u, ω) =

n∏
i=1

(2π)−T/2|Ω|−1/2 exp{−1

2
∆ui(δ, β, γ)′Ω−1∆ui(δ, β, γ)}, (6)

where we define ∆ui(δ, β, γ) = [∆yi1 − δ11(qi1 ≤ γ) − δ21(qi1 > γ),∆yi2 − β1∆y∗i1(γ) −
β2∆y

+
i1(γ), . . . ,∆yiT − β1∆y∗iT−1(γ)− β2∆y+iT−1(γ)]′.

The likelihood function (6) is well defined, depends on a fixed number of parameters.

Maximizing the likelihood function (6) is equivalent to Maximizing

lnL(δ, β, γ, σ2
u, ω) = −nT

2
ln(2π)− n

2
ln |Ω| − 1

2

n∑
i=1

∆ui(δ, β, γ)′Ω−1∆ui(δ, β, γ). (7)

The only unknown element of Ω∗ is ω and it can be shown that |Ω| = σ2T
u [1+T (ω−1)]

(see Hsiao et al., 2002).

For this maximization, γ is assumed to be restricted to a bounded set Γ = [γ; γ].

Notice that since this set is also closed, it is compact on the real line. Then, the MLE

(δ̂, β̂, γ̂, σ̂2
u, ω̂) are the values that globally maximize lnL(δ, β, γ, σ2

u, ω).

In the dynamic panel linear case, Hsiao et al. (2002) found the MLE of the slope

parameter is consistent and asymptotically normally distributed when n tends to infinity,

whether T is fixed or tends to infinity.

3.2 ML Estimators of δ, β, σ2
u and ω for a given γ

Let βδ = (δ′, β′)′ and define the matrix ∆yi,−1(γ) as follows

∆yi,−1(γ) =



1(qi1 ≤ γ) 1(qi1 > γ) 0 0

0 0 ∆y∗i1(γ) ∆y+i1(γ)

0 0 ∆y∗i2(γ) ∆y+i2(γ)
...

...
...

...

0 0 ∆y∗iT−1(γ) ∆y+iT−1(γ)


.

Using the above definition, the Log-Likelihood function (7) can be written as

7See Appendix A for the formal derivation of the likelihood function.
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lnL(βδ, γ, σ
2
u, ω) = −nT

2
ln(2π)− nT

2
ln(σ2

u)−
n

2
ln[1 + T (ω − 1)]

− 1

2

n∑
i=1

[(∆yi −∆yi,−1(γ)βδ)
′Ω−1(∆yi −∆yi,−1(γ)βδ)]. (8)

We start the estimation procedure considering a fixed γ. Then for a given γ, the

first-order derivative with respect to βδ is

∂ lnL

∂βδ
=

n∑
i=1

[∆yi,−1(γ)′Ω−1(∆yi −∆yi,−1(γ)βδ)].

Setting the partial derivatives equal to zero gives

β̂δ(γ) =

( n∑
i=1

∆yi,−1(γ)′Ω̂?(γ)−1∆yi,−1(γ)

)−1( n∑
i=1

∆yi,−1(γ)′Ω̂?(γ)−1∆yi

)
. (9)

The first order derivatives with respect to σ2
u and ω, for a given γ, are given by

∂ lnL

∂σ2
u

= − nT
2σ2

u

+
1

2σ4
u

n∑
i=1

[(∆yi −∆yi,−1(γ)βδ)
′Ω?−1(∆yi −∆yi,−1(γ)βδ)],

and

∂ lnL

∂ω
= − nT

2[1 + T (ω − 1)]

+
1

2σ2
u[1 + T (ω − 1)]2

n∑
i=1

[(∆yi −∆yi,−1(γ)βδ)
′Φ(∆yi −∆yi,−1(γ)βδ)],

where

Φ =


T 2 T (T − 1) T (T − 2) . . . T

T (T − 1) (T − 1)2 (T − 1)(T − 2) . . . (T − 1)
...

...
... . . .

...

T (T − 1) (T − 2) . . . 1

 .
Setting the above first-order conditions equal to zero yields
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σ̂2
u(γ) =

1

nT

n∑
i=1

[(∆yi −∆yi,−1(γ)β̂δ(γ))′Ω̂?(γ)−1(∆yi −∆yi,−1(γ)β̂δ(γ))], (10)

ω̂(γ) =
T − 1

T
+

1

σ̂2
u(γ)nT 2

n∑
i=1

[(∆yi −∆yi,−1(γ)β̂δ(γ))′Φ(∆yi −∆yi,−1(γ)β̂δ(γ))]. (11)

Notice the ML slope estimators depend on σ2
u and ω, and those depend on the slope

parameters; then we propose two methods to find the MLE δ̂1(γ), δ̂2(γ), β̂1(γ), β̂2(γ),

σ̂2
u(γ) and ω̂(γ) for a given γ.

Iterative Procedure Using Initial Estimates

For each γ, we can use lagged ∆y∗it−2(γ) and ∆y+it−2(γ) as instruments to obtain initial

estimates for β1 and β2 as in Anderson and Hsiao (1982), respectively. Let

∆ÿi =


∆yi3

∆yi4
...

∆yiT

 , ∆ÿi,−1(γ) =


∆y∗i2(γ) ∆y+i2(γ)

∆y∗i3(γ) ∆y+i3(γ)
...

...

∆y∗iT−1(γ) ∆y+iT−1(γ)


and

∆ÿi,−2(γ) =


∆y∗i1(γ) ∆y+i1(γ)

∆y∗i2(γ) ∆y+i2(γ)
...

...

∆y∗iT−2(γ) ∆y+iT−2(γ)

 .
Then, for a given γ the initial estimates of β1 and β2 by instrumental variables are[

β̃1(γ)

β̃2(γ)

]
=

( n∑
i=1

∆ÿi,−2(γ)′∆ÿi,−1(γ)

)−1( n∑
i=1

∆ÿi,−2(γ)′∆ÿi

)
.

Initial estimates σ̃2
u(γ) and ω̃(γ) are given by replacing the initial slope estimates in

equations (10) and (11), respectively. And initial estimates of the external parameters,

δ̃1(γ) and δ̃2(γ), are given by (1/n1)
∑n

i=1 ∆yi11(qi1 ≤ γ) and (1/n2)
∑n

i=1 ∆yi11(qi1 > γ);

where n1 + n2 = n, n1 and n2 are the subsample in each regimen for t = 1.

Finally, for a fixed γ, by using those initial estimates, we could use an iterative technique

such as the Newton-Raphson procedure. For this purpose the second derivatives of the

log-likelihood function are provided in the appendix B.
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Grid Search Method

Alternatively, in order to compute the MLE δ̂1(γ), δ̂2(γ), β̂1(γ), β̂2(γ), σ̂2
u(γ) and ω̂(γ)

for a given γ, we can use a grid search procedure whereby the MLE are computed for a

number of values of ω(γ) > 1 − 1/T at a given γ, and then choosing that value of ω(γ),

which globally maximizes the log-likelihood function (8).

3.3 ML Estimator for the Threshold Parameter γ

The ML estimators for a given γ are β̂δ(γ) = (δ̂1(γ), δ̂2(γ), β̂1(γ), β̂2(γ))′, σ̂2
u(γ) and ω̂(γ).

Therefore the threshold parameter, γ, is estimated by maximizing the concentrated

log-likelihood function (12),

lnL(γ) = −nT
2

ln(2π)− n

2
ln |Ω̂(γ)|

−1

2

n∑
i=1

(∆yi −∆yi,−1(γ)β̂δ(γ))′Ω̂(γ)−1(∆yi −∆yi,−1(γ)β̂δ(γ))

= −nT
2

ln(2π)− n

2
ln |Ω̂(γ)| − 1

2

n∑
i=1

∆ûi(γ)′Ω̂(γ)−1∆ûi(γ). (12)

The criterion function (12) is not smooth, so conventional gradient algorithms are not

suitable for its maximization. Following Hansen (1999), we suggest using a grid search

over the threshold variable space. That is, construct an evenly spaced grid on the empirical

support [γ; γ] of the threshold variable qit.

Notice the threshold effect only has content if 0 < P (qit ≤ γ) < 1. In our environ-

ment this constraint is satisfied since we assumed that Γ = [γ; γ] is a proper subset of

the support of the threshold variable qit. Alternatively, Hansen and Seo (2002) impose

this constraint by assuming π0 ≤ P (qit ≤ γ) ≤ 1 − π0, where π0 > 0 is a trimming

parameter. Using this assumption, similarly we can find the MLE of γ by searching the

maximum value of γ on the grid on the support of the threshold variable qit, conditional

on π0 ≤ (nT )−1
∑n

i=1

∑T
t=1 1(qit ≤ γ) ≤ 1 − π0, where we can set π0 = 0.1 for empirical

applications.

3.4 ML Estimators for the slope Parameters β1 and β2

Once γ̂ is obtained by maximizing (12), the ML estimators of slope parameters are β̂1 =

β̂1(γ̂) and β̂2 = β̂2(γ̂).
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Also, the ML estimators of the remaining parameters that involve the estimation

method are δ̂1 = δ̂1(γ̂), δ̂2 = δ̂2(γ̂), σ̂2
u = σ̂2

u(γ̂) and ω̂ = ω̂(γ̂).

The estimated covariance matrix for the ML slope estimators β̂δ is

Cov


δ̂1

β̂1

δ̂2

β̂2

 =

(
n∑
i=1

∆yi,−1(γ̂)′Ω−1∆yi,−1(γ̂)

)−1

= σ2
u

(
n∑
i=1

∆yi,−1(γ̂)′Ω?−1∆yi,−1(γ̂)

)−1
.

Or, under a suitable partition of the matrix ∆yi,−1(γ̂), the estimated covariance matrix

for the ML slope estimators β1 and β2 is

Cov

[
β̂1

β̂2

]
= σ2

u

(
n∑
i=1

∆y◦i,−1(γ̂)′Ω?−1∆y◦i,−1(γ̂)

)−1
≡ F−1(γ̂),

where,

∆y◦i,−1(γ) =



0 0

∆y∗i1(γ) ∆y+i1(γ)

∆y∗i2(γ) ∆y+i2(γ)
...

...

∆y∗iT−1(γ) ∆y+iT−1(γ)


.

In the dynamic panel linear case, Hsiao et al. (2002) discuss a feasible estimator. When

a
√
n-consistent estimator of Ω, Ω̂, instead.

3.5 Summary

In summary, our algorithm has the following procedure:

1. Form a grid on the empirical support, [γ; γ], of the threshold variable qit.

2. For each value of γ on this grid, calculate the MLE δ̂1(γ), δ̂2(γ), β̂1(γ), β̂2(γ),

σ̂2
u(γ) and ω̂(γ) by maximizing the criterion (8), the explicit form for the first four
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parameter is in (9), for the fifth parameter is in (10) and for the last one is in (11).

We can use either

(a) an iterative technique such as the Newton-Raphson procedure by using initial

estimates or

(b) a grid search procedure on ω(γ) at a given γ, and then choosing that value of

ω(γ) which globally maximizes the function (8).

3. With the ML estimators computed in part 2 for each γ, find the MLE γ̂ as the value

of γ on the grid on the empirical support [γ; γ] which yields the highest value of the

concentrated criterion (12).

4. Set β̂1 = β̂1(γ̂), β̂2 = β̂2(γ̂), δ̂1 = δ̂1(γ̂), δ̂2 = δ̂2(γ̂), σ̂2
u = σ̂2

u(γ̂), ω̂ = ω̂(γ̂) and

∆ûi = ∆ûi(γ̂).

4 Model with Exogenous Regressors

The model can be extended to allow exogenous regressors as follows

yit = αi + (β1yit−1 + θ′1xit)1(qit ≤ γ) + (β2yit−1 + θ′2xit)1(qit > γ) + uit, (13)

where xit is a k vector. Again we assume that initial values yi0 and xi0 are available. By

taking first differences to eliminate the individual specific effect in model (13), we get

yit − yit−1 = β1(yit−11(qit ≤ γ)− yit−21(qit−1 ≤ γ)) + θ1(xit1(qit ≤ γ)

−xit−11(qit−1 ≤ γ)) + β2(yit−11(qit > γ)− yit−21(qit−1 > γ))

+θ2(xit1(qit > γ)− xit−11(qit−1 > γ)) + uit − uit−1. (14)

To simplify notation let ∆yit ≡ yit − yit−1, ∆y∗it−1(γ) ≡ yit−11(qit ≤ γ)− yit−21(qit−1 ≤
γ), ∆x∗it(γ) ≡ xit1(qit ≤ γ)−xit−11(qit−1 ≤ γ), ∆y+it−1(γ) ≡ yit−11(qit > γ)−yit−21(qit−1 >

γ), ∆x+it(γ) ≡ xit1(qit > γ)−xit−11(qit−1 > γ) and ∆uit ≡ uit−uit−1. Then equation (14)

becomes

∆yit = β1∆y
∗
it−1(γ) + θ′1∆x

∗
it(γ) + β2∆y

+
it−1(γ) + θ′2∆x

+
it(γ) + ∆uit. (15)

Again, for t = 2, 3, . . . , T , (15) is well defined, but not for ∆yi1 because ∆y∗i0(γ) and

∆y+i0(γ) are missing, that is yi,−1 is not available. Thus, the mean of ∆yi1 conditional on

∆y∗i0(γ), ∆x∗i1(γ), ∆y+i0(γ) and ∆x+i1(γ) is unknown.
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Similar to the model without exogenous regressors and using the exogeneity of xit for

all t, we assume the process has started from a finite period in the past, namely for given

values of yi,−1 such that

E(∆yi1|xi) = δ11(qi1 ≤ γ) + δ21(qi1 > γ) + δ′3∆x
∗
i (γ) + δ′4∆x

+
i (γ),

where ∆x∗i (γ) = (∆x∗i1(γ), . . . ,∆x∗iT (γ))′ and ∆x+i (γ) = (∆x+i1(γ), . . . ,∆x+iT (γ))′. Notice

that we take the conditional expectation given the observables xit.

Thus the marginal distribution of ∆yi1 conditional on xi can be written as

∆yi1 = δ11(qi1 ≤ γ) + δ21(qi1 > γ) + δ′3∆x
∗
i (γ) + δ′4∆x

+
i (γ) + υi1, (16)

under the exogeneity of xit and by construction E(υi1|xi) = 0, Eυ2i1 = σ2
υ, and we assume

Cov(υi1,∆ui2|xit) = −σ2
u and Cov(υi1,∆uit|xit) = 0 for t = 3, ..., T , i = 1, ..., n.

There is no guarantee that the error υi1 is normally distributed, though Hsiao et al.

(2002) show that if the exogenous variables are driven by a normal distribution, the error

υi1 will be normally distributed.

Therefore, in order to estimate this model for a given γ, we maximize the criterion (7),

where ∆ui(δ, β, θ, γ) = [∆yi1− δ11(qi1 ≤ γ)− δ21(qi1 > γ)− δ′3∆x∗i (γ)− δ′4∆x+i (γ),∆yi2−
β1∆y

∗
i1(γ) − θ′1∆x∗i2(γ) − β2∆y+i1(γ) − θ′2∆x+i2(γ), . . . ,∆yiT − β1∆y∗iT−1(γ) − θ′1∆x∗iT (γ) −

β2∆y
+
iT−1(γ)− θ′2∆x+iT (γ)]′,

where δ = (δ1, δ2, δ
′
3, δ
′
4)
′ and θ = (θ1, θ2)

′. Let θδ = (δ, β1, θ1, β2, θ2)
′ and define the matrix

∆yi,−1(γ) as follows

∆yi,−1(γ) =



1(qi1 ≤ γ) 1(qi1 > γ) ∆x∗i (γ)′ ∆x+i (γ)′

0 0 01×T 01×T

0 0 01×T 01×T
...

...
...

...

0 0 01×T 01×T

;

0 0 0 0

∆y∗i1(γ) ∆x∗i1(γ) ∆y+i1(γ) ∆x+i1(γ)

∆y∗i2(γ) ∆x∗i2(γ) ∆y+i2(γ) ∆x+i2(γ)
...

...
...

...

∆y∗iT−1(γ) ∆x∗iT (γ) ∆y+iT−1(γ) ∆x+iT (γ)


.

Then, with our new definition of ∆yi,−1(γ), we can estimate based on the criterion (8).
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Then the ML Estimators of θδ for a given γ can be written as

θ̂δ(γ) =

( n∑
i=1

∆yi,−1(γ)′Ω̂?(γ)−1∆yi,−1(γ)

)−1( n∑
i=1

∆yi,−1(γ)′Ω̂?(γ)−1∆yi

)
, (17)

and the ML estimators of σ2
u and ω for a given γ can be written as

σ̂2
u(γ) =

1

nT

n∑
i=1

[(∆yi −∆yi,−1(γ)θ̂δ(γ))′Ω̂?(γ)−1(∆yi −∆yi,−1(γ)θ̂δ(γ))], (18)

ω̂(γ) =
T

T − 1
+

1

σ̂2
u(γ)nT 2

n∑
i=1

[(∆yi −∆yi,−1(γ)θ̂δ(γ))′Φ(∆yi −∆yi,−1(γ)θ̂δ(γ))], (19)

where Φ is defined as before.

In order to get the MLE δ̂(γ), β̂(γ), θ̂(γ), σ̂2
u(γ) and ω̂(γ) for a given γ, we can use

either an iterative procedure using initial estimates of θδ for a given γ, or a grid search

method on ω(γ) > 1− 1/T at a given γ.

For the iterative procedure, initial estimators can be obtained by an instrumental

variable estimation. Let

∆ÿi =


∆yi3

∆yi4
...

∆yiT

 , ∆ÿi,−1(γ) =


∆y∗i2(γ) ∆x∗i3(γ) ∆y+i2(γ) ∆x+i3(γ)

∆y∗i3(γ) ∆x+i4(γ) ∆y+i3(γ) ∆x+i4(γ)
...

...
...

...

∆y∗iT−1(γ) ∆x∗iT (γ) ∆y+iT−1(γ) ∆x+iT (γ)


and

∆ÿi,−2(γ) =


∆y∗i1(γ) ∆x∗i3(γ) ∆y+i1(γ) ∆x+i3(γ)

∆y∗i2(γ) ∆x∗i4(γ) ∆y+i2(γ) ∆x+i4(γ)
...

...

∆y∗iT−2(γ) ∆x∗iT (γ) ∆y+iT−2(γ) ∆x+iT (γ)

 .
Then, for a given γ the initial estimates of β1, θ1, β2 and θ2 using instrumental variables

are
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[β̃1(γ) θ̃1(γ) β̃2(γ) θ̃2(γ)]′ =

( n∑
i=1

∆ÿi,−2(γ)′∆ÿi,−1(γ)

)−1( n∑
i=1

∆ÿi,−2(γ)′∆ÿi

)
;

and, initial estimations σ̃2
u(γ) and ω̃(γ) are given by replacing the initial slope estimates in

equations (18) and (19), respectively. Initial estimates of the external parameters, δ̃1(γ),

δ̃2(γ), δ̃3(γ) and δ̃4(γ), can be obtained by a least square regression of ∆yi1 on 1(qi1 ≤ γ),

1(qi1 > γ), ∆x∗i (γ) and ∆x+i (γ).

Once we get the ML estimators δ̂1(γ), δ̂2(γ), δ̂′3(γ), δ̂′4(γ), β̂1(γ), θ̂′1(γ), β̂2(γ), θ̂′2(γ),

σ̂2
u(γ) and ω̂(γ) for each γ; the threshold parameter γ is estimated by maximizing the

concentrated likelihood function (12).

Once the MLE of the threshold parameter γ̂ is obtained, then the ML slope parameter

estimates are δ̂1 = δ̂1(γ̂), δ̂2 = δ̂2(γ̂), δ̂3 = δ̂3(γ̂), δ̂4 = δ̂4(γ̂), β̂1 = β̂1(γ̂), θ̂1 = θ̂1(γ̂),

β̂2 = β̂2(γ̂) and θ̂2 = θ̂2(γ̂).

5 Multiple Thresholds

Model (1) has a single threshold. In some applications there may be multiple thresholds.

For example, in our case, the double threshold model can take the form

yit = αi + β1yit−11(qit ≤ γ1) + β2yit−11(γ1 < qit ≤ γ2) + β3yit−11(qit > γ2) + uit, (20)

where the thresholds are ordered so that γ1 < γ2.

5.1 Estimation

For given (γ1, γ2)
′, (20) is linear in the slopes, then the ML estimation is appropriate. Thus

for given (γ1, γ2)
′ the concentrated log-likelihood function lnL(γ1, γ2) is straightforward

to calculate (as in the single threshold model). The joint maximum likelihood estimates

of (γ1, γ2)
′ are by definition the values which jointly maximize lnL(γ1, γ2). While these

estimates might seem desirable, Hansen (1999) argues that they may be quite cumbersome

to implement in practice.

Hansen (1999) argues that it has been found (Chong, 1994; Bai, 1997) in the multiple

change-point model that sequential estimation is consistent. And then the same logic

appears to apply to the multiple threshold model.
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Following Hansen (1999) the method works as follows. In the first stage, let lnL(γ) be

the single threshold concentrated log-likelihood function as defined in (12) and let γ̂1 be

the threshold estimate which maximizes lnL(γ). The analysis of Chong (1994) and Bai

(1997) suggests that γ̂1 will be consistent for either γ1 or γ2.

Fixing the first-stage estimate γ̂1, the second-stage criterion is

lnLr2(γ2) =

{
lnL(γ̂1, γ2) if γ̂1 < γ2

lnL(γ2, γ̂1) if γ2 < γ̂1
(21)

and the second-stage threshold estimate is

γ̂r2 = argmax
γ2

lnLr2(γ2) (22)

Bai (1997) has shown that γ̂r2 is asymptotically efficient, but γ̂1 is not. Hansen (1999)

argues that is because the estimate γ̂1 was obtained from a the concentrated function

which was contaminated by the presence of a neglected regime. Hansen (1999) states

the asymptotic efficiency of γ̂1 can be improved by a third-stage estimation. Bai (1997)

suggests the following refinement estimator. Fixing the second-stage estimate γ̂r2, define

the refinement criterion

lnLr1(γ1) =

{
lnL(γ1, γ̂

r
2) if γ1 < γ̂r2

lnL(γ̂r2, γ1) if γ̂r2 < γ1
(23)

and the refinement threshold estimate is

γ̂r1 = argmax
γ1

lnLr1(γ1) (24)

Bai (1997) shows that the refinement estimator γ̂r1 is asymptotically efficient in change-

point estimation, and as Hansen (1999) we expect similar results to hold in threshold

regression.

6 Asymptotic Theory

In the context of threshold regression it is known that threshold estimate is super-

consistent; and since the objective function (12) is not smooth, it is found that the

distribution of the threshold estimate is nonstandard.

Those result lie in the assumption of the exogeneity of the threshold variable and the

regressors; even though in the structural model we have the same environment, the first
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difference transformation introduces a correlation between the lagged regressor and the

errors in the model. Thus, a different technique will be developed in order to prove

consistency and to establish asymptotic distribution of the threshold estimate.

6.1 Assumptions

Let βδ1 = (δ1, β1)
′ and βδ2 = (δ2, β2)

′. Define a partition of the matrix, ∆yi,−1(γ) as

follows

∆y∗i,−1(γ) =



1(qi1 ≤ γ) 0

0 ∆y∗i1(γ)

0 ∆y∗i2(γ)
...

...

0 ∆y∗iT−1(γ)


; ∆y+i,−1(γ) =



1(qi1 > γ) 0

0 ∆y+i1(γ)

0 ∆y+i2(γ)
...

...

0 ∆y+iT−1(γ)


.

Define the moment functionals

M(γ) = E(C ′∆y∗i,−1(γ)′Ω?−1∆y∗i,−1(γ)C)

= c′E

 T∑
t=1

(atat−1)
−11(qi1 ≤ γ) +

T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∆y
∗
is(γ)

)2

+ 2
T∑
t=2

(atat−1)
−11(qi1 ≤ γ)

t−1∑
s=1

as∆y
∗
is(γ)

)
c, (25)

where a0 = 1, a1 = ω and a0, · · · , aT−1 are constants of the matrix H defined in appendix

C; that is, H is the matrix such that H ′ΛH = Ω?−1. Let ft(γ) and ft|t−1(γ1|γ2) denote

the density function of qit and the conditional density of qit given qit−1, respectively. Let

M = E(C ′∆y′i,−1Ω
?−1∆yi,−1C)

= c′E

 T∑
t=1

a0(atat−1)
−1 +

T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∆yis

)2

+ 2
T∑
t=2

(atat−1)
−1

t−1∑
s=1

as∆yis

)
c, (26)

where

16



∆yi,−1 =



1 0

0 ∆yi1

0 ∆yi2
...

...

0 ∆yiT−1


.

Also, let

D(γ) = c′

[
T∑
t=1

(atat−1)
−1f1(γ) +

T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

a2s
(
E(y2is|qis+1 = γ)fs+1(γ)

+E(y2is|qis−1 = γ)fs(γ)
)
−

t−2∑
s=1

2asas+1E(y2is|qis+1 = γ)fs+1(γ)

−2a1νE(yi0|qi1 = γ)f1(γ)

)]
c. (27)

Finally, let

V1(γ) =

(
T∑
t=1

(atat−1)
−1

(
υi1 +

t∑
s=2

as−1∆uis

))2

f1(γ)

T−1∑
t=2

(atat−1)
−2


t−1∑
s=1

a2sE

[yis(υi1 +
t∑

s=2

as−1∆uis

)]2
|qis+1 = γ

 fs+1(γ)

+
t−1∑
s=1

a2sE

[yis−1(υi1 +
t∑

s=2

as−1∆uis

)]2
|qis = γ

 fs(γ)

−
t−2∑
s=1

2asas+1E

[yis(υi1 +
t∑

s=2

as−1∆uis

)]2
|qis+1 = γ

 fs+1(γ)

 ,
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V2(γ) =
T−1∑
t=2

(atat−1)
−1

T∑
k=t+1

(akak−1)
−1

{
t−1∑
s=1

a2sE

(
y2is

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qis+1 = γ

)
fs+1(γ)+

t−1∑
s=1

a2sE

(
y2is−1

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qis = γ

)
fs(γ)−

t−1∑
s=2

2asas−1E

(
y2is−1

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qis = γ

)
fs(γ)−

atat−1E

(
y2it−1

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qit = γ

)
ft(γ)

}
,

V3(γ) = −2
T∑
t=1

(atat−1)
−1

T∑
k=2

(akak−1)
−1a1

E

(
yi0

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

k∑
s=2

as−1∆uis

))
|qi1 = γ)f1(γ)

and

V (γ) = c′ [V1(γ)V2(γ) + V3(γ)] c. (28)

The functions D(γ) and V (γ) look very complicated, but essentially the first one is

the derivative of M(γ) = E(C ′∆y∗i,−1(γ)′Ω?−1∆y∗i,−1(γ)C) with respect to γ, and the

second one is the derivative of E(C ′∆y∗i,−1(γ)′Ω?−1∆ui(γ)C)2 with respect to γ, where C

is defined in Assumption 1.

Assumption 1

1. yi0 and xi0 are observable;

2. For each t, (xit, uit, υi1) are independent and identically distributed (iid) across i;
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3. For each i, uit is iid over t, is independent of {(yit−s)t−1s=1, (xit)
T
s=1}; and υi1 is inde-

pendent of {(yi0), (xit)Ts=1};

4. uit normal distributed with mean 0 and variance σ2
u, by construction E(υi1) = 0,

then we also assume that υi1 is normal distributed with variance σ2
υ and ω > 1−1/T .

5. β1 6= β2 and δ1 6= δ2;

6. E|yi0|4 <∞ and E|xit|4 <∞;

7. ft(γ), D(γ) and V (γ) are continuous at γ = γ0;

8. For some fixed c <∞ and 0 < α < 1/2, β2−β1 = δ2−δ1 = n−αc and also C = (c, c)′;

9. 0 < V (γ0) <∞, 0 < D(γ0) <∞, ft(γ0) <∞ and for k > t fk|t(γ0|γ0) <∞;

10. 0 < M(γ) < M for all γ ∈ Γ.

Assumptions 1.1-1.4 are similar to the assumptions of Hsiao et al. (2002) for the

dynamic fixed effect panel models with strictly exogenous regressors. Assumption 1.5

excludes the possibility that the threshold parameter is not identified. Assumption 1.6 is

the conditional moment bound for the variables (notice that 1.4 implies the conditional

moment bounds for both errors terms). Assumption 1.7 requires the threshold variable

to have a continuous distribution, and essentially requires the variance conditional on the

threshold variable to be continuous at γ0, which excludes regime-dependent heteroskedas-

ticity. Assumption 1.8 is the small threshold effect as in Hansen (2000). Assumption 1.9

requires the threshold variable qit be continuously distributed with positive support at

the threshold γ0, and the variance is finite, also excluding the possibility that qit = γ0

for t = 1, . . . , T . Assumption 1.8 is a conventional full-rank condition that excludes

multi-collinearity, restricting Γ to a proper subset of the support of qit.

6.2 Threshold Estimate

In the context of the Conditional Least Squares Estimation (CLSE) of a threshold autore-

gression, Chan (1993) developed the strong consistency of the threshold parameter while

Hansen (2000) shows the consistency of it by using the “small threshold effect” assump-

tion. In the context of Maximum Likelihood Estimation, Qian (1998) obtained results

similar to those of Chan (1993) in the same model under some regularity conditions on the

error density, not necessarily Gaussian. Samia and Chan (2010) derived consistency of the
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threshold parameter under the assumption that the conditional probability distribution

of the response variable belongs to an exponential family.8

In all these models the errors are independent of the threshold variable as well as in our

model. They are also independent (mean-independent) of the regressors, even though we

have the same environment in the structural model. In the model in first differences we

introduce a correlation between the first difference of the errors and the first difference of

the lagged variable due to the dynamic nature of the model. Then a different technique

will be developed in order to prove the consistency of the threshold parameter. For

simplicity we consider the model without exogenous regressors in the proof of theorems;

the proofs can be extended for the model with exogenous regressors, but at cost of a more

cumbersome notation.

Theorem 1. Under Assumption 1, the Maximum Likelihood Estimator of γ obtained by

minimizing the criterion (12), γ̂, is such that γ̂ →p γ0, where γ0 is the true value.

In the context of threshold autoregression estimation, Chan (1993) establishes the

limiting distribution of the threshold parameter estimator. He shows it converges to a

functional of a compound Poisson process at a rate n. The distribution is too complicated

to be used in practice due to the dependence on the nuisance parameters (including the

marginal distribution of the threshold variable and all the regression coefficients). Hansen

(2000) developed an asymptotic distribution for the threshold parameter estimate based

on the small threshold effect assumption, in which the threshold model becomes the linear

model asymptotically. The limiting distribution converges to a functional of a two-sided

Brownian motion process at a rate n1−2α. The distribution does not depend on the

nuisance parameters; thus, the distribution can be available in a simple closed form.

Hence, we adopt Hansen’s (2000) approach in our setting. A two sided Brownian

motion W (ν) on the real line is defined as

W (ν) =


W1(−ν), ν < 0,

0, ν = 0,

W2(ν), ν > 0,

(29)

where W1(ν) and W2(ν) are independent standard Brownian motions on [0,∞).

Theorem 2. Under Assumption 1, n1−2α(γ̂ − γ0) →d $U , where $ = V (γ0)
D(γ0)2

and U =

argmax−∞<ν<∞
[
−1

2
|ν|+W (ν)

]
.

8Yu (2012) discusses the consistency and asymptotic distribution of the left-endpoint maximum like-
lihood estimator and the middle-point maximum likelihood estimator. Seo and Linton (2007) developed
another different approach by smoothing the indicator function and proposed a Smoothed Least Squares
Estimation (SLSE) in the regression context.
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The distribution function for U is known (See Hansen (2000) for the exact form) and

the asymptotic distribution in Theorem 2 is scaled by the ratio $. This asymptotic distri-

bution yields a computationally attractive method for constructing confidence intervals,

and is described in detail in Hansen (1997) in the context of the threshold autoregression

and in Hansen (1999) to the threshold panel data models.

Basically, Hansen (2000) argues the best ways to form confidence intervals for the

threshold is to form the no-rejection region using the likelihood ratio statistic for testing

on γ̂. To test hypothesis H0 : γ = γ0, the likelihood ratio test is to reject large values of

LR(γ0) where

LR(γ) = nT
Sn(γ)− Sn(γ̂)

Sn(γ̂)
, (30)

where Sn(γ) =
∑n

i=1 ∆ûi(γ)′Ω?−1∆ûi(γ) is the minimum distance estimator. Hansen

(1996) shows the LR(γ) converges in distribution to ξ as n → ∞, where ξ is a random

variable with distribution function P (ξ ≤ z) = (1 − exp(−z/2))2. Then, the asymptotic

distribution of the likelihood ratio statistic is non-standard, yet free of nuisance parame-

ters. Since the asymptotic distribution is pivotal, it may be used to form valid asymptotic

confidence intervals. Furthermore, the distribution function ξ has the inverse

c(a) = −2 ln
(
1−
√

1− a
)
, (31)

where a is the significance level. To form an asymptotic confidence interval for γ, the “no-

rejection region” of confidence level 1−a is the set of values of γ, such that LR(γ) ≤ c(a),

where LR(γ) is defined in (30) and c(a) is defined in (31). This is easiest to find by

plotting LR(γ) against γ and drawing a flat line at c(a).

6.3 Confidence Region Construction in Multiple Thresholds

Bai (1997) showed (for the analogous case of change-point models) that the refinement

estimators have the same asymptotic distributions as the threshold estimate in a sin-

gle threshold model. Upon that finding, Hansen (1999) suggests that we can construct

confidence intervals in the same way as in the threshold estimate in a single threshold

model.

For γ̂r2 let

LRr
2(γ) = nT

Snr2(γ)− Snr2(γ̂r2)

Snr2(γ̂
r
2)

, (32)

where the minimum distance estimator Snr2(γ) is defined equivalently to (21), that is
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Snr2(γ2) =

{
Sn(γ̂1, γ2) if γ̂1 < γ2

Sn(γ2, γ̂1) if γ2 < γ̂1
(33)

and Sn(γ) =
∑n

i=1 ∆ûi(γ)′Ω?−1∆ûi(γ).

For γ̂r1 let

LRr
1(γ) = nT

Snr1(γ)− Snr1(γ̂r1)

Sn1(γ̂r1)
, (34)

where the minimum distance estimator Snr1(γ) is defined equivalently to (23), that is

Snr1(γ1) =

{
Sn(γ1, γ̂

r
2) if γ1 < γ̂r2

Sn(γ̂r2, γ1) if γ̂r2 < γ1
(35)

The asymptotic (1− a) percent confidence intervals for γ1 and γ2 are the set of values

of γ such that LRr
2(γ) ≤ c(a) and LRr

1(γ) ≤ c(a), respectively.

6.4 Slope Estimates

The likelihood function (7) or (8) is well defined; it depends on a fixed number of parame-

ters, and satisfies the usual regularity conditions conditional on γ. Therefore, the MLE of

(8) is consistent and asymptotically normally distributed, when n tends to infinity when

T is fixed. In the next theorem, we state the slope parameters are consistent at the true

γ0.

Theorem 3. Under Assumption 1, the Maximum Likelihood Estimators β̂ = (β̂1 β̂2)
′ are

consistent. That is, β̂ →p β0, where β0 = (β10 β20)
′ is the true value of β.

In the next theorem we state the asymptotic distribution of the ML slope estimators

is a normal distribution. Let

F (γ0) = −E∂
2 lnL

∂β∂β′

= E
(
∆y◦i,−1(γ0)

′Ω−1∆y◦i,−1(γ0)
)

=
1

σ2
u

E
(
∆y◦i,−1(γ0)

′Ω?−1∆y◦i,−1(γ0)
)
. (36)

Theorem 4. Under Assumption 1,
√
n(β̂ − β)→d N(0, F−1(γ0)), where β = (β1 β2)

′.
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7 Monte Carlo Experiments

7.1 Models

We consider two models: one without exogenous regressors and a second with exogenous

regressors. Also, we consider in the second model only one exogenous variable, which for

simplicity we consider to be the same as the threshold variable. Then we use the following

models to generate yit,

yit = αi + β1yit−11(qit ≤ γ) + β2yit−11(qit > γ) + uit, (37)

and

yit = αi + (β1yit−1 + θ1qit)1(qit ≤ γ) + (β2yit−1 + θ2qit)1(qit > γ) + uit. (38)

We generate the variables as qit ∼ N(1/2, 1) and uit ∼ N(0, 1). The variables are

generated from t = −10 to t = T , and then we discard the first 10 observations by using

the observations t = 0 through T for estimation. In generating yit we also set yi,−10 = 0.

7.2 Individual Fixed Effect Construction

For each model, we consider 3 designs to construct the individual fixed effect correlated

with the exogenous threshold variable; each design considers different sets of the structural

parameters.

Design 1

The individual effects, αi, are generated as

αi = ei + (T + 11)−1
T∑

t=−10

qit, ei ∼ N(2, 3),

and consider these structural parameters (γ, β1, θ1, β2, θ2)=(0, 0.5, 1.5, -0.5, -1.5). Notice

that for the model without exogenous regressors we use only the set of parameters (γ, β1,

β2).

Design 2

The individual effects, αi, are generated as

23



αi = ei + (T + 11)−1
T∑

t=−10

[−0.7qit1(qit ≤ γ) + 0.4qit1(qit > γ)], ei ∼ N(2, 3),

and consider these structural parameters (γ, β1, θ1, β2, θ2)=(-0.5, -0.3, 1, -0.7, -1.2).

Design 3

The individual effects, αi, are generated as

αi = ei + (T + 11)−1
T∑

t=−10

[−0.3qit1(qit ≤ γ)− 0.2qit1(qit > γ)], ei ∼ N(2, 3),

and consider these structural parameters (γ, β1, θ1, β2, θ2)=(1, -0.6, -1, 0.7, 0.5).

The three above designs of generating αi ensures that the random effects slope estimates

are inconsistent because of the correlation that exists between the individual specific

effects and the explanatory variables qit.

7.3 Simulation results

Table 1 presents the performance of the estimators where model a refers to the model

without exogenous regressors (37), and model b refers to the model with exogenous regres-

sors (38). The bias and root mean square error of the estimators γ, β1, θ1, β2 and θ2 for

different choices of number of individuals n and a fixed time period T = 4 are shown. This

table shows that as n increases the bias of the threshold parameter γ decreases quickly;

also, the bias of the slope parameters β1, θ1, β2 and θ2 decreases.

Similarly, this table shows in general that as the number of individuals n increases,

the Root Mean Square Error (MRSE) of all parameter estimates decreases. Notice this

measure considers the second moments of the data.

8 Inflation and Long-Run Economic Growth

In the long-run, the literature has empathized that nominal variables do not have effects

on real variables, i.e., inflation does not have effects on economic growth. Nevertheless,

the empirical literature presents evidence on the negative inflation-growth relationship

for periods of high inflation. Dornbusch and Fischer (1993) present a country case study
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Table 1: Performance of estimators
Bias of estimators Root mean square error

T = 4 T = 4
Model Design Coefficient n = 50 n = 500 n = 50 n = 500
a 1 γ = 0.0 -0.006 0.000 0.027 0.002

β1 = 0.5 -0.002 0.000 0.055 0.018
β2 = -0.5 0.001 -0.001 0.039 0.012

a 2 γ = -0.5 0.014 0.000 0.134 0.013
β1 = -0.3 0.008 0.002 0.099 0.028
β2 = -0.7 0.001 0.000 0.057 0.017

a 3 γ = 1.0 -0.006 0.000 0.025 0.001
β1 = -0.6 -0.002 0.000 0.033 0.011
β2 = 0.7 -0.001 -0.001 0.056 0.017

b 1 γ = 0.0 -0.007 0.000 0.031 0.002
β1 = 0.5 -0.002 0.000 0.055 0.016
θ1 = 1.5 0.009 0.002 0.234 0.071
β2 = -0.5 0.001 -0.001 0.037 0.010
θ2 = -1.5 0.001 -0.001 0.123 0.035

b 2 γ = -0.5 0.022 0.000 0.170 0.009
β1 = -0.3 -0.003 0.001 0.099 0.024
θ1 = 1.0 0.020 0.004 0.233 0.061
β2 = -0.7 0.000 0.000 0.046 0.012
θ2 = -1.2 -0.001 -0.001 0.114 0.032

b 3 γ = 1.0 -0.007 0.000 0.031 0.002
β1 = -0.6 -0.002 0.000 0.055 0.018
θ1 = -1.0 0.009 0.002 0.234 0.071
β2 = 0.7 0.001 -0.001 0.037 0.011
θ2 = 0.5 0.001 0.000 0.123 0.040

Note: All results are based on 1000 replications.
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in which the range 15 to 30 percent defines a regime of moderate inflation. Bruno and

Easterly (1998) find that the negative correlation is robust only if countries with high

inflation are included and propose that high inflation occurs when inflation is above 40

percent in annual terms.

Another group of the empirical literature focuses on a formal test for these breaking

points that finally defines the threshold under which inflation has effects on growth. Khan

and Senhadji (2001) estimate a threshold level of inflation of 1 percent for industrialized

countries and 11 percent in a sample of developing countries. Using nonparametric meth-

ods and the specification of Khan and Senhadji (2001), Vaona and Schiavo (2007) find a

threshold inflation level around 12 percent.

We estimate a threshold level of inflation above which inflation significantly slows down

economic growth. The results are based on a dynamic panel threshold model developed

in this work that extends the static version of Hansen (1999). We argue that the dynamic

properties of our estimations allow us to capture long-run components in the behavior of

the variables under analysis, since all economic growth models exhibit dynamics.

8.1 Data and Specification

The period of study spans from 1961 to 2000, over five-year average periods (in order to

avoid capturing relations of cyclical type between involved variables) for a sample of 72

countries. The data corresponds primarily to the data in the work of Chang, Kaltani and

Loayza (2009). See Chang et al. (2009) for details on the constructions and definitions of

the variables used in the estimation analysis.

The database used in Chang et al. (2009) include 82 countries, but the method devel-

oped in this work assumes balanced panel data; for that reason, the panel in the estima-

tion analysis has 72 countries, since some countries in Chang et al.’s (2009) database

have missing values. The countries that are considered in this estimation are: Ar-

gentina, Australia, Austria, Belgium, Burkina Faso, Bolivia, Brazil, Canada, Switzer-

land, Chile, Cote d’Ivoire, Rep. Congo, Colombia, Costa Rica, Denmark, Dominican

Republic, Ecuador, Egypt, Spain, Finland, France, United Kingdom, Ghana, Gambia,

Greece, Guatemala, Honduras, Indonesia, India, Ireland, Iran, Iceland, Israel, Italy, Ja-

maica, Japan, Kenya, Rep Korea, Sri Lanka, Morocco, Madagascar, Mexico, Malaysia,

Niger, Nigeria, Nicaragua, Netherlands, Norway, New Zealand, Pakistan, Panama, Peru,

Philippines, Portugal, Paraguay, Senegal, Singapore, Sierra Leone, El Salvador, Sweden,

Syrian Arab Republic, Togo, Thailand, Trinidad and Tobago, Tunisia, Turkey, Uruguay,

United States, Venezuela, South Africa, Dem. Rep. Congo and Zambia.

In order to consider the threshold level of inflation effects on economic growth, we
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estimate the following variation of an economic growth model with a threshold variable,

yit − yit−1 = αi + (β1yit−1 + θ1 log(xit))1(xit ≤ γ) + (β2yit−1 + θ2 log(xit))1(xit > γ)

+ π′zit + uit, (39)

where yit is the log of real Gross Domestic Product (GDP) per capita, xit is the inflation

rate; αi is an unobserved country specific-effect; γ is a threshold level of inflation rate;

1(.) is an indicator variable; zit is a set of other determinants of economic growth; i refers

to country; and t refers to time period.

As is standard in the literature, the dependent variable is the average rate of real per

capita GDP growth over 5 years (i.e., the log difference of GDP per capita normalized

by the length of the period). The equation is dynamic in that it includes the level of

GDP per capita at the previous period in the set of explanatory variables. We include

the previous period of the level of GDP per capita to account for transitional convergence

because one of the main implications of the neoclassical growth model and indeed of all

models is that exhibit transitional dynamics in which the growth rate relies on the initial

position of the economy. The hypothesis of transitional convergence posits that in ceteris

paribus, poor countries may grow faster than rich ones due to decreasing returns to scale

in output. To account for the initial position of the economy we include the level of GDP

per capita at the previous period.

All the explanatory variables are in logarithms, including the level of inflation as ex-

planatory variable in equation (39). However, the log function does not exist for negative

inflation rates. Thus, following Khan and Senhadji (2001) we use the semi-log transform;

that is, log(xit) = xit − 1 if xit ≤ 1 and it is the usual natural logarithm when xit > 1.

We allow having threshold effects in the transitional convergence variable, since the

conditional convergence hypothesis suggests countries converge to their own steady state.

This hypothesis argues that differences in economic performances are caused by differ-

ences in both infrastructure and institutions. Acemoglu et al. (2003) state that countries

pursuing poor macroeconomic policies (high inflation, large budget deficits, and a mis-

aligned exchange rate) also have weak institutions. Thus, the periods of inflation crises

reflect a country’s poor institutions, and then it converges to a different steady state.

A great number of economic and social variables can be posited as determinants of

economic growth. Following Loayza et al. (2005) the other determinants of economic

growth that we consider are financial depth, governance, public infrastructure, human

capital investment, trade openness, and economic instability.
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8.2 Estimation and Inference Results

We estimate via maximum likelihood threshold model (39), and we add period-specific

dummy variables.

Threshold parameter estimation

The point estimate of the threshold and its asymptotic 99 percent confidence interval

are reported in Table 2. The estimate of the threshold level of inflation parameter is 13

percent; thus, the two classes of regimes indicated by the point estimate are those with

“high inflation” for inflation rates higher than 13 percent, and “low inflation” for inflation

rates lower than 13 percent.

Table 2: Asymptotic confidence interval in threshold model

Threshold 99% confidence interval 99% confidence interval
estimate (%) lower bound upper bound

γ̂ 13 12 47
Note: Asymptotic critical values are reported in Hansen (2000).

The asymptotic confidence interval for the threshold level of inflation is not tight, indi-

cating an important uncertainty about the nature of this division. This is not surprising

since Khan and Senhadji (2001) documented many studies in which the threshold level

of the inflation rate ranges from 1 percent to 40 percent using different specifications and

samples.

More information can be learned about the threshold estimates from plots of the con-

centrated likelihood ratio function LR(γ). Figure 1 shows the likelihood ratio function,

which is computed when estimating a threshold model. The threshold estimate is the

point where the LR(γ) equals zero, which occurs at γ̂ = 13 percent.

Figure 1 suggests there seems to be a second threshold around 45 percent. Bruno

and Easterly (1998) found that the GDP per capita growth decreases dramatically for

inflation rates above 40 percent, and they defined inflation above that value as periods

of inflation crisis. They do not claim great precision for the 40 percent breakpoint, since

there is some arbitrariness in the choice of a threshold.

Slope parameters estimation

Table 3 shows the estimation results of equation (39) for the worldwide sample. The

coefficients of primary interest are those on the inflation rate. The point estimates suggest

that inflation rates lower than 13 percent have no effect on GDP growth, as the classical
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Figure 1: Confidence interval construction in threshold model
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dichotomy hypothesis in the long-run suggests. However, inflation rates higher than 13

percent have a negative effect on economic growth at a 1 percent level of significance. The

parameter estimate is different from zero at that significance level.

At a level of 1 percent of significance, the initial GDP per capita (as transitional

convergence control, because less favored countries often grow faster due to a higher capital

return) is significant and negative in both regimes as the neoclassic model predicts.

Trade openness has the expected positive effect on GDP growth because countries take

advantage of the international competition and the international specialization. Public

infrastructure has a positive effect on economic growth, indicating a significant input of

the production function, or it increases total factor productivity by making other economic

sectors more competitive.

Financial depth has the expected positive sign. This would mean that a better finan-

cial development would stimulate even higher development in the long term because it

would facilitate risk diversification in the financial market, identify profitable investment

projects, and mobilize savings; however, it is not statistically significant. Governance has

a positive impact on GDP growth, indicating that a higher institutional quality of govern-

ment would increase GDP growth, nevertheless, this variable is not significant. Similarly,

the coefficient of human capital investment is not statistically significant.

Economic instability, as predicted, has a negative effect on economic growth. This
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Table 3: Estimation results in threshold model
Dependent variable: GDP per capita growth

Explanatory variables: Estimates ML SE White SE

Inflation rate (Inflation rate < 13%) 0.05 0.16 0.18
(Average of annual inflation rate, in semi-logs)

Inflation rate (Inflation rate > 13%) -0.92 0.25 0.35
(Average of annual inflation rate, in semi-logs)

Transitional Convergence (Inflation rate < 13%) -3.60 0.47 0.36
(GDP per capita in previous period, in logs)

Transitional Convergence (Inflation rate > 13%) -3.35 0.49 0.41
(GDP per capita in previous period, in logs)

Governance 0.19 1.15 0.99
(Index from ICRG, 0 - 1)

Trade Openness 1.10 0.36 0.48
(Structure-adjusted trade volume/GDP, in logs)

Human capital investment -0.75 0.40 0.61
(secondary enrollment, in logs)

Financial Depth 0.38 0.26 0.22
(Private domestic credit/GDP, in logs)

Public Infrastructure 1.00 0.32 0.39
(Main telephone lines per capita, in logs)

Economic Instability -0.31 0.04 0.09
(St.Dev. of the annual GDP per capita growth)

66-70 period shift 0.68 0.37 0.41
71-75 period shift 0.83 0.28 0.32
76-80 period shift 0.59 0.22 0.30
81-85 period shift -0.89 0.21 0.33
86-90 period shift 0.05 0.23 0.25
91-95 period shift -0.55 0.26 0.32
96-00 period shift -0.71 0.36 0.35

Number of countries (n) 72
Number of periods, five-year average (T) 8
Observations used in the estimation (n*(T-1)) 504
Negative log-likelihood 999.9
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leads one to conclude that higher macroeconomic instability has a negative effect on the

per capita GDP growth rate.

The period shifts had a negative effect on economic growth in the 1980s and 1990s,

indicating that the international trend in economic growth experienced a declining trend

from 1960 to 2000, resulting in less favorable external conditions in the 1980s and 1990s

than in the previous decades.

9 Conclusion and Possible Extensions

In this paper we introduced econometric techniques for dynamic panel threshold models.

Basically, we follow the approach of Hsiao et al. (2002) in the dynamic panel linear model,

where we estimate a dynamic panel threshold model in differences using a maximum

likelihood estimator.

We show the Maximum Likelihood estimation of the threshold parameter is consistent

and converges to a double-sided standard Brownian motion distribution as in Hansen

(2000) when the number of individuals grows to infinite for a fixed time period.

Since the likelihood function proposed is well defined and satisfies the usual regularity

conditions at a known γ, then we show also the Maximum Likelihood estimation of the

slope parameters are consistent and converge to a normal distribution when the number

of individuals grows to infinite for a fixed time period.

Also, we evaluate the performance of the estimators in a Monte Carlo simulation for

1000 replications of the data; for a small sample size of number of individuals n = 50

and time periods T = 4, the estimators show a relatively small bias. When we increase

the number of individuals to n = 500 for the same time periods T = 4, the estimators

show practically zero bias. The RMSE also decreases quickly as the number of individuals

increases for a fixed time period.

We apply the method to a sample of 72 countries and eight periods of five-year averages

from 1961 to 2000, where the threshold level of inflation is estimated. We find a threshold

inflation level at 13 percent. This result suggests that there are two regimes: (i) “high

inflation” for those countries with an inflation rate higher than 13 percent; and (ii) “low

inflation” for countries with inflation rates lower than 13 percent. Countries with inflation

rates below 13 percent have no effects on long-run economic growth, while countries with

inflation rates above such threshold have negative effects.

Several extensions would be desirable. One important extension is to develop another

technique to allow for the lag of the dependent variable to be the threshold variable. Other

extensions include allowing for heteroskedasticity, endogenous variables, random effects,
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non-balanced data, testing threshold effects, testing the number of thresholds, and testing

random against fixed effects. Also, it would be interesting to compare our results with

alternative approximations based on smoothing the indicator variable 1(qit ≤ γ). These

would be interesting subjects for future research.
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Appendix A. Derivation of the Maximum Likelihood

Function

In the linear case we can derive directly the conditional likelihood function since the regres-

sor in the model in difference is the lag of the dependent variable, but in the differentiated

panel threshold model that is not exactly the case.

Let Fit denote the σ-algebra generated by yis−1 and xi for s ≤ t; and Fi0 is the σ-algebra

generated by xi. Thus, The ML function is given by

n∏
i=1

T∏
t=1

f(∆yit|Fit−1), (A.1)

where f(∆yit|Fit−1) for t = 2, 3, . . . , T are fully specified by (3) in the model without

exogenous regressors and by (15) in the model with exogenous regressors, and f(∆yi1|Fi0)
can be derived by (4) and (16) in the model without and with exogenous regressors,

respectively.

Using the notation of chapter 3 and 4, the ML function (A.1) is equivalent to

n∏
i=1

f(∆yi|xi), (A.2)

where we can write the joint density of ∆yi given xi as

f(∆yi|xi) = f(∆yiT |∆yiT−1, . . . ,∆yi1, xi)f(∆yiT−1|∆yiT−2, . . . ,∆yi1, xi) . . .

f(∆yi2|∆yi1, xi)f(∆yi1|xi). (A.3)

All the terms in (A.3) can be derived using (3) and (4) in the model without exogenous

regressors and using (15) and (16) in the model with exogenous regressors.

Appendix B. Second-Order Derivatives of the Log-

Likelihood Function

In this appendix we provide the second-order derivatives of function (8) considering the

model (1). We can redefine the parameters and the matrix ∆yi,−1(γ) for the model with

exogenous regressors (13) and then we can get analogous expressions.

The second-derivatives are:
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∂2 lnL

∂βδ∂β′δ
= − 1

σ2
u

n∑
i=1

[∆yi,−1(γ)′Ω?−1∆yi,−1(γ)], (B.1)

∂2 lnL

∂βδ∂σ2
u

= − 1

σ4
u

n∑
i=1

[∆yi,−1(γ)′Ω?−1(∆yi −∆yi,−1(γ)βδ)], (B.2)

∂2 lnL

∂βδ∂ω
= − 1

σ2
u[1 + T (ω − 1)]2

n∑
i=1

[∆yi,−1(γ)′Φ(∆yi −∆yi,−1(γ)βδ)], (B.3)

∂2 lnL

∂σ2
u∂σ

2
u

=
nT

2σ4
u

− 1

σ6
u

n∑
i=1

[(∆yi −∆yi,−1(γ)βδ)
′Ω?−1(∆yi −∆yi,−1(γ)βδ)], (B.4)

∂ lnL

∂ω∂ω
=

nT 2

2[1 + T (ω − 1)]2
− 1

σ2
u[1 + T (ω − 1)]3

n∑
i=1

[(∆yi −∆yi,−1(γ)βδ)
′Φ(∆yi −∆yi,−1(γ)βδ)], (B.5)

and

∂ lnL

∂ω∂σ2
u

= − 1

σ4
u[1 + T (ω − 1)]2

n∑
i=1

[(∆yi −∆yi,−1(γ)βδ)
′Φ(∆yi −∆yi,−1(γ)βδ)]. (B.6)

Appendix C. Proof of Theorems

Lemma 1.

E
(
C ′∆y∗i,−1(γ)′Ω?−1∆ui

)
= 0 for all γ ∈ Γ. (C.1)

Proof. Recall

Ω = σ2
u



ω −1 0 . . . 0

−1 2 −1

0 −1 2
...

. . . −1

0 −1 2


= σ2

uΩ
?,

where ω = σ2
υ/σ

2
u.
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We note that the only unknown element of Ω? is ω. Then following to Hsiao et al.

(2002), let

H =



a0 0 0 . . . 0

a0 a1 0 . . .
...

a0 a1 a2 . . .
...

...
...

...
...

...

a0 a1 a2 . . . aT−1


, (C.2)

where as+1− 2as + as−1 = 0, s = 1, 2, . . . , T . With a0 = 1, a1 = ω, which has the solution

as = 1 + s(ω − 1) for s = 1, 2, . . . , T . Then

HΩ?H ′ = diag(a0a1, a1a2, . . . , aT−1aT ) = Λ. (C.3)

Since Ω > 0 then Ω?−1 = σ2
uΩ
−1 = H ′Λ−1H and then there is a unique root Λ−1/2H

which is also positive definite Λ−1/2H > 0. Then (C.1) can be written in the form

E

(
c′

T∑
t=1

(atat−1)
−11(qi1 ≤ γ)

(
υi1 +

t∑
s=2

as−1∆uis

)
+

c′
T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∆y
∗
is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

))
. (C.4)

The first term of (C.4) is the threshold variable, by assumption this variable is exoge-

nous with respect to υi1 and uit for all t. Then we proof that for the second term.

Let ∆1(qis ≤ γ) = 1(qis ≤ γ)−1(qis−1 ≤ γ) and ∆P (qis ≤ γ) = P (qis ≤ γ)−P (qis−1 ≤
γ). And compute the expectations
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E [∆y∗is(γ)υi1]



= σ2
υP (qi2 ≤ γ) for s = 1.

= β1σ
2
υP (qi2 ≤ γ)P (qi3 ≤ γ) + β2σ

2
υP (qi2 > γ)P (qi3 ≤ γ)− σ2

uP (qi3 ≤ γ)

+ σ2
υ∆P (qi3 ≤ γ) for s = 2.

= β1

(
E
[
∆y∗is−1(γ)υi1

]
P (qis+1 ≤ γ) +

s−2∑
j=1

E
[
∆y∗ij(γ)υi1

]
∆P (qis+1 ≤ γ)

)

+ β2

(
E
[
∆y+is−1(γ)υi1

]
P (qis+1 ≤ γ) +

s−2∑
j=1

E
[
∆y+ij(γ)υi1

]
∆P (qis+1 ≤ γ)

)
(−σ2

u + σ2
υ)∆P (qis+1 ≤ γ) for s = 3, . . . , T.

(C.5)

E [∆y∗is(γ)∆uis] = E [(yis1(qis+1 ≤ γ)− yis−11(qis ≤ γ))∆uis]

= E [(∆yis1(qis+1 ≤ γ) + yis−1∆1(qis+1 ≤ γ))∆uis]

= E
[
(β1∆y

∗
is−1(γ) + β2∆y

+
is−1(γ) + ∆uis)1(qis+1 ≤ γ)∆uis

+yis−1∆1(qis+1 ≤ γ)∆uis]

= −β1σ2
uP (qis ≤ γ)P (qis+1 ≤ γ)− β2σ2

uP (qis > γ))P (qis+1 ≤ γ))

+σ2
uP (qis+1 ≤ γ) + σ2

uP (qis ≤ γ), (C.6)

E [∆y∗is(γ)∆uis+1] = E [(yis1(qis+1 ≤ γ)− yis−11(qis ≤ γ))∆uis+1]

= E [(∆yis1(qis+1 ≤ γ) + yis−1∆1(qis+1 ≤ γ))∆uis+1]

= E
[
(β1∆y

∗
is−1(γ) + β2∆y

+
is−1(γ) + ∆uis)1(qis+1 ≤ γ)∆uis+1

+yis−1∆1(qis+1 ≤ γ)∆uis+1]

= −σ2
uP (qis+1 ≤ γ), (C.7)

and

E [∆y∗is(γ)∆uis+j] = 0 for j = 2, . . . , T. (C.8)

Notice that it is enough to show that for any γ

E

[(
t−1∑
s=1

as∆y
∗
is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

)]
= 0. (C.9)
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The analytic form of (C.9) is very complicated, then we proof the lemma by induction.

Let

E[At] = E

[(
t−1∑
s=1

as∆y
∗
is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

)]
. (C.10)

Using (C.8), we can write

E[At] = E[At−1] + at−1E
[
∆y∗it−1(γ)υi1

]
+ at−1

t∑
s=2

as−1
[
∆y∗it−1(γ)∆uis

]
, (C.11)

if E[At−1] = 0, then at−1E
[
∆y∗it−1(γ)υi1

]
+ at−1

∑t
s=2 as−1

[
∆y∗it−1(γ)∆uis

]
must be

zero. Thus, by using (C.5), (C.6), (C.7) and (C.8) for t = 2

E[A2] = a1E [∆y∗i1(γ)υi1] + a21E [∆y∗i1(γ)∆ui2]

= a1σ
2
υP (qi2 ≤ γ)− a21σ2

uP (qi2 ≤ γ)

= a21σ
2
uP (qi2 ≤ γ)− a21σ2

uP (qi2 ≤ γ)

= 0, (C.12)

for t = 3

E[A3] = a2E [∆y∗i2(γ)υi1] + a2(a1E [∆y∗i2(γ)∆ui2] + a2E [∆y∗i2(γ)∆ui3])

= a2β1σ
2
υP (qi2 ≤ γ)P (qi3 ≤ γ) + a2β2σ

2
υP (qi2 > γ)P (qi3 ≤ γ)

−a2σ2
uP (qi3 ≤ γ) + a2σ

2
υ∆P (qi3 ≤ γ)− a1a2β1σ2

uP (qi2 ≤ γ)P (qi3 ≤ γ)

−a1a2β2σ2
uP (qi2 > γ))P (qi3 ≤ γ)) + a1a2σ

2
uP (qi3 ≤ γ) + a1a2σ

2
uP (qi2 ≤ γ)

−a22σ2
uP (qi3 ≤ γ)

= (−1 + 2a1 − a2)a2σ2
uP (qi3 ≤ γ)

= 0, (C.13)

For t = 4,
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E[A4] = a3E [∆y∗i3(γ)υi1] + a3(a1E [∆y∗i3(γ)∆ui2] + a2E [∆y∗i3(γ)∆ui3] +

= a3E [∆y∗i3(γ)∆ui4])

= {(−1 + 2a1 − a2) [(β1P (qi3 ≤ γ) + β2P (qi3 > γ))P (qi4 ≤ γ) + ∆P (qi4 ≤ γ)]

+(−a1 + 2a2 − a3)P (qi4 ≤ γ)}a3σ2
u

= 0. (C.14)

We now know that it is true for at least t = 2 by (C.12), then we can assume that it is

true up to some fixed number j, which is at least 3, by proving that it is true for j+ 1 by

(C.13); then it is true for at least t = 3. Thus, now j = 3, but since the statement is true

for j + 1, t is at least 4 (proved in (C.14)). In this manner, we can repeat this pattern

indefinitely. Therefore, the statement holds for t = 2, . . . , T for all γ.

Define

Jn(γ) =
1√
n

n∑
i=1

C ′∆y∗i,−1(γ)′Ω?−1∆ui. (C.15)

Let “⇒” denote weak convergence with respect to the uniform metric.

Lemma 2. Jn(γ) ⇒ J(γ), a mean zero Gaussian process with almost surely continuous

sample paths.

Proof. For each γ and for a fix t, ∆y∗i,−1(γ) is iid across i. So Jn(γ) converges pointwise

to a Gaussian distribution by the Central Limit Theorem. This can be extended to any

finite collection of γ to yield a convergence of the finite dimensional distributions. The

mean-zero for each γ is guaranteed by Lemma 1.

Then by using Lemma A.3 and Lemma A.4 of Hansen (2000), Jn(γ) is tight. Therefore

Jn(γ)⇒ J(γ).

Lemma 3. Uniform strong law

If assumptions 1 holds, then

sup
γ∈R

∣∣∣∣∣ 1n
n∑
i=1

∆y∗i,−1(γ)− E(∆y∗i,−1(γ))

∣∣∣∣∣→a.s. 0 (C.16)

where |.| denotes the absolute value and →a.s. denotes convergence almost surely.
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Proof. For a fix t, y∗i,−1(γ) is iid across i, |y∗i,−1(γ)| <∞ by assumption 1.6 and xit have a

continuous distribution by assumption 1.7. These establishes the conditions of Lemma 1

of Hansen (1996). Hence following the same argument it can proved the uniform strong

law.

If the asymptotic theory is when T grows to infinity, and since the process yit is not

iid over t, we require to assume that yit is stationary and ergodic, sufficient conditions

for the stationarity of yit are |β1| < 1 and |β2| < 1 (see Enders and Granger (1998) and

Caner and Hansen (2001)).

Proof of Theorem 1. Notice that by Lemma 3, uniformly in γ ∈ Γ

1

n

n∑
i=1

C ′∆y∗i,−1(γ)′Ω?−1∆y∗i,−1(γ)C →p M(γ), (C.17)

and

1

n

n∑
i=1

C ′∆y′i,−1Ω
?−1∆yi,−1C →p M. (C.18)

Let ∇yit−1(γ) = yit−1[1(qit ≤ γ)− 1(qit ≤ γ0)].

The equation (1) holds when γ = γ0, the true value. For values of γ 6= γ0, note that

(1) can be re-written as

yit = αi + β1yit−11(qit ≤ γ0) + β2yit−11(qit > γ0) + uit

= αi + β1yit−11(qit ≤ γ) + β2yit−11(qit > γ)

−β1yit−1[1(qit ≤ γ)− 1(qit ≤ γ0)]− β2yit−1[1(qit > γ)− 1(qit > γ0)] + uit

= αi + β1yit−11(qit ≤ γ) + β2yit−11(qit > γ)

+(β2 − β1)yit−1[1(qit ≤ γ)− 1(qit ≤ γ0)] + uit

= αi + β1yit−11(qit ≤ γ) + β2yit−11(qit > γ) + cn−α∇yit−1(γ) + uit (C.19)

The first difference transformation is linear, so can be applied to (C.19) to yield

∆yit = β1∆y
∗
it−1(γ) + β2∆y

+
it−1(γ) + cn−α∇∆y∗it−1(γ) + ∆uit. (C.20)

Similarly, (4) can be re-written as
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∆yi1 = δ11(qi1 ≤ γ0) + δ21(qi1 > γ0) + υi1

= δ1(1(qi1 ≤ γ) + δ21(qi1 > γ)

−δ1[1(qi1 ≤ γ)− 1(qi1 ≤ γ0)]− δ2[1(qi1 > γ)− 1(qi1 > γ0)] + υi1

= δ11(qi1 ≤ γ) + δ21(qi1 > γ) + (δ2 − δ1)[1(qi1 ≤ γ)− 1(qi1 ≤ γ0)] + υi1

= δ11(qi1 ≤ γ) + δ21(qi1 > γ) + cn−α∇1(qi1 ≤ γ) + υi1. (C.21)

Hansen (2000) shows that the asymptotic distribution of γ̂ is not affected by the esti-

mation of the slope parameters and the variance, then this holds in our environment as

well. We can thus simplify matters by assuming that δ, β, σ2
u and ω are known and only

γ is estimated, thus the covariance matrix Ω∗ is known and the estimation residual (for

fixed γ) is

∆ûi(γ) = ∇∆y∗i,−1(γ)Cn−α + ∆ui, (C.22)

where ∇∆y∗i,−1(γ) is given by

∇∆y∗i,−1(γ) =



∇1(qi1 ≤ γ) 0

0 ∇∆y∗i1(γ)

0 ∇∆y∗i2(γ)
...

...

0 ∇∆y∗iT−1(γ)


.

Notice that conditional on Ω?, the MLE is asymptotically equivalent to the minimum

distance estimator Sn(γ) =
∑n

i=1 ∆ûi(γ)′Ω?−1∆ûi(γ). Then using (C.22) we have
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Sn(γ)− Sn(γ0) =
n∑
i=1

∆ûi(γ)′Ω?−1∆ûi(γ)−
n∑
i=1

∆u′iΩ
?−1∆ui

=
n∑
i=1

(∇∆y∗i,−1(γ)Cn−α + ∆ui)
′Ω?−1(∇∆y∗i,−1(γ)Cn−α + ∆ui)

−
n∑
i=1

∆u′iΩ
?−1∆ui

= n−2α
n∑
i=1

C ′∇∆y∗i,−1(γ)′Ω?−1∇∆y∗i,−1(γ)C

+2n−α
n∑
i=1

C ′∇∆y∗i,−1(γ)′Ω?−1∆ui (C.23)

Using Lemma 2, we see that uniformly over γ ∈ Γ

n2α−1(Sn(γ)− Sn(γ0)) = n−1
n∑
i=1

C ′∇∆y∗i,−1(γ)′Ω?−1∇∆y∗i,−1(γ)C + op(1) (C.24)

Then, using Lemma 3 we calculate the uniformly over γ ∈ Γ

n2α−1(Sn(γ)− Sn(γ0)) →p (M(γ)′M(γ) +M(γ0)
′M(γ0)− 2M(γ)′M(γ0))

≡ k(γ).

Note that k(γ) is a continuous non-negative real function which achieves its unique

minimum of 0 at γ0. For γ ≥ γ0, ∆y∗i,−1(γ)′Ω?−1∆y∗i,−1(γ0) = ∆y∗i,−1(γ0)
′Ω?−1∆y∗i,−1(γ0).

Thus, uniformly over γ ∈ [γ0, γ̄]

n2α−1(Sn(γ0)− Sn(γ)) →p (M(γ)′M(γ)−M(γ0)
′M(γ0))

≡ k1(γ).

The derivative of k1(γ) with respect to γ is given by

d

dγ
k1(γ) = (M(γ)′D(γ) +D(γ)′M(γ)) ≥ 0. (C.25)

Thus, k1(γ) is continuous and weakly increasing on [γ0, γ̄]. Additionally, by assumption
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(10)

d

dγ
k1(γ0) = (M(γ0)

′D(γ0) +D(γ0)
′M(γ0)) > 0. (C.26)

Hence, k(γ) is uniquely minimized at γ0 on [γ0, γ̄].

Symmetrically, it can be shown that the function is uniquely minimized at γ0 on [γ, γ0].

Therefore, since γ̂ minimizes Sn(γ)− Sn(γ0), it follows that γ̂ →p γ0 (see, e.g., Theorem

2.1 of Newey and McFadden (1994)).

The proof of the theorem 2 is based on the following lemmas. Let λn = n1−2α.

Lemma 4. As n→∞, uniformly over ν ∈ [−ν, ν],

n−2α
n∑
i=1

C ′∇∆y∗i,−1(γ0 + ν/λn)′Ω?−1∇∆y∗i,−1(γ0 + ν/λn)C ⇒ D(γ0)|ν|. (C.27)

Proof. We prove (C.27) for the case ν ∈ [0, ν]. We will show that for γ = γ0 + ν/λn,

E

(
n−2α

n∑
i=1

C ′∇∆y∗i,−1(γ)′Ω?−1∇∆y∗i,−1(γ)C

)
= λnE

(
C ′∇∆y∗i,−1(γ)′Ω?−1∇∆y∗i,−1(γ)C

)
→ D(γ0)|ν|. (C.28)

Arguments similar to those in the proof of Lemma A.10 of Hansen (2000) and Lemma

A.1 of Hansen (1999) show that (C.28) implies (C.27) under the assumptions. Notice that

λnE
(
C ′∇∆y∗i,−1(γ)′Ω?−1∇∆y∗i,−1(γ)C

)
= λnc

′E

 T∑
t=1

(atat−1)
−1∇1(qi1 ≤ γ) +

T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∇∆y∗is(γ)

)2

+ 2
T∑
t=2

(atat−1)
−1∇1(qi1 ≤ γ)

t−1∑
s=1

as∇∆y∗is(γ)

)
c. (C.29)

Observe that since γ = γ0 + ν/λn → γ0,
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λnP (γ0 < qit ≤ γ) = ν
P (qit ≤ γ)− P (qit ≤ γ0)

γ − γ0
→ ft(γ0)ν (C.30)

as n→∞. Thus, the first term on the right-hand-side of (C.29),

λnc
′
T∑
t=1

(atat−1)
−1P (γ0 < qi1 ≤ γ)c = c′

T∑
t=1

(atat−1)
−1P (qi1 ≤ γ)− P (qi1 ≤ γ0)

γ − γ0
νc

→ c′
T∑
t=1

(atat−1)
−1f1(γ0)νc (C.31)

Expansion of the quadratic of the expectation of the second term on the right-hand-side

of (C.29) yields

E

(
t−1∑
s=1

as∇∆y∗is(γ)

)2

=
t−1∑
s=1

a2s
(
E(∇yis(γ))2 + E(∇yis−1(γ))2

−2E(∇yis(γ)∇yis−1(γ))

+
t−2∑
s=1

2asas+1 (E(∇yis+1(γ)∇yis(γ))

−E(∇yis+1(γ)∇yis−1(γ))− E(∇yis(γ))2

+ E(∇yis(γ)∇yis−1(γ)))

+
t−3∑
s=1

t−1∑
j=s+2

2asaj (E(∇yij(γ)∇yis(γ))

−E(∇yij(γ)∇yis−1(γ))

−E(∇yij−1(γ)∇yis(γ))

+ E(∇yij−1(γ)∇yis−1(γ))) . (C.32)

Regardless to the constants, the relevant terms in (C.32) are of the form E(∇yis(γ))2

and E(∇yis(γ)∇yik(γ)) for k 6= s. Thus,
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λnE(∇yis(γ))2 = λnE(y2is1(γ0 < qis+1 ≤ γ))

= E(y2is|γ0 < qis+1 ≤ γ)λnP (γ0 < qis+1 ≤ γ))

→ E(y2is|qis+1 = γ0)fs+1(γ0)ν. (C.33)

For the form E(∇yis(γ)∇yik(γ)), first notice that Lemma A.1 of Hansen (1999) shows

that for k 6= s,

λnE(∇yis(γ)∇yik(γ)) → 0. (C.34)

Then, by using (C.33) and (C.34) we have

λnE

(
t−1∑
s=1

as∇∆y∗is(γ)

)2

→
t−1∑
s=1

a2s
(
E(y2is|qis+1 = γ0)fs+1(γ0)ν

+E(y2is−1|qis = γ0)fs(γ0)ν
)

−
t−2∑
s=1

2asas+1E(y2is|qis+1 = γ0)fs+1(γ0)ν, (C.35)

replacing this result in the the second term of (C.29), we will get

c′
T∑
t=2

(atat−1)
−1λnE

(
t−1∑
s=1

as∇∆y∗is(γ)

)2

c

→ c′
T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

a2s
(
E(y2is|qis+1 = γ0)fs+1(γ0)

+E(y2is|qis−1 = γ0)fs(γ0)
)
−

t−2∑
s=1

2asas+1

(
E(y2is|qis+1 = γ0)fs+1(γ0)

))
νc.(C.36)

Using a similar argument of (C.34), we have for the third term on the right-hand-side

of (C.29)
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2c′
T∑
t=2

(atat−1)
−1

t−1∑
s=1

asλnE(∇∆y∗is(γ)∇1(qi1 ≤ γ))c

→ −2c′
T∑
t=2

(atat−1)
−1a1E(yi0|qi1 = γ0)f1(γ0)νc. (C.37)

Finally, by plugging (C.31), (C.36) and (C.37) in (C.29), we have

λnE
(
C ′∇∆y∗i,−1(γ)′Ω?−1∇∆y∗i,−1(γ)C

)
→ c′

[
T∑
t=1

(atat−1)
−1f1(γ0) +

T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

a2s
(
E(y2is|qis+1 = γ0)fs+1(γ0)

+E(y2is|qis−1 = γ0)fs(γ0)
)
−

t−2∑
s=1

2asas+1E(y2is|qis+1 = γ0)fs+1(γ0)

−2a1νE(yi0|qi1 = γ0)f1(γ0))] cν

= D(γ0)ν. (C.38)

A similar argument applies for the case ν ∈ [−ν, 0]. Then (C.28) is proven and hence

(C.27).

Lemma 5. As n→∞, uniformly over ν ∈ [−ν, ν],

n−α
n∑
i=1

C ′∇∆y∗i,−1(γ0 + ν/λn)′Ω?−1∆ui ⇒
√
V (γ0)W (ν). (C.39)

Proof. As the previous lemma, we prove (C.39) for the case ν ∈ [0, ν]. Let
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E

(
n−α

n∑
i=1

C ′∇∆y∗i,−1(γ)′Ω?−1∆ui

)2

= λnE
(
C ′∇∆y∗i,−1(γ)′Ω?−1∆ui

)2
= λnE

(
c′

T∑
t=1

(atat−1)
−1∇1(qi1 ≤ γ)

(
υi1 +

t∑
s=2

as−1∆uis

)

+c′
T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

))2

= λnE

(
c′

T∑
t=1

(atat−1)
−1∇1(qi1 ≤ γ)

(
υi1 +

t∑
s=2

as−1∆uis

))2

+λnE

(
c′

T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

))2

+2λnE

(
c′

T∑
t=1

(atat−1)
−1∇1(qi1 ≤ γ)

(
υi1 +

t∑
s=2

as−1∆uis

))
×(

c′
T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

))
. (C.40)

The expression (C.40) has three terms, we start with the first term,

λnE

(
c′

T∑
t=1

(atat−1)
−1∇1(qi1 ≤ γ)

(
υi1 +

t∑
s=2

as−1∆uis

))2

= c
′2

(
T∑
t=1

(atat−1)
−1E

(
υi1 +

t∑
s=2

as−1∆uis

))2

λnP (γ0 < qi1 ≤ γ)

→ c
′2

(
T∑
t=1

(atat−1)
−1E

(
υi1 +

t∑
s=2

as−1∆uis

))2

f1(γ0)ν. (C.41)

Notice that by assumption 9, for k > t, fk|t(γ0|γ0) < ∞ implies that P (γ0 ≤ qik <

γ|γ0 ≤ qit < γ) = 0 (see Hansen, 1999). We use this fact to simplify the algebra in the

proof of convergence of the second and third terms of (C.40).

The second term of (C.40) is similar to the expression (C.35) multiplied by the random

variable
(
υi1 +

∑t
s=2 as−1∆uis

)
, which is independent of qit and it does not depend on γ.

thus we have
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λnE

(
c′

T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

))2

= λnE

c′2 T∑
t=2

(atat−1)
−2

(
t−1∑
s=1

as∇∆y∗is(γ)

)2(
υi1 +

t∑
s=2

as−1∆uis

)2


+λnE

(
c
′2
T−1∑
t=2

(atat−1)
−1

[(
t−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

)]

×

[
T∑

k=t+1

(akak−1)
−1

(
k−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

k∑
s=2

as−1∆uis

)])
. (C.42)

The first component of equation (C.42) converges to

λnE

c′2 T∑
t=2

(atat−1)
−2

(
t−1∑
s=1

as∇∆y∗is(γ)

)2(
υi1 +

t∑
s=2

as−1∆uis

)2


→ c
′2
T−1∑
t=2

(atat−1)
−2


t−1∑
s=1

a2sE

[yis(υi1 +
t∑

s=2

as−1∆uis

)]2
|qis+1 = γ0

 fs+1(γ0)

+
t−1∑
s=1

a2sE

[yis−1(υi1 +
t∑

s=2

as−1∆uis

)]2
|qis = γ0

 fs(γ0)

−
t−2∑
s=1

2asas+1E

[yis(υi1 +
t∑

s=2

as−1∆uis

)]2
|qis+1 = γ0

 fs+1(γ0)

 ν. (C.43)

The second component of equation (C.42) converges to
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λnE

(
c
′2
T−1∑
t=2

(atat−1)
−1

[(
t−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

)]

×

[
T∑

k=t+1

(akak−1)
−1

(
k−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

k∑
s=2

as−1∆uis

)])

→ c
′2
T−1∑
t=2

(atat)
−1

T∑
k=t+1

(akak−1)
−1

{
t−1∑
s=1

a2sE

(
y2is

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qis+1 = γ0

)
fs+1(γ0)+

t−1∑
s=1

a2sE

(
y2is−1

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qis = γ0

)
fs(γ0)−

t−1∑
s=2

2asas−1E

(
y2is−1

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qis = γ0

)
fs(γ0)−

atat−1E

(
y2it−1

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qit = γ0

)
ft(γ0)

}
ν.

(C.44)

Thus, using (C.43) and (C.44), the second term (C.42) of (C.40) converges to
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λnE

(
c′

T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

))2

→ c
′2
T−1∑
t=2

(atat−1)
−2


t−1∑
s=1

a2sE

[yis(υi1 +
t∑

s=2

as−1∆uis

)]2
|qis+1 = γ0

 fs+1(γ0)

+
t−1∑
s=1

a2sE

[yis−1(υi1 +
t∑

s=2

as−1∆uis

)]2
|qis = γ0

 fs(γ0)

−
t−2∑
s=1

2asas+1E

[yis(υi1 +
t∑

s=2

as−1∆uis

)]2
|qis+1 = γ0

 fs+1(γ0)

 ν

+c
′2
T−1∑
t=2

(atat−1)
−1

T∑
k=t+1

(akak−1)
−1

{
t−1∑
s=1

a2sE

(
y2is

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qis+1 = γ0

)
fs+1(γ0)+

t−1∑
s=1

a2sE

(
y2is−1

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qis = γ0

)
fs(γ0)−

t−1∑
s=2

2asas−1E

(
y2is−1

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qis = γ0

)
fs(γ0)−

atat−1E

(
y2it−1

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

t+1∑
s=2

as−1∆uis

)
|qit = γ0

)
ft(γ0)

}
ν.

(C.45)

The third term of (C.40) converges to

+2λnE

(
c′

T∑
t=1

(atat−1)
−1∇1(qi1 ≤ γ)

(
υi1 +

t∑
s=2

as−1∆uis

))
×(

c′
T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∇∆y∗is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

))

→ −c′22
T∑
t=1

(atat−1)
−1

T∑
k=2

(akak−1)
−1a1

E

(
yi0

(
υi1 +

t∑
s=2

as−1∆uis

)(
υi1 +

k∑
s=2

as−1∆uis

))
|qi1 = γ0)f1(γ0)ν. (C.46)
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Finally, by plugging (C.41), (C.45) and (C.46) into (C.40), we get

E

(
n−α

n∑
i=1

C ′∇∆y∗i,−1(γ)′Ω?−1∆ui

)2

→ V (γ0)ν. (C.47)

By assumption 1.9, this establishes that the finite dimensional distributions of the

stochastic process are those of the stated double-sided Brownian motion. By arguments

identical to those in the proof of Lemma A.11 of Hansen (2000) and Lemma A.1 of Hansen

(1999), and using (C.47), we will have

E

(
n−α

n∑
i=1

C ′∇∆y∗i,−1(γ)′Ω?−1∆ui

)
→

√
V (γ0)W (ν). (C.48)

Proof of Theorem 2. By lemma A.9 of Hansen (2000), lemma 4 and lemma 5, where

the limit functional Sn(γ0 + ν/λn)− Sn(γ0) is continuous with a unique minimum almost

surely, and following the argument in the proofs of Theorem 1 of Hansen (2000) give the

stated result.

Proof of Theorem 3. The slope estimators are asymptotically equivalent to their ideal

counterparts constructed with the unknown true value of γ rather than the estimated

value γ̂, then we examine the case of known γ and we will prove the theorem for β1, the

argument is similar for β2.

Define the following vectors ∆ỹ∗i,−1(γ) = Λ−1/2H(0,∆y∗i,1(γ), · · · , y∗i,T−1(γ))′, ∆ỹi(γ) =

Λ−1/2H(∆yi,1(γ), · · · , yi,T (γ))′ and by using a suitable partition of the form (9), we have

β̂1 =

( n∑
i=1

ỹ∗i,−1(γ)′∆ỹ∗i,−1(γ)

)−1( n∑
i=1

∆ỹ∗i,−1(γ)′∆ỹi

)
, (C.49)

and therefore

β̂1 = β1 +

( n∑
i=1

ỹ∗i,−1(γ)′∆ỹ∗i,−1(γ)

)−1( n∑
i=1

∆ỹ∗i,−1(γ)′(Λ−1/2H∆ui)

)
. (C.50)

The consistency of β1 is established by a law of large numbers if it is shown that the

last term of (C.50) has a zero mean. This term has the form
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n∑
i=1

∆ỹ∗i,−1(γ)′(Λ−1/2H∆ui) =

n∑
i=1

T∑
t=2

(atat−1)
−1

(
t−1∑
s=1

as∆y
∗
is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

)
, (C.51)

and using lemma 1

E

[(
t−1∑
s=1

as∆y
∗
is(γ)

)(
υi1 +

t∑
s=2

as−1∆uis

)]
= 0. (C.52)

Proof of Theorem 4. Recall that

F (γ̂) =

(
n∑
i=1

∆y◦i,−1(γ̂)′Ω−1∆y◦i,−1(γ̂)

)
, (C.53)

and

F (γ0) = E
(
∆y◦i,−1(γ0)

′Ω−1∆y◦i,−1(γ0)
)
. (C.54)

Let

Fn(γ̂) =

(
1

n

n∑
i=1

∆y◦i,−1(γ̂)′Ω?−1∆y◦i,−1(γ̂)

)
. (C.55)

By Lemma 3 and the consistency of γ̂, we have

F−1n (γ̂)→p F
−1(γ0). (C.56)

Conditional on γ, the structural model (1) and the differentiated model (2) are linear in

β1 and β2. The likelihood function (7) or (8) depends on a fixed number of parameters, and

by the normality assumption, it satisfies the standard regularity conditions conditional

on γ. Therefore, the ML estimators of β1 and β2 are asymptotically normally distributed

with a covariance matrix given by F−1(γ0) as the number of individuals n grows to infinity

whether the time period T is fixed or tends to infinity.
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