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Abstract

We develop a new tractable model of banks’ liquidity management and the credit channel
of monetary policy. Banks finance loans by issuing demand deposits. Because loans are
illiquid, deposit transfers across banks must be settled with reserves. Deposit withdrawals
are random, and banks manage liquidity risk by holding a precautionary buffer of reserves.
We show how different shocks affect the banking system by altering the trade-off between
profiting from lending and incurring greater liquidity risk. Through various tools, monetary
policy affects the real economy by altering that trade-off. In a quantitative application, we
study the driving forces behind the decline in lending and liquidity hoarding by banks
during the 2008 financial crisis. Our analysis underscores the importance of disruptions in
interbank markets followed by a persistent decline in credit demand.
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1 Introduction

Banks’ liquidity management is central to the transmission and implementation of monetary

policy. By affecting the trade-off between lending and holding liquid assets, central banks affect

the supply of loanable funds, and through this channel they affect the real economy. Under-

standing how banks manage liquidity is, thereby, paramount to understanding the transmission

and implementation of monetary policy. However, macroeconomic models, especially those used

for monetary policy analysis, largely abstract from how banks manage liquidity.

This paper provides a tractable model of the banking system, featuring a liquidity manage-

ment problem. In our theory, banks operate in competitive markets for loans and deposits and

trade in an over-the-counter (OTC) market for central bank reserves. A spread between loans

and deposits leads banks to engage in maturity transformation, but at the same time, this ex-

poses them to idiosyncratic liquidity risk. Through various tools, central banks alter the trade-off

between profiting from lending and incurring greater liquidity risk, giving rise to a credit channel

of monetary policy.

The first building block of our model is the liquidity management problem of an individual

bank. When a bank grants a loan, it simultaneously creates demand deposits—or credit lines.

These deposits can be used by the borrower to perform transactions at any time. When deposits

are transferred out of a bank, that bank must transfer an asset to the bank that absorbs the

liabilities. Because loans cannot be sold immediately, to settle the transaction, the bank needs to

transfer liquid assets which in our model correspond to central bank reserves. If the bank receives

a large withdrawal of deposits, it may fall short of holdings of reserves. Being short of reserves,

that bank must incur expensive borrowing from other banks—or the central bank’s discount

window. By holding a large precautionary buffer of reserves, the bank can reduce this liquidity

risk. The opportunity cost of this buffer is that it reduces the profits from intermediation. This

is the classic bank’s liquidity management problem.

In the second building block, we embed this liquidity management problem into a dynamic

equilibrium model of industry dynamics. Banks are subject to idiosyncratic withdrawals of

deposits. Following the realization of these shocks, banks trade in an OTC market for reserves to

accommodate their reserve surpluses or deficits. Matching probabilities, as well as the interbank

market rate (i.e., the federal funds rate) depend on the abundance or scarcity of reserves. When

few banks have a surplus of reserves, it becomes increasingly expensive for a bank to be short of

reserves. The banking system also faces a demand schedule for loans and a supply schedule for
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deposits. The amount of bank equity is key to determining banks’ portfolio decisions and the

market clearing returns for deposits, loans, the federal funds rate, and the price level.

The third building block of the model is the central bank. In the theory, the central bank

has access to various tools. A first set of instruments are reserve requirements, discount window

rates, and interest payments on reserves. This first set of instruments affects the demand for

reserves by altering the relative return on reserves. A second set of instruments are open-market

operations (OMO) that involve exchange between liquid and illiquid assets. This second set of

instruments alters the volume of reserves in the system. Both sets of instruments carry real

effects by tilting the liquidity management trade-off and affecting the aggregate supply of bank

lending.

Overall, the model has several features both theoretically and quantitatively: it introduces

an analytically tractable OTC market for assets into a general equilibrium theory of banking; it

delivers an endogenous liquidity premium and money multiplier; it allows for a tractable solution

of stationary equilibrium and transitional dynamics; it allows for interaction between liquidity

and the real economy; and it allows us to analyze how monetary policy affects the banking sector

and the real economy through the credit channel.

Despite the richness of bank portfolio decisions, idiosyncratic withdrawal risk, and an OTC

interbank market, we are able to reduce the state space into a single aggregate endogenous state:

the aggregate value of bank equity. Moreover, the bank’s problem satisfies portfolio separation.

In turn, this allows us to analyze the liquidity management problem through a portfolio problem

with non-linear returns that depend only on aggregate market conditions. Being analytically

tractable, this makes the analysis of the model transparent and amenable to various applications

both theoretically and quantitatively.

Quantitative Application. As an application of our model, we investigate qualitatively

and quantitatively what explained the deep and protracted decline in bank lending during the

Great Recession. Through the lens of the model, we evaluate the plausibility of the following

hypotheses:

Hypothesis 1 - Low Bank Equity: Lack of lending responds to the equity losses suffered in

2008 and the tightening of capital requirements.

Hypothesis 2 - Increased Precautionary Holdings of Reserves: Banks hold more reserves and

less loans because they now face greater liquidity risk.

Hypothesis 3 - Interest on Reserves and Fed Policy: Interest payments on excess reserves
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have led banks to substitute reserves for loans.

Hypothesis 4 - Weak Loan Demand: Banks face a weaker demand for loans.

To evaluate these hypotheses, we calibrate our model and simulate it with shocks associated

with each hypothesis. To weigh on hypotheses 1 and 3, we feed the model with shocks to equity

losses and a Fed policy that we observe directly from the data. To weigh on the other two

hypotheses, we consider shocks to the dispersion of deposit withdrawals and the efficiency of

the interbank market (hypothesis 2) and to the loans demand (hypothesis 4). We extract the

path of these shocks that can explain the behavior of bank credit, discount-window loans, and

the volume of the interbank market. To see the logic for the indentification of these unobserved

shocks, consider first a negative shock to loan demand. Given banks’ supply schedule, the decline

in loan demand causes a decline in loan returns, which in turn leads banks to substitute reserves

for loans. As a result, banks resort less to the discount window. Consider instead a reduction in

the efficiency of the interbank market or an increase in volatility of deposit withdrawals. Both

of these shocks also lead to a contraction in banks’ supply of loans but, at the same time, lead

banks to resort more heavily to the discount window. In turn, reductions in interbank market

efficiency can be disentangled from increases in withdrawal volatility because lower efficiency

depresses interbank market lending volumes whereas increases in volatility produce the opposite

effect.

We feed the observed and extracted series of shocks into the model, and turn shocks on and

off, to measure the relative importance of each shock. Our analysis favors an early disruption

in the interbank market—concentrated during September 2008—followed by a substantial and

persistent shock to loan demand as main drivers of the crisis.Although not targeted, the model

also explains the persistent increase in the liquidity ratio and the relatively higher liquidity

premium around Lehman Brothers’ bankruptcy in September 2008.

Related Literature. A tradition in macroeconomics dating back to at least Bagehot (1873)

stresses the importance of analyzing monetary policy in conjunction with banks. A classic me-

chanical framework to study policy with a full description of households, firms, and banks is

Gurley and Shaw (1964). With few exceptions, modeling banks was abandoned from macroeco-

nomics for many years. Until the Great Recession, the macroeconomic effects of monetary policy

and its implementation through banks were analyzed independently.

In the aftermath of the global financial crisis, numerous calls have been made for the de-

velopment of macroeconomic models with an explicit role for banks (see e.g. Woodford, 2010).
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Some early steps were taken by Gertler and Karadi (2011) and Curdia and Woodford (2009),

who show how shocks that disrupt financial intermediation can have important effects on the

real economy. Following these papers, a large literature has studied how various policies affect

bank equity and macroeconomic outcomes. Our model also belongs to the banking channel view,

but it emphasizes instead how monetary policy affects the trade-off banks face in holding assets

of different liquidity. In turn, this approach relates our model to classic models of bank liquidity

management and monetary policy.1 Our contribution to this literature is to bring the classic

insights from the liquidity management literature into a modern dynamic general equilibrium

model that can be used for policy analysis and the study of banking crises.2

Our paper also builds on the search theoretic literature of monetary exchange (see the survey

by Williamson and Wright, 2010). Williamson (2012) studies an environment in which assets of

different maturity have different properties as mediums of exchange. In Cavalcanti, Erosa, and

Temzelides (1999) reserves emerge as a disciplining device to sustain credit creation under moral

hazard and to guarantee the circulation on deposits. Atkeson, Eisfeldt, and Weill (2015) present

a tractable model to study trading decisions in an OTC market where agents have different credit

risk exposures. Afonso and Lagos (2015) develop an OTC model of the federal funds market and

use it to study the intraday evolution of the distribution of reserve balances and the dispersion in

loan sizes and federal funds rates. Our market for reserves is a simplified version of that model,

which we embed in a fully dynamic general equilibrium model.3

We share common elements with recent work at the intersection of money and banking.

Brunnermeier and Sannikov (2017) introduce inside and outside money into a dynamic macro

model and study the real effects of monetary policy through the redistributive effects of inflation.

1Classic papers that study static liquidity management—also called reserve management—by individual banks
in static settings are Poole (1968) and Frost (1971). Bernanke and Blinder (1988) present a reduced-form model
that blends reserve management with an IS-LM model. Many modern textbooks for practitioners deal with
liquidity management. For example, Saunders and Cornett (2010) and Duttweiler (2009) provide managerial and
operations research perspectives. Many modern banking papers have focused on bank runs. See, for example,
Diamond and Dybvig (1983), Allen and Gale (1998), Ennis and Keister (2009), or Holmstrom and Tirole (1998).
Gertler and Kiyotaki (2015) is a recent paper that incorporates bank runs into a dynamic macroeconomic model.
Del Negro et al. (2017) study a rich dynamic stochastic general equilibrium model with shocks to the resaleability
of assets as in Kiyotaki and Moore (2008).

2There is large empirical literature that provides underpinning for the monetary policy transmission mechanism
that we study here. Bernanke and Blinder (1988) and Kashyap and Stein (2000) are early studies on the bank
lending channel of monetary policy. In recent work, Nagel (2016) documents significant time variation in liquidity
premium and how it relates to monetary policy. Jiménez, Ongena, Peydró, and Saurina (2012) and Jiménez
et al. (2014) exploit both firm heterogeneity in loan demand and variation in bank liquidity ratios to identify the
presence of the bank lending channel in Spain. Chodorow-Reich (2014) analyzes the effects of credit contractions
on employment outcomes.

3Ashcraft and Duffie (2007) and Afonso and Lagos (2014) provide empirical support for search frictions in the
federal funds market and the presence of substantial liquidity costs.
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In contrast to their work, reserves and deposits are not perfect substitutes in our model, giving

rise to a liquidity management problem. Piazzesi and Schneider (2016) studies the link between

the payments system and securities markets with a focus on asset pricing. One important

consideration in their work that is not present here, is that interbank-market loans require

collateral assets.

Outline. The paper is organized as follows. Section 2 presents the model, and Section

3 provides theoretical results. Section 4 reports the calibration exercises. There, we study the

steady state and policy functions under that calibration. In Section 6, we analyze the transitional

dynamics generated after shocks associated with each hypothesis. In Section 7, we evaluate and

discuss the plausibility of each hypothesis. Section 8 presents extensions of our baseline model,

and Section 9 concludes. All proofs are in the appendix.

2 The Model

We propose a dynamic equilibrium model of the banking system, in which banks are subject to

idiosyncratic withdrawal shocks. The central feature of a bank’s portfolio problem is a decision

on how to allocate assets between reserves (liquid) and loans (illiquid). Liquidity risk generates a

precautionary buffer stock of reserves. There is a single final consumption good and no aggregate

uncertainty.

To present the model, we first describe in detail the dynamic portfolio problem of an individual

bank, followed by the description of the interbank market. The model is closed by considering the

policies of the central bank—which we refer to as the Fed—and introducing a demand schedule

for loans and a supply schedule for deposits.

2.1 Banks: Preferences and Budgets

There is a unit-mass continuum of banks indexed by j. Banks operate in competitive markets

for loans, deposits, and reserves.

Timing. Time is discrete, indexed by t, and there is an infinite horizon. Each period is divided

into two stages: the lending stage, (l), and the balancing stage, (b). At the lending stage, banks

make portfolio decisions and solve a liquidity management problem. At the balancing stage,

banks are subject to a random idiosyncratic withdrawal of deposits. A deposit withdrawn from
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one bank is transferred to another bank. That transaction is settled with reserves. Reserves are

issued by the central bank and serve as the numeraire. If banks lack the reserves to settle that

transaction, they can borrow them from other banks in the interbank market or from the central

bank.

Preferences. Banks’ preferences over a stochastic stream of dividend payments {cjt} are given

by

E0

∑
t≥0

βtu(cjt), (1)

where β < 1 is the time discount factor, and u (c) ≡ c1−γ−1
1−γ is the period utility function.4

Lending stage. Banks enter the lending stage of period t with a portfolio of assets and

liabilities and collect or make associated interest payments. On the asset side of their balance

sheet, banks hold loans, bt, and reserves, mt. On the liability side, they issue demand deposits,

dt, discount window loans, wt, and net interbank loans, ft. If the bank has borrowed funds, ft

is positive, and if it has lent reserves, ft is negative. Loans and deposits are denominated in

nominal terms and pay respectively ibt and idt in units of reserves. We denote by Pt the price level

(the price of consumption goods in terms of reserves).5

During the lending stage, banks choose real dividends, ct, and a new portfolio of loans,

reserves, and deposits. Their portfolio is the triplet {bjt+1,m
j
t+1, d

j
t+1}. We use x̃t+1 to denote

a portfolio variable chosen in the lending stage and xt+1 to denote the end-of-period portfolio

variable chosen in the balancing stage. The bank’s nominal budget constraint in the lending

stage is

Ptc
j
t+b̃

j
t+1+m̃j

t+1−d
j
t+1 = (1+ibt)b

j
t+(1+iiort )mj

t−(1+idt )d
j
t−
(

1 + i
f

t

)
f
j

t−
(
1 + idwt

)
wjt−PtT

j
t . (2)

The nominal rates iiort and idwt are, respectively, the interest rates on reserves and discount

window loans. These rates are set by the Fed. We assume idwt ≥ iiort so that there is a positive

spread between the discount window rate and the interest on reserves, as occurs in practice.

4Curvature in the objective of the bank is important in generating dividend smoothing and slow-moving bank
equity, as observed empirically. One way to rationalize these objectives is through undiversified bank owners.

5Without aggregate shocks, this would be equivalent to a model with only real assets. However, in presence
of unanticipated shocks, the denomination of debt matters for the transitional dynamics because of valuation
effects.

6



Outstanding interbank market loans earn a weighted average of many interbank market rates,

denoted by i
f

t . This rate is the average rate among multiple transactions in the interbank market,

which will be described in the next section. Finally, T jt represents bank-specific taxes.

Banks are subject to a capital requirement constraint,

d̃jt+1 ≤ κ
(
b̃jt+1 + m̃j

t+1 − d̃
j
t+1

)
, (3)

which imposes an upper bound, κ, on the stock of deposits relative to the value of equity at the

end of the lending stage.

The problem of the bank in the lending stage is to choose the portfolio {bjt+1,m
j
t+1, d

j
t+1}

and dividend payments ct, subject to the budget constraint (2) and the capital requirement (3).

Notice that for an individual bank, it is budget feasible to increase one unit of loans by issuing

one unit of deposits, as long as the capital requirement (3) does not bind. When (3) binds, a bank

can only finance a fraction of loans with deposits. The residual fraction needs to be financed by

cutting dividends or by a reduction in reserves, which, as we show next, will expose the bank to

higher liquidity risk in the balancing stage.

Balancing stage. Banks enter the balancing stage with the portfolio {b̃jt+1, m̃
j
t+1, d̃

j
t+1} chosen

at the lending stage. Then, at the beginning of the balancing stage, banks face a withdrawal

shock ωjt . The shock induces a random inflow/withdrawal of deposits ωjt d̃
j
t+1. Given this shock,

the end-of-balancing-stage deposits, djt+1, are

djt+1 = d̃jt+1(1 + ωjt ). (4)

When ωjt is positive (negative), the bank receives (loses) deposits from (to) other banks. The

ω shock has a cumulative distribution Φ (·) common to all banks.6 The support of Φ is [ωmin,∞)

where ωmin ≥ −1 and
´∞
ωmin

ωtΦt (ω) = 0, ∀t.7 Because the withdrawal shock is idiosyncratic

and has a zero expectation, deposits are only reshuffled across banks and hence preserved within

banks.

Withdrawal shocks capture an essential element of the payment system: the circulation of

6We could allow Φ to be a function of the bank’s liquidity or leverage ratio. This would add complexity to the
bank’s decisions but would not break aggregation. What is crucial for tractability is that Φt is not a function of
the bank’s size.

7Restricting the support by setting ωmin > −1 would capture that not all liabilities can be withdrawn imme-
diately from the bank —for example, because a fraction of the deposits are term deposits. In this case, id would
correspond to the weighted average of the demand and term deposits.
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deposits. Deposit circulation is the fundamental feature that enables banks to facilitate trans-

actions between third parties. When a bank issues a loan, a borrower is credited with deposits

at the issuing bank. As the borrower makes payments to third parties, those deposits may end

up being transferred to other banks. In turn, the withdrawal of a deposit from one bank is an

inflow of that deposit to another bank. Because the receptor bank absorbs the liabilities of the

bank that issued the deposit, an asset needs to be transferred to settle the transaction. We

assume that loans cannot be sold during the balancing stage—that is, loans are illiquid.8 As

occurs in practice, reserves are the asset that is used to settle positions. Therefore, the bank

that faces a withdrawal transfers reserves to the deposit receptor bank. In this environment, the

randomness in ω captures the complexity of the payment system. A deposit withdrawal captures

a negative payment shock, or alternatively a negative confidence shock, that leads depositors to

switch accounts to a different bank.

We adopt the convention that the bank that issues deposits pays for the interest on those

deposits. Thus, a transfer of one unit of deposits is settled with
(
1 + idt+1

)
/
(
1 + iiort+1

)
reserves,

which guarantees that the bank that receives the deposit is compensated by the interest it will

pay the depositor at t+ 1 and does not earn the interest on the reserves used in the settlement.

By the end of the balancing stage, banks must maintain a minimum of reserve balances.

Specifically, banks must satisfy

mj
t+1 ≥ ρtd

j
t+1, (5)

with ρt ∈ [0, 1]. The case where ρ = 0 corresponds to a system without reserve requirements, in

which case banks are solely required to finish with a positive balance of reserves; banks cannot

issue reserves.9 An alternative regulatory constraint links a minimum amount of liquid assets

(i.e., reserves) to illiquid assets (i.e., loans). As we show in Section 8, this has very similar

implications. Whether reserve requirements are present does not affect our analysis: the demand

for reserves is not generated by policy. A precautionary demand for reserves emerges as long as

there is a non-negativity constraint on reserves.

Because of the withdrawal shock ω, banks will have uncertain reserve balances after the shock.

This shock will map into a reserve surplus (or deficit) which is the final reserve balance in excess

8The lack of a liquid market for loans during the balancing stage can be explained by several market frictions
discussed by the literature. For example, loans may be illiquid assets if banks specialize in particular customers,
if they face agency frictions, if there is asymmetric information, or if these transfers take time. Reserves, instead,
are special assets issued by the central bank and are fully liquid in the balancing stage.

9In fact, monetary policy in many advanced economies operates without a reserve requirement—for example,
Canada or the United Kingdom.
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of required reserves:

sjt = s(m̃j
t+1, d̃

j
t+1, ω

j
t ) ≡

(
m̃j
t+1 +

(
1 + idt+1

1 + iiort+1

)
ωjt d̃

j
t+1

)
︸ ︷︷ ︸

reserve balance after ω shock

− ρtd̃jt+1(1 + ωjt )︸ ︷︷ ︸
required reserves after ω shock

. (6)

The surplus, sjt , depends on the lending-stage choices of m̃j
t+1, d̃

j
t+1, and ωjt . The first term in (6)

is the reserve balance, given by the initial reserve position plus the reserves transferred from/to

other banks. The second term is the required reserves, the product of the reserve requirement,

ρt, and the outstanding amount of deposits after the withdrawal shock, given by (4). From (6),

it follows that if a bank faces a large withdrawal, the level of reserves falls below the reserve

requirement. In fact, shocks ω < ω∗ ≡ ρt − (mj/dj)
[
(1 + idt+1)/(1 + iiort+1)− ρt

]
translate into a

reserve deficit. Moreover, if a bank accumulates few reserves in the lending stage or, likewise,

issues many deposits, it is more likely to incur a reserve deficit.

Banks with a positive sjt will try to lend their excess reserves. Banks with a negative sjt

must obtain reserves to satisfy the reserve requirements (5). Banks in deficit obtain reserves

by borrowing from surplus banks in the interbank market, or by ultimately borrowing from the

Fed’s discount window. Considering the interbank and discount window loans, reserves evolve

from the balancing stage to the next lending stage as follows:

mj
t+1 = m̃j

t+1 +

(
1 + idt+1

1 + iiort+1

)
ωjt d̃

j
t+1 + f jt+1 + wjt+1. (7)

This law of motion states that the end-of-period reserves, mj
t+1, are the reserves left after the

withdrawal shock plus reserves borrowed in the interbank market and the discount window.10

Next, we describe how the interbank market operates.

Interbank market. At the beginning of the balancing stage, the realization of idiosyncratic

withdrawal shocks generates a distribution of banks with reserve surpluses and deficits, sjt . Banks

with a shock ω > ω∗ have a reserve surplus and therefore want to lend reserves; banks with

ω < ω∗ are in deficit and must borrow reserves. Because there are matching frictions in the

interbank market, banks on either side of the market may be unable to lend/borrow all of their

surplus/deficit. If a bank in deficit cannot obtain enough funds in the interbank market, it can

borrow the difference from the discount window as the last resort. Similarly, if a bank in surplus

10Notice that in order to satisfy (5), the sum of funds borrowed in the interbank market loans and at the

discount window must satisfy f jt+1 + wjt+1 ≥ ρtd
j
t+1 −

[
m̃j
t+1 + ωjt d̃

j
t+1

(
1+idt+1

1+iiort+1

)]
.
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is unable to lend all of its surplus, it can keep its balance at the central bank and earn the

interest on reserves. Because in equilibrium the interbank market rate lies strictly between the

interest on reserves and the discount window rates, banks seek to trade in the interbank market

before trading with the Fed. Interbank market and discount window loans are repaid in the next

lending stage.

The interbank market is an OTC market, as advocated by Ashcraft and Duffie (2007). We

follow Afonso and Lagos (2015) but make departures to obtain a closed-form solution for the

interbank rate. Because the complete description of the interbank market is intensive in notation,

we only provide a brief description here; all details can be found in a companion paper (Bianchi

and Bigio, 2017).

The interbank market operates in a sequential way. At the beginning of the balancing stage,

each bank instructs a continuum of traders with a trading order. Each trader must close an

infinitesimal position, as in Atkeson et al. (2015). There are N trading rounds. Matches are

formed at random according to a matching process in each round, and a number of trading

positions close accordingly. The probability of a match at a given round is determined by an

efficiency parameter λ and a matching function which in turn depends on the aggregate amount

of surplus and deficit positions that remain open at that round. When traders meet, they bargain

over the rate used and split the dynamic surplus according to Nash bargaining. The bargaining

power for borrowers is denoted by η.11

This OTC market generates a sequence of volumes of interbank market loans and terms of

trade throughout the trading rounds within each balancing stage. In the following proposition,

we present a formula for the pair of interbank market and discount window loans {f j, wj} as

a function of market tightness (i.e., the relative magnitudes of banks in deficit and surplus)

that we denote by θ. Let the aggregate amounts of surplus and deficit by respectively S+
t ≡´ 1

0
max

{
sjt , 0

}
dj and S−t ≡

´ 1

0
min

{
sjt , 0

}
dj. Then, the market tightness is θt ≡ S−t /S

+
t .

Proposition 1. Given θt, the amount of interbank market loans and discount window loans for

a bank of surplus sj is

(f jt , w
j
t ) =

 −sj(Ψ−(θt), 1−Ψ−(θt)) for sj ≤ 0

−sj(Ψ+(θt), 0) for sj > 0,
(8)

11Using the large family assumption of Atkeson et al. (2015) simplifies the analytical solution substantially.
The assumption makes matching probabilities linear in the deficit or surplus position, regardless of the size of the
surplus or deficit of a bank. This also avoids having match-specific terms in the bargaining problem. Without
this assumption, the combinatorial problem of determining the distribution of matches becomes intractable.
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and the average interbank market rate is

i
f

t (θt) = iiort + (1− φ(θt))(i
dw
t − iiort ), (9)

where the formulas for {Ψ+(θt),Ψ
−(θt), φ(θt)} are described in Appendix E.

According to Proposition 1, a bank short of reserves (sjt < 0) is able to patch the fraction,

Ψ−t , of its deficit with interbank market loans and the rest, 1 − Ψ−t , from the Fed. Similarly,

a bank with surplus lends its fraction Ψ+
t in the interbank market and keeps the difference in

an account at the Fed. These fractions depend endogenously on the abundance of reserves. If

there are many banks in deficit (surplus), the probability that a bank in deficit finds a match

is low (high). In addition, the federal funds rate is a weighted average of the iior and idw with

endogenous weights as a function of the abundance of reserves. As in Afonso and Lagos (2015),

the weight φ(θt) can be interpreted as an effective bargaining power for borrower banks in a

one time match. The federal funds rate is closer to idw if more banks are in deficit because this

lowers the bargaining power of the lenders. Conversely, the federal funds rate is closer to iior if

more banks are in surplus. As shown in Appendix E, the functional forms for the time invariant

functions φ(θt) and {Ψ−t (θt),Ψ
+
t (θt)} depend onthe two deepparameters of the matching market:

efficiency of matching λ and the bargaining power η, In particular, a higher efficiency leads

to higher fractions of matches Ψ−t Ψ+
t in the interbank market. Likewise, φt increases with the

bargaining power of borrowers η, which makes the federal funds rate closer to the lower band

of the corridor. Naturally, the volume of interbank market loans (interbank market) is given by

Ψ+
t (θt)S

+
t = −Ψ−t (θt)S

−
t .

To summarize the costs/benefits of being short/long in reserves, we introduce the liquidity

yield function. This object is useful once we express the law of motion for equity in the recursive

formulation.

Definition 1. The liquidity yield function for a bank with a surplus s is

χt(s) =

 χ+
t s if s ≥ 0

χ−t s if s < 0
, (10)

χ−t = Ψ−t

(
i
f

t − iiort
)

+
(
1−Ψ−t

) (
idwt − iiort

)
,

χ+
t = Ψ+

t

(
i
f

t − iiort
)
.

The term χt is precisely the marginal cost/benefit of having a reserve deficit/surplus. An im-
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Figure 1: Timeline diagram and banks’ balance sheet. For illustration purposes, it is assumed
that the portfolio chosen in the lending stage is m̃ = ρd̃.

portant observation is that interbank market frictions will produce a positive wedge between the

marginal cost reserve deficits and the marginal benefit of surplus.

This wedge is endogenous and depends on the relative abundance of reserves and policy. In

frictionless environments, that wedge disappears because there is no kink in χ. For example,

in a Walrasian interbank market, when λ → ∞, īf equals iior if S+ > S− or equals idw if

S+ < S−. In the other extreme in which there is no interbank market, the wedge becomes such

that χ− = idwt − iiort and χ+ = 0. This kink is critical for the liquidity management problem and

the transmission of monetary policy, as we will argue in the policy analysis section. An exact

formula for χ as a function of policy rates {λ, η} and θt is presented in Appendix E. Figure 1

summarizes the timing of events.12

2.2 Central Bank Policies

The Fed issues reserves, sets corridor rates, and also purchases private loans. The Fed’s balance

sheet is analogous to the balance sheet of a bank, with the difference that the Fed does not

12We note that there are potentially other frictions that can create a wedge between lending and borrowing
rates in the interbank market related (e.g. default risk). What is key for our liquidity management problem is
the existence of such a wedge, and hence our analysis also applies to these other contexts.
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issue deposits. Instead, the Fed issues reserves, MFed
t . On the asset side, the Fed holds discount

window loans W Fed
t and private loans BFed

t+1 .13

The budget constraint of the Fed is14

(1 + iiort )MFed
t +BFed

t+1 +W Fed
t+1 = MFed

t+1 + (1 + ibt)B
Fed
t + (1 + idwt )W Fed

t + PtT
Fed
t . (11)

The Fed generates operating profits/losses from its balance sheet position and from activity in

the interbank market: it pays interest on the outstanding stock of reserves, iiort , and collects

revenues from the interest from discount window loans, idwt , and from holdings of private loans,

ibt . To fund new discount window loans W Fed
t+1 and purchases of loans BFed

t+1 , the Fed issues new

reserves MFed
t+1 . To balance the budget constraint, we endow the Fed with taxes/transfers, T Fedt .15

Monetary policy can be specified in various ways. We focus on a monetary dominant regime

in which T Fedt is a choice for the Fed. In a stationary equilibrium, the inflation rate will be

constant and equal to g, the nominal growth rate of reserves set by the Fed. Notice that at a

steady state with g = 0, using subscript ss to denote steady-state variables, we have that the

tax at steady state is given by

T Fedss =
iiorss M

Fed
ss − ibssBFed

ss − idwss W Fed
ss

Pss
.

That is, taxes finance the interest payment of reserves net of the return on the stock of discount

window and private loans. Away from a stationary equilibrium, we will consider two classes of

policies. In the first class of policies, we keep the nominal balance sheet of the Fed growing at the

long-run value. In this economy, movements in the real demand for reserves is accommodated

with movements in the price level, following a quantity theory relationship, as we will explain

below. Taxes follow from the operating profits/losses of the Fed and the balance sheet policies,

13Incorporating Treasury bills (T-bills) and conventional open-market operations into our model is relatively
straightforward. If T-bills are illiquid in the balancing stage, T-bills and loans become perfect substitutes from a
bank’s perspective and the model becomes equivalent to our baseline model—with an additional market clearing
condition for T-bills. If T-bills are perfectly liquid but are not counted as part of the reserve balance, we can
show that banks that have a deficit in reserves will first sell their holdings of T-bills in exchange for reserves to
banks that have surplus and only then go to the federal funds market. Because our focus is more broadly on
liquidity management rather on the composition of liquid assets, we prefer to keep only one type of liquid assets
in the model.

14To derive this condition, we combine the budget constraint of the Fed in the lending and balancing stage:
M̃Fed
t+1 +BFedt + (1 + idwt )WFed

t = (1 + iiort )MFed
t +BFedt+1 + PtTt, M

Fed
t+1 = M̃Fed

t+1 +WFed
t+1 .

15We completely abstract in the paper from frictions between the monetary authority and fiscal authority by
considering a consolidated budget constraint.
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according to (11). In a second class of policies, we consider an inflation targeting regime, in which

the Fed alters the nominal supply of reserves to stabilize the inflation at its long-run value. To

accomplish this, the Fed exchanges reserves for deposits with banks. Appendix M.3 provides

the details on how the Fed accomplishes this in the model and the numerical algorithm used to

compute the transitional dynamics with this inflation targeting regime.

2.3 Loan Demand and Deposit Supply

To close the model, we need a loan demand and deposit supply schedule. We assume that there

is a downward-sloping loan demand and an upward-sloping deposit supply. In both cases, we

consider constant elasticity functions. The loan demand schedule is

Bd
t+1

Pt
= Θb

t

(
1

1 + ibt+1

Pt+1

Pt

)ε
, ε > 0, Θb

t > 0, (12)

where ε is the semi-elasticity of credit demand with respect to the real return on loans. The

intercept Θb
t captures possible credit demand shifts.

The deposit supply schedule is

DS
t+1

Pt
= Θd

t

(
1

1 + idt+1

Pt+1

Pt

)−ς
, ς > 0, Θd

t > 0, (13)

where ς is the semi-elasticity of deposit supply with respect to their real return.

Given these schedules for loan demand and deposit supply, and using the bank’s optimal

portfolios, we can solve for market clearing returns for loans and deposits. In Appendix C, we

offer a simple microfoundation for the demand schedule for loans and supply for deposits. The

advantage of this microfoundation is that these supply and demand schedules are static and thus

do not impose additional dynamic restrictions on the model. Throughout the paper, however,

we will work directly with the exogenous schedules.

2.4 Competitive Equilibrium

The initial conditions for an equilibrium are a distribution of {dj0, b
j
0, f

j
0 , w

j
0} over banks and a

balance sheet for the Fed, {BFed
0 ,MFed

0 ,W Fed
0 }. Taking as given returns and Fed policies, banks

choose
{
d̃jt , b̃

j
t , m̃

j
t , c

j
t , f

j
t , w

j
t

}
contingent on their history of idiosyncratic shocks to maximize

expected lifetime utility. Macroeconomic aggregates are deterministic since there is no aggregate

risk. We adopt the convention of denoting aggregate variables in uppercase letters, and they are

14



defined as

Bt+1 ≡
ˆ
j

bjt+1dj, Mt+1 ≡
ˆ
j

mj
t+1dj, Dt+1 ≡

ˆ
j

djt+1dj, and Wt ≡
ˆ
j

wjtdj.

The competitive equilibrium is formally defined below.

Definition 2. Given {dj0, d
j
0, b

j
0, f

j
0 , w

j
0} and a deterministic sequence of government policies{

ρt, B
Fed
t ,MFed

t ,W Fed
t , T jt , κt, i

ior
t , idwt

}
t≥0

, a competitive equilibrium is a deterministic se-

quence of interest rates and prices
{
ibt , i

d
t , i

f

t , Pt

}
t≥0

, a deterministic sequence of matching prob-

abilities {Ψ+
t ,Ψ

−
t }, a deterministic path for aggregates {Dt+1, Bt+1,Mt+1,Wt}, and a stochastic

sequence of bank policy variables
{
bjt+1, m̃

j
t+1, d̃

j
t+1, c

j
t , f

j
t , w

j
t

}
t≥0

such that

(i) Banks’ policies {bjt+1, m̃
j
t+1, d̃

j
t , c

j
t} solve the banks’ problems 1 and 2, and {f jt , w

j
t} are

given by the formula in Proposition 1.

(ii) The central bank’s budget constraint (11) is satisfied and
´
j
T jdj = T Fedt .

(iii) Aggregate loans are consistent with (12) and aggregate deposits are consistent with (13) .

(iv) Markets clear ∀t ≥ 0:

ˆ
j

bjt+1dj +BFed
t+1 = Bd

t+1 (loan market clearing)

ˆ
j

djtdj = DS
t+1 (deposit market clearing)

ˆ
j

mj
t+1dj = MFed

t+1 (reserve market clearing)

ˆ
j

f jt dj = 0 (interbank market clearing)

ˆ
j

wjtdj = W Fed
t+1 (discount window clearing)

(v) The matching probabilities
{

Ψ+
t ,Ψ

−
t

}
t≥0

and the federal funds rate i
f

t are consistent with

the surplus and deficit masses S−t and S+
t , as given by Proposition 1.

Definition 3. A stationary equilibrium is a competitive equilibrium where {Dt+1, Bt+1,Mt+1,Wt}
and Pt grow at rate g. A steady state equilibrium is a competitive equilibrium with g = 0.

Once we characterize equilibria in the next section, it will become clear that equilibrium in the

reserve market, condition (reserve market clearing), is in fact a quantity theory equation. The
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bank’s problem delivers a real demand for reserves for banks, which, combined with the nominal

quantity of reserves set by the Fed, pins down the price level. A definition of equilibrium that

considers the non-financial side of the economy, as in Appendix C, would include (34) and (35)

and an additional price, the wage, as part of the equilibrium definition.

3 Theoretical Analysis

In this section, we derive theoretical properties of the model. We start with a description of the

features that make the model tractable. In particular, we show an aggregation result where the

only state variable is real aggregate equity. We explain how the bank’s problem can be separated

into a consumption-saving problem and a portfolio problem. The portfolio problem, in turn, can

be reduced to a choice of liquidity and leverage ratio for banks. We end the theoretical study of

the model by deriving some properties of classic monetary policy exercises.

3.1 Recursive Bank Problems

It is convenient to describe the banks’ optimization problem in recursive form. Denote by V l

and V b the banks’ value functions during the lending and balancing stages, respectively. To keep

track of aggregate states, which vary deterministically over time, we index policy functions, value

functions, and prices by t. To ease notation, we omit superscript j in the Bellman equations.

At the beginning of each lending stage, the individual states are {b,m, d, f, w}. Choices in

the lending stage are consumption, c, and portfolio variables {b̃, m̃, d̃}. These portfolio variables,

together with the idiosyncratic shock, ω, become the initial states in the balancing stage. The

continuation value is given by the expected value at the balancing stage V b
t , under the probability

distribution of ω. The bank problem for the lending stage is

Problem 1. [Lending Stage Bank Problem]

V l
t (b,m, d, f, w) = max

{c,b̃,d̃,m̃}≥0
u (c) + E

[
V b
t (b̃, m̃, d̃, ω)

]
(14)

Ptc+ b̃+ m̃− d̃, (Budget Constraint)

= (1 + ibt)b− (1 + idt )d+ (1 + iiort )m− (1 + ı̄ft )f −
(
1 + idwt

)
w − PtTt,

d̃ ≤ κ
(
b̃+ m̃− d̃

)
. (Capital Requirement)
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Considering the solution to the interbank market found in Proposition 1, the bank problem

at the balancing stage is

Problem 2. [Balancing Stage Bank Problem]

V b
t (b̃, m̃, d̃, ω) = βV l

t (b′,m′, d′, f ′, w′) (15)

b′ = b̃ (Evolution of Loans)

d′ = d̃+ ωd̃ (Evolution of Deposits)

m′ = m̃+

(
1 + idt+1

1 + iiort+1

)
ωd̃+ f ′ + w′ (Evolution of Reserves)

s = m̃+

(
1 + idt+1

1 + iiort+1

)
ωd̃− (1 + ω) ρd̃ (Reserve Balance)

m′ ≥ ρd′ (Reserve Requirement)

(f ′, w′) =

 −s(Ψ−t , 1−Ψ−t ) for s < 0

−s(Ψ+
t , 0) for s ≥ 0.

(Interbank Market Transactions)

Notice that in the balancing stage problem, there is no longer a maximization condition since

the optimal choices of interbank loans and discount window loans have already been taken into

account. The continuation value in the balancing stage is the value of the bank in the lending

stage, which depends on the end-of-period portfolio variables.

3.2 Model Solution

Here we summarize the bank’s problem in one Bellman equation with a single individual state

variable. The single state is real equity, which we denote by e. The first step is to substitute V b

defined in (15) into (14). The second step is to express the right-hand side of the bank’s budget

constraint as a function of e. For this, we allow taxes on banks to be proportional to bank equity.

Thus, define for

et ≡
(1 + iiort )mt +

(
1 + ibt

)
bt −

(
1 + idt

)
dt −

(
1 + i

f

t

)
ft −

(
1 + idw

)
wt

Pt
(1− τt), (16)

where τ is the tax rate on bank equity. For future reference, we denote by Et the aggregate level

of real equity
´
j
ejtdj.

The third step is to construct a law of motion for the individual equity of a bank. For that
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we update (16) one period forward and use the definition of the liquidity yield function (10) and

the laws of motion of deposits and reserves, (4) and (7), to express

et+1 =

(
1 + iiort+1

)
m̃t+1 +

(
1 + ibt+1

)
b̃t+1 −

(
1 + idt+1

)
d̃t+1 + χt+1

(
sjt
)

Pt+1

(1− τt+1). (17)

This law of motion for equity depends only on lending stage choices and the withdrawal shock

in the balancing stage. Now, we can define the gross real returns of all assets:

Rm
t ≡

1 + iiort+1

1 + πt+1

, Rb
t ≡

1 + ibt+1

1 + πt+1

, Rd
t ≡

1 + idt+1

1 + πt+1

, and χ̄t(m̃, d̃, ω) ≡ χt(s(m̃, d̃, ω))

1 + πt+1

,

where 1 + πt ≡Pt+1/Pt is the gross inflation rate.

Proposition 2 makes use of the law of motion for future equity, the definition of real returns

and shows that we can summarize the value functions in (14) and (15) in a single Bellman

equation written in real terms.

Proposition 2. [Single State Representation]

Vt(e) = max
{c,m̃,b̃,d̃}≥0

u(c) + βEω [Vt+1(e′)] , (18)

m̃

Pt
+

b̃

Pt
− d̃

Pt
+ c = e, (19)

e′ =

[
Rm
t

m̃

Pt
+Rb

t

b̃

Pt
−Rd

t

d̃

Pt
+ χ̄t

(
m̃

Pt
,
d̃

Pt
, ω

)]
(1− τt+1), (20)

d̃ ≤ κ
(
b̃+ m̃− d̃

)
. (21)

This problem is a portfolio savings problem with a leverage constraint. The bank starts

with equity, e, that can be allocated into dividends or investments. In turn, investments can

be allocated into loans, b̃, and reserves, m̃, and the bank can leverage its position by issuing

deposits d̃. Next period equity e′ depends on the return realizations of the portfolios. Leverage

is limited by the capital requirement. A non-standard feature is the presence of a non-linear

return given by the kink in χ. Next, we show that despite the kink, we can still aggregate banks

into a representative bank.

Proposition 3. [Homogeneity and Portfolio Separation] The bank Bellman equation (18) can

be characterized as follows:
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(i) The certainty equivalent of the bank’s equity return solves the following problem:

Ωt ≡ (1− τt) max
{b̄,m̄,d̄}≥0

{
Eω
[
Rb
t b̄+ Rm

t m̄− Rd
t d̄+ χ̄t(m̄, d̄, ω)

]1−γ} 1
1−γ

, (22)

b̄+ m̄− d̄ = 1,

d̄ ≤ κ
(
b̄+ m̄− d̄

)
.

(ii) The value function Vt(e) is

Vt(e) = vt (e)1−γ − 1/(1− β)(1− γ), (23)

where vt is

vt =
1

1− γ

[
1 +

(
β(1− γ)Ω1−γ

t vt+1

) 1
γ

]γ
. (24)

(iii) The optimal bank dividend–equity ratio c̄ ≡ c/e is

c̄t =
1

1 + [β(1− γ)vt+1Ωt
1−γ]1/γ

. (25)

(iv) Policy functions for {b̃, m̃, d̃} from (18) can be recovered from the optimal portfolio weights{
b̄, m̄, d̄

}
obtained in (22) and consumption decisions {c̄} obtained in (25):

b̃t+1(et) = Ptb̄t(1− c̄t)et,

m̃t+1(et) = Ptm̄t(1− c̄t)et,

d̃t+1(et) = Ptd̄t (1− c̄t)et.

Key to this proposition is that the budget constraint is linear in e and the objective is homoth-

etic. Alvarez and Stokey (1998) show that the standard properties of dynamic programming on

bounded spaces apply to homogeneous dynamic programming problems such as the ones here.

This implies that the solution here is unique and policy functions are linear. Although there is

a kink in the liquidity yield function, the bank’s problem is homethetic and thus satisfies these

properties.

Equation (22) represents the liquidity management problem. This problem consists of the

choice of portfolio weights that maximize the risk-adjusted return on equity. The certainty
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equivalent portfolio value of the bank can be expressed as the sum of the returns of the individual

assets plus the liquidity cost that depends on the surplus of reserves. The portfolio of the bank

pins down a real demand for reserves in addition to a real demand for deposits and a real supply

of loans. In the next section, we present properties of this portfolio problem.

An important implication of Proposition 3 item (iv) is that policy functions are linear in

equity. As a result, two banks with different levels of equity are scaled versions of a bank with

one unit of equity. This implies that the distribution of equity is not a state variable. Rather,

the aggregate equity is a sufficient state for the banking side of the model.16 As we show in

Appendix I, aggregate bank equity evolves according to

Et+1 = (Rb
t+1b̄t −Rd

t+1d̄t)Et(1− c̄t) +
M̃t+2 + (BFed

t+2 −BFed
t+1 (1 + ibt+1))

Pt+1

. (26)

This law of motion is obtained after combining the banks and the Fed budget constraints,

and using market clearing for reserves and interbank market loans. This law of motion states

that the equity of the bank tomorrow is given by the claims against firms (loans) net of the

claims owed to households (deposits), and the net claims with the Fed plus transfers, which are

determined by next-period balance-sheet policies.

Price-Level Determinacy. The equilibrium price level Pt is determined by a quantity-theory

equation that resembles classic money demand but where the demand for money emerges from

the real reserve balance of banks:

Pt · m̄t(1− c̄t)
ˆ
ejtdj︸ ︷︷ ︸

demand for real balances

= Mt︸︷︷︸
supply of nominal balances

. (27)

In this quantity equation, the left-hand side is the demand for real reserve balances in nominal

terms. The real demand for reserves is given by the value of equity after paying dividends,

(1− c̄t)
´
ejtdj, times the portfolio weight on reserves, m̄t, as stated in Proposition 3. The reserve

demand, m̄t, follows from the liquidity management portfolio problem Proposition 3 (item i),

which encodes future information on returns and policies. Given the nominal supply of reserves

16Studying differences between large and small banks is beyond the scope of this paper. See Corbae and
D’Erasmo (2014) and Corbae and D’Erasmo (2013) for a model where bank size matters.
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set by the Fed, this quantity-theoretic equation determines the price level.17

There is, of course, a connection with cash-in-advance and money-search frameworks. Those

models feature a demand for real balances that emerges from a transactions demand. Here,

instead the reserve demand depends on the use of reserves as a settlement instrument for the

interbank market.

3.3 Portfolio Management and Liquidity Premia

We analyze the bank’s portfolio problem. As outlined in Proposition 3 (item i), the portfolio

management problem consists of choosing portfolio weights on loans b̄, reserves m̄, and deposits

d̄ to maximize the risk-adjusted return on equity:

Re ≡ Rbb̄+ Rmm̄−Rdd̄+ χ̄t(m̄, d̄, ω).

If we substitute out loans, b̄, from the budget constraint and suppress time subscripts, we have

that the bank’s objective is

max
d̄∈[0,κ]

m̄∈[0,1+d̄]

Eω


 Rb︸︷︷︸

Return on Loans

−
(
Rb −Rm

)︸ ︷︷ ︸ m̄
Liquidity Premium

+
(
Rb −Rd

)︸ ︷︷ ︸ d̄
Loan-deposit spread

+ χ̄t(m̄, d̄, ω)︸ ︷︷ ︸
Liquidity Yield


1−γ


1

1−γ

.

If the bank only invests in loans and d̄ = m̄ = 0, it obtains a return on equity equal to the

return on loans, Re = Rb. If the return on loans exceeds the return on deposits, issuing deposits

provides an external finance premium of Rb − Rd. However, it also exposes the bank to greater

liquidity risk. Banks can self-insure against the liquidity risk by holding more reserves because

the penalty from a deficit in reserves is decreasing in m̄ (i.e., χ
(
m̄, d̄, ω

)
is increasing in m̄).

Leverage Decision. We have the following first-order condition for deposits:

Rb −Rd = Eω

[
(Re

ω)−γ ·
∂χ̄t

(
m̄, d̄, ω

)
∂d̄

]
+ µ

κ

1 + κ
, (28)

17With binding capital requirements, the price level remains determined at steady state. Bank wealth and
liquidity management pin down the aggregate demand for reserves. In fact, in a steady state without withdrawal
risk, the price level can be obtained analytically: equity is at steady state only when its return is equal to 1/β.
Without risk, banks maintain reserves equal to the reserve requirement and steady state equity and portfolios are
determined in closed form. This leads to a static quantity equation. In the absence of capital requirements, and
with positive interest on reserves, which eliminates the spread between loans and reserves, there is indeterminacy.
See Ennis (2014) for a thorough analysis of these aspects.
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where µ denotes the Lagrange multiplier on the capital requirement constraint. The loan-deposit

spread (28) involves two terms. The first term is the risk-weighted marginal cost of issuing

depositsincluding the expected payments in the interbank market. The second term is the shadow

cost of tightening the capital requirement constraint.

Liquidity Decision and Liquidity Premium. When portfolio weights on loans and reserves

are strictly positive, we have an expression for the liquidity premium (LP), the spread between

loans and reserves:

Rb −Rm︸ ︷︷ ︸
liquidity premium

=

Eω
[
(Re

ω)−γ · ∂χ̄t(m̄,d̄,ω)
∂m̄

]
Eω (Re)−γ

,

= Eω

[
∂χ̄t

(
m̄, d̄, ω

)
∂m̄

]
︸ ︷︷ ︸
interbank market return

+

COVω

[
(Re)−γ ,

∂χ̄t(m̄,d̄,ω)
∂m̄

]
Eω
[
(Re)−γ

]︸ ︷︷ ︸
risk premium

. (29)

The liquidity premium can be decomposed into two components. The first component, which is

the first term on the right-hand side of (29), is the interbank market return. This term represents

the expected marginal benefit of holding an extra unit of reserves in the interbank market. Using

the definitions for the liquidity yield and the reserve surplus, this term can be expressed as

Eω

[
∂χ̄t

(
m̄, d̄, ω

)
∂m̄

]
=

1

1 + πt

[
χ+
(
1− F

(
ω∗(m̄, d̄)

))
+ χ−F

(
ω∗(m̄, d̄)

)]
,

where ω∗(m̄, d̄) is the threshold at which the reserve balance changes from surplus to deficit for

a given portfolio ¯{m, d̄}. Given a withdrawal shock ω, an additional unit of reserves allows the

bank to save χ− if the bank is in deficit, which occurs with probability F (ω∗), and allows the

bank to earn χ+ if the bank is in surplus, which occurs with probability (1− F (ω∗)).

The second term in the LP is the liquidity risk premium. Since ∂χ̄t/∂m̄ is decreasing in

ω and the return on equity, Re, is increasing in ω, the risk premium is positive. Intuitively,

reserves provide a higher return when the bank suffers adverse withdrawal shocks. This premium

disappears if banks are risk neutral or if there is no kink in the liquidity yield function. In the

latter case, ∂χ̄t/∂m̄ becomes a constant, and hence the covariance term vanishes.

The decomposition of the liquidity premium clarifies the role of the friction in the interbank

market. In a Walrasian limit, χ+
t = χ−t , so the kink and therefore the risk premium disappear.
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Figure 2: Description of Liquidity Management Problem

Changes in the volatility or other higher moments of ω have no effects on the LP and consequently

do not affect bank lending decisions.18

Graphical illustration. The key trade-off characterized by the first-order conditions can be

understood visually through Figure 2. The x -axis in the figure corresponds to the reserve balance

s of a given bank. Above the x-axis we plot χ(s), the total interest earned or paid in the

interbank market as a function of the reserve surplus. The slope of this liquidity yield is given by

the market conditions and the Fed’s policy. The reserve surplus depends on its portfolio choices

in the lending stage and the realization of the withdrawal shock. Below the x-axis we plot the

probability distributions for s for two different choices of {m̄, d̄}. The region to the left of the

18See Bianchi and Bigio (2017) for a discussion of the Walrasian limit of the interbank market. In a Walrasian
limit, the federal funds rate is always iior(when there is an aggregate surplus of reserves) or idw (if there is an
aggregate deficit of reserves).
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y-axis represents the probability of ending up in deficit. The figure depicts how, by increasing m,

the distribution, depicted with a dashed red line, shifts to the right, meaning that surpluses are

more likely. When a bank chooses between lending more or holding more reserves, it compares

the spread between the return on loans and reserves with the increase in the probability of ending

in a surplus. With risk aversion, probabilities are weighted by marginal utilities. This is precisely

the trade-off expressed condition (29). In summary, the LP indicates that banks are willing to

sacrifice the premium on illiquid assets to insure against the possibility of adverse withdrawal

shocks.

3.4 Monetary Policy Analysis

This section analyzes the transmission of monetary policy and highlights the central role played

by the liquidity premium. We show how Fed policies alter the liquidity premium and carry real

effects, even in the long run. In addition, we provide conditions under which certain Fed policies

reproduce classic neutrality results.

It is useful to start with conditions under which the liquidity premium vanishes (i.e., if

Rb
t = Rm

t ). When the liquidity premium vanishes, we say that the banking system is satiated

with reserves. Satiation is attained under one of the following two conditions.

Proposition 4 (Conditions for satiation). Banks are satiated with reserves at t if either (i)

idwt = iiort or (ii) m̄t ≥ ρωmind̄t holds.

Under condition (i), the Fed lends reserves at the discount window at the same rate it re-

munerates reserves, iiort . This means that the cost of the reserve deficit is zero, and in that case

there is no liquidity risk and hence no premium.19 Under condition (ii), banks hold sufficient

reserves to be in surplus for any withdrawal shock. For condition (ii) to hold, the Fed must carry

operations that ensure that this is an equilibrium outcome.20

Before considering policies that deliver real effects via changes in the liquidity premium, we

establish a classic neutrality result.

19Remunerating reserves at the same rate of deposits, rather than loans, is not sufficient to ensure satiation in
the presence of capital requirements because a wedge would remain between the return on reserves and loans, as
implied by (29) and (28).

20We do not model why the Fed might choose to induce a positive liquidity premium. We simply take as given
that this is a standard policy instrument to affect credit creation. This can be motivated by a fire sale externality
that arises because of a marked-to-market capital requirement constraint (see, e.g., Stein (2012) and Bianchi and
Mendoza (2017)). Another natural motivation for a policy that induces a positive premium is aggregate demand
management for macroeconomic and price stability.
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Proposition 5 (Conditions for Policy Neutrality). Consider the real asset positions {Bt/Pt, Dt/Pt,Mt/Pt}
in a stationary equilibrium induced by a Fed policy with a balance sheet {Mt+1,Wt+1, Bt+1} that

grows at rate g and nominal policy rates {idwt , iiort }. Then,

i) An increase in the initial balance sheet by a multiple k > 0 increases the price level by k

without any effects on the real asset positions in the stationary equilibrium.

ii) Away from satiation, an increase in g has no effects on real asset positions if and only if

real policy rates {1+iiort
1+g

,
1+idwt
1+g
} are constant.

Part i) establishes long-run money neutrality. A qualification for this neutrality result is that

it applies only to the stationary equilibrium. Because loans and deposits are denominated in

nominal terms, the change in policy affects the initial price level and, through this, it affects

the real equity of the bank. In the long run, however, changing the nominal balance sheet of

the Fed by a multiple k leads to the same initial stationary equilibrium. Part ii) is concerned

with the issue of super-neutrality or non-super-neutrality. If nominal rates are adjusted by the

increase in inflation, then there are no real effects. Instead, an increase in the growth rate of

the nominal balance, for given nominal rates idwt , iiort , affects the real return on reserves and the

discount window, and hence delivers real effects.

An important distinction relative to classical results with cash-in-advance constraints as well

as the New Keynesian literature is that permanent increases in inflation do affect real returns.21

The reason is that in those environments, the real interest rate is the rate of time preference in

a stationary equilibrium. Given the real rate, there is a one-to-one relation between inflation

and nominal rates through the Fisher equation. The endogenous liquidity premium that arises

because of the frictions in the interbank market breaks this tight link and allows the Fed to affect

real rates in the long-run . Next, we consider how open-market operations that exchange loans

for reserves have real effects.

Proposition 6 (Real Effects of Open-Market Operations). Consider a competitive equilibrium

induced by balance sheet policies {Mt+1,Wt+1, Bt+1} and policy rates idwt , iiort . Consider also a

time-zero open-market operation of size ∆BFed
0 reversed the following period, that is, a policy

sequence {M̃t+1, W̃t+1, B̃t+1}, such that

1. B̃Fed
1 = BFed

1 + ∆BFed , M̃Fed
1 = MFed

1 + ∆MFed, and ∆MFed = ∆BFed ≥ 0.

2. {Mt+1,Wt+1, Bt+1} = {M̃t+1, W̃t+1, B̃t+1} for all t > 1.

21In these environments, changes in the permanent rate of inflation affect the economy because inflation acts
like a tax on certain transactions carried out in non-interest-bearing assets or because of price stickiness.
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The operation is neutral if and only if banks are satiated with reserves at t = 0 in the equilib-

rium induced by {Mt+1,Wt+1, Bt+1}.

When banks are satiated with reserves, open-market operations are irrelevant. For every unit

of loans the Fed purchases, the banks reduce their holdings of loans by one unit. Away from

satiation, however, open market operations alter the liquidity premium and induce a change in

the total amount of loans.

Overall, our model articulates a credit channel of monetary policy. The model puts liquidity

management by banks at the center stage of the transmission of monetary policy. Shocks to

withdrawals of deposits and frictions in the interbank market create a special role for central

bank reserves. Importantly, withdrawal risk generates a precautionary motive for holdings for

reserves well and above the amounts required by regulation. Having a monopoly over the supply

of reserves allows monetary policy to alter the volume of credit by shifting the liquidity premium.

Next, we describe the calibration of the model and proceed with a quantitative application.

4 Quantitative analysis

4.1 Calibration

We calibrate the model so that its steady state fits regularities of the pre-crisis US financial

system, in particular, the federal funds market. We take 2006-2007, the last two years before the

recent US financial crisis, as the reference period.

Model period. We define the time period to be a month. In the US, the Fed funds market

operate daily, and reserve requirements are computed by averaging end-of-day balances over

a two-week window. On the other hand, bank portfolio decisions and loan sales are likely to

take longer than two weeks. Capturing these institutional details would require a more complex

structure with multiple balancing stages and more complicated reserve requirements. We view a

monthly model as a reasonable middle ground between the daily nature of the Fed funds market

and the lower frequency of bank decisions. The choice of a monthly model is also practical once

we turn to the application in Section 7: data is available only monthly and having a lower time

period would complicate the numerical implementation. As long as interbank-market positions

are sufficiently persistent within lending stages, a higher frequency of interbank trades will not

lead to quantitatively significant differences in our model.
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Distribution of withdrawal shock. For the distribution of the withdrawal shocks to de-

posits, Φt, we assume 1+ω follows a log-normal distribution with standard deviation σ and where

the mean is chosen so that given σ, ω has a zero mean. The calibration of σ is explained below.

A log-normal distribution is convenient because it delivers a distribution of excess reserves that

fits the empirical counterpart.

Parameter values. The values of all parameters are listed in Table 1. In summary, we need to

assign values to 16 parameters that we divide in two subsets
{
g, iior, idw, Bg, κ, ρ, β, γ,Θb,Θd, ε, η

}
and {ζ, σ, λ}. The parameters in the first subset are chosen independently of model simulations:

we set the nominal growth of reserves g to 2 percent to obtain a steady state inflation rate

of 2 percent. We set iior = 0 because the Fed did not pay interest on reserves prior to 2008.

Accordingly, we also set Bg = 0, in line with the close to nil holdings of private securities by

the Fed before the crisis. The discount window rate is set to iw = 6 percent in annualized

terms, which was the nominal primary credit discount rate during 2006. We set the bargaining

parameter to η = 0.5 as the baseline value. An equal bargaining power to banks in surplus and

deficit leaves the federal funds rate in the middle of the corridor when the market tightness is

close to one. We set ρ = 0.10, which is the reserve requirement that applies to roughly the entire

banking system.22 We set the capital requirement to κ = 0.10 to have a capital adequacy ratio

of 9 percent, in line with Basel regulation.23

Two parameters, {β, γ}, govern banks’ preferences. The discount factor β determines the

dividend rate, which at steady state must be equal to the return on equity. Accordingly, we

set the annualized discount factor to match an annual return on equity of 8 percent, which

is approximately the sum of common and preferred dividends over equity (i.e., β = 1 − (1 +

0.08)1/12 = 0.993). We choose 1 for the value of the intertemporal elasticity of substitution, γ.

A unit value has the advantage of simplifying the computations by making dividend payments

only a function of the level of equity, as substitution and income effects cancel out.

The calibration of the loan demand and deposit supply schedules requires four parameter

values: two scale and two elasticity parameters. The scale of the deposit supply Θd is set to

obtain an annualized real deposit interest rate of 1 percent, which is in the range of the interest

22For banks with net transactions over USD 48.3 million as of 2006, the reserve requirement is 10 percent (see
Federal Reserve Bulletin, Table 1.15 https://www.federalreserve.gov/pubs/supplement/2006/02/table1 15.htm).

23Basel regulation features various capital requirements that banks simultaneously need to satisfy, some of
which feature different risk weights when computing the value of banks’ assets. We see 9 percent as appropriate
given these different requirements. Notice that implicitly we are applying the same risk weights to loans and
reserves, which is sensible in our model because both reserves and loans are risk free. Below, we discuss an
extension of the model with risky loans.
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rate on deposits, according to balance sheet data (Drechsler, Savov, and Schnabl, 2016). The

scale of the loan supply Θb is normalized so that the level of equity is 1 at steady state. Neither

elasticity plays a role at steady state, but these elasticities do matter in the transitions. Because

the capital requirement is binding at steady state, the elasticity of the deposit supply does not

have an impact on the banks’ portfolios after an unanticipated shock. For simplicity we set it

equal to the elasticity of loan demand, to be calibrated below. In fact, the only effect of the

elasticity of the deposit supply is on the speed of convergence of bank equity to its steady state

level. If equity is below steady state, a relatively lower elasticity leads to a bigger contraction

in the interest rate of deposits, which increases banks’ profits and speeds up convergence. The

elasticity of loan demand also affects the speed of convergence in a similar way, but in addition

is more important for the response in the volume of loans after a shock.24 We calibrate this

elasticity below.

The second set of parameters, {λ, ζ, σ}, is chosen to match empirical features of the federal

funds market. The three moments we target are: (i) the ratio of discount window loans to

reserves; (ii) the distribution of excess reserves at the beginning of a trading session; and (iii) the

response of bank credit to an increase in the federal funds rate. While this is a joint calibration

exercise, each moment is particularly sensitive to a certain parameter, as we explain below.

The parameter λ, governs how quickly the interbank market trades, and hence is set to

match the fraction of discount window loans given by the Fed as a fraction of the total amount

of reserves. In 2006, this ratio was equal to 2 percent, which is obtained by setting λ = 2.1.

Next, we describe the choice of the volatility parameter σ. Afonso and Lagos (2014) describe

how the distribution of excess reserve balances evolve throughout a typical federal funds trading

session. Because their data are daily, we implicitly assume that the distribution within a business

day is the same as the distribution within a month, the model frequency. The volatility of the

withdrawal shock is set to minimize the discrepancy between the distribution of excess reserves

at the beginning of each trading session in the model vis-à-vis the empirical counterpart. To

achieve this, we follow a two-step iterative procedure. First, given σ, we set the value of λ that

delivers the targets for discount window loans. Second, we compute the mean squared difference

between the distribution of excess reserves in the model and the data, and pick the value of σ

that minimizes this discrepancy. The resulting value is σ = 5 percent. The resulting distribution

of the withdrawal shock and the equilibrium excess reserves vis-à-vis the empirical distribution

24In simulations in which the capital requirement constraint does not bind, there are effects on banks’ portfolios
on impact, as variations in the interest rate on deposits affect banks’ willingness to leverage up.
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Table 1: Calibration

Value Source/Target

Capital requirement κ = 10 Regulatory parameter
Discount factor β = 0.993 Dividend ratio = 8%
Risk aversion γ = 1 Constant dividend-equity ratio
Reserve requirement ρ = 0.1 Regulatory parameter
Deposit supply intercept Θd = 9.6 Annual deposit rate = 1%
Loan demand intercept Θb = 10.4 Unit steady state equity
Discount window rate (annual) idw = 6% 2006 value
Interest on reserves (annual) iior = 0% 2006 value
Bargaining parameter η = 0.5 Baseline value
Inflation g = 0.085% Long-run inflation target=2%

Matching friction λ = 2.1 DW to reserves W/M =2%
Volatility σ = 0.05 Reserve-balance distribution
Loan demand deposit supply elasticities ζ = −ε = 25 Bank credit response to policy rate

is presented in panel (b) of Figure 3.

Finally, the elasticity of loan demand is set to be consistent with vector autoregression ev-

idence on the response of bank credit to a monetary policy shock.25 In Bernanke and Blinder

(1988), a 1 percentage point increase in the nominal policy rates produces a decline in bank

credit of 2 percent within a one-year horizon. We replicate this response in our model by settting

ζ = 25. Given the monthly frequency, this implies that a 1/12 percentage point increase in the

rate of loans, reduces the stock of loan demand by 1/12∗25 ∼ 2%.

5 Sensitivity

We first show that the model fits the targeted moments in steady state. Panel (a) of Figure

3 shows the calibrated distribution of withdrawal shocks. The standard deviation is about 5

percent. Panel (b) shows the fit to the distribution of excess reserves in the data in Afonso and

Lagos (2014)—recall that volatility is calibrated to minimize the distance between the model and

the empirical distributions. Panel (b) also shows how increasing or reducing the volatility of the

shock by 50 leads to a distribution of excess reserves that departs further from the data. Panel (c)

shows the mapping between the severity of the friction in the interbank market, parameterized

by λ, and the amount of discount window loans as a fraction of total reserves —our first target.

25An alternative to our macro approach to discipline the elasticity of loan demand would be to use loan-level
demand elasticities. The challenge is to disentangle supply from demand effects.
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Figure 3: Shock distribution, parameters and moments

Note: For panel (b), the distribution of excess reserves in the model and the data has been
normalized by the mean levels. Data source: Afonso and Lagos (2014).
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Figure 4: Sensitivity to matching friction λ.
Note: The liquidity premium (LP) is expressed as deviations from the steady state liquidity
premium associated with each value of λ. Solid dots are the baseline values of λ in our calibration.
For the monetary policy shock, we consider an increase in the discount window rate that, at the
baseline calibration, produces an increase of 100 annualized bps in the Fed funds rate —the
required increase in the discount window is 300 bps. For the effects of volatility, we consider an
increase volatility of 10 percentage points, which is the increase in volatility that we estimate in
our quantitative application of Section 7.

As λ rises, the interbank market becomes more efficient and there is less use of the discount

window. At λ = 2.1, the model matches the empirical target of 2%.

The model also generates long-run moments of other (non-targeted) important statistics that

are in line with the data (corresponding to US 2007 values). In particular, the model generates

a volume of interbank market loans as a fraction of deposits of 1.6% (versus 1.8% in the data).

In addition, the liquidity premium, is 2.8% (versus 3.8% in the data). In the data, we measure

the liquidity premium as the difference between the return of an illiquid asset and the interest

on reserves. Following Nagel (2016), we treat the three-month general collateral repurchase

agreements as the data analogue of the return on illiquid assets.

Next, we show how monetary policy shocks and withdrawal volatility shocks affect the econ-
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omy as a function of the magnitude of the friction of the interbank market, as captured by λ.

We compute transitional dynamics away from steady state, in response to a one-period shock,

and report the impact effects on the quantity of loans and the liquidity premium.26 Panels (a)

and (b) of Figure 4 show how the effects on liquidity premium vary for a range of λ for the

two shocks. This figure shows how the response to these shocks is amplified as the value of λ is

reduced (i.e., the friction in the interbank market becomes stronger).

6 Dynamic Responses

This section studies the economy’s response to shocks that are associated with the hypotheses

described in the introduction. The goal of the exercise is to show how the model works and to

provide a basis for the identification that will be examined in more detail when we turn to infer

several shocks from the data in Section 7.

General details of the experiments. All the shocks are unanticipated and arrive at t = 0.

Their paths are deterministic thereafter. In all cases, shocks follow an autorregressive process

εt = %εt−1, ∀t ≥ 1, where ε0 is expressed as percentage deviations from the steady state. We set

% = 0.8 so that the half-life of all shocks is three years. The size of the shocks we consider are in

the range of those we infer from the data in Section 7.

To compute the transitional dynamics in response to the shocks, we also need to specify the

Fed policy. We assume that the Fed keeps a constant growth rate for reserves, MFed, equal to

steady state inflation. In addition, the Fed adjusts the nominal discount window rate idw to keep

a fixed real discount window rate and sets iior = 0. This is a natural benchmark because it helps

us to isolate the endogenous response of lending and deposit creation to different shocks.

In this section, for each experiment, we report transitions for real equity and loans (in per-

centage deviations from the steady state), discount-window and interbank-market loans, the

liquidity premium and liquidity ratio (in levels), and inflation (expressed as a simple deviation

from steady state). The liquidity premium and inflation are annualized.27

Naturally, transitions depend on the initial level of equity, and we initiate equity so that real

equity after the shock equals its steady state value, which we normalize to one. The reason for

26In this excercises, we assume that the Fed’s policy is to keep inflation at its target value by varying the
nominal quantity of reserves. This implies that the real return on reserves stays constant, and that variations in
the liquidity premium are accounted exclusively by variations in the real return on loans.

27The responses to the full set of variables, and for the alternative policy where the Fed varies the amount of
reserves to maintain an inflation target is available from the authors upon request.

31



this normalization is the following. Because assets are denominated in nominal terms, changes

in the initial price level—as a result of shocks—alter the real value of equity. If we initiate the

economy at steady state and the price level adjusts upon the arrival of a shock, equity adjusts

automatically away from steady state. By setting E0 = Ess, we can distill the direct effect of

each shock from its indirect effect via the valuation of equity.28

6.1 Transitions after Shocks to Bank Funding

Next, we study the effects of two shocks that affect the bank’s ability to borrow: a shock that

lowers the bank’s equity and a shock to the capital requirement.

Equity Losses/Convergence. We begin with the analysis of a transition to steady state

when the initial level of equity is 1 percent below steady state. This shock captures an unexpected

rise in non-performing loans, for example. Because equity is the only endogenous state, these

transitional dynamics are important in understanding the model’s internal dynamics after all

other shocks. The responses of some key variables are reported in Figure 5.

How does the economy return to steady state when equity is below steady state? To un-

derstand these dynamics, recall that Proposition 3 demonstrated that bank policies are linear

in equity. This means that if portfolios weights are kept constant, a 1 percent drop in equity

translates into a 1 percent contraction in all, the supply of loans, the demand for deposits, and

the demand for reserves. For the loans market to clear after a contraction in the loan supply,

an increase in the return for loans is needed. Similarly, the deposit rate must fall in order to

clear the deposit market. Finally, for the reserve markets to clear, the initial price level needs to

jump above steady state. With this increase in the price level, the real supply of reserves falls

and equilibrium is restored.

Over time, bank equity increases: this is because the real lending rate rises as the deposit

rate falls.29 This greater spread makes intermediation more profitable. Over time, we can also

see that the price level reverts to its stationary path and deflation keeps the real return on

reserves relatively high. The overall effect of the shock to bank equity on the portfolio weights

for reserves and loans—and thus the liquidity ratio—depends on the elasticities of the loan

28A constant time-zero equity can be produced by the model if (a) all the assets and liabilities are indexed to
inflation or (b) a tax/transfer from households is introduced to keep the bank equity constant.

29Appendix J provides parameter conditions that guarantee monotone convergence to a unique steady state
for a policy where the Fed induces satiation and earns no profits from its portfolio. We expect that for small
distortions and shocks, the exercises has the same properties, a behavior that we verified numerically.
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Figure 5: Transition after Equity Loss

Note: equity, loans, discount window loans, and interbank market are in real terms. Equity and
loans are expressed in percentage deviations from steady state, while discount window loans,
and interbank market are in levels. Inflation is expressed as a deviation from steady state.

demand and deposit supply. For our baseline calibration, the real quantity of reserves falls less

than the real quantity of loans. This, in turn, results in a higher liquidity ratio and a lower

liquidity premium. The latter result is inconsistent with the observed patterns during the crisis,

as discussed in Appendix L.30

Capital Requirements. Next, we analyze a shock that increases the required level of equity

by considering a reduction of 10 percent in κ. (Figure 13 in Appendix A reports the simulations.)

The shock produces an immediate 10 percent decrease in bank leverage, which, like the equity

shock, reduces the funds available to the bank. On impact, the general equilibrium effects are

similar to those after equity losses and produce the same effects: a reduction in the supply of

loans, a loan rate increase, and a deposit rate decline, as well as a contraction in the demand for

reserves, which again produces a jump in the price level, an increase in the liquidity ratio and a

fall in the liquidity premium. Immediately after the shock, equity grows beyond its steady state

30For lower loan demand elasticities, we can produce a decrease in the liquidity ratio. However, the liquidity
ratio and the liquidity premium always move in opposite directions, which again is inconsistent with the observed
patterns during the Great Recession. For example, consider the extreme case of when loan demand is perfectly
inelastic at some quantity B. Then, the real volume of loans should be unaltered at equilibrium by the decline
in equity. Since B̄ = βb̄tEt/Pt, the equilibrium can only be restored with a decrease in the liquidity ratio, with
an increase in b̄t. This in turn would lead to an increase in the liquidity premium. For higher elasticities, the
phenomenon is reversed.
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value. This happens because the borrowing-lending spread increases. Eventually, the increase

in equity overcomes the tightening of capital requirements and the sign of the effects reverses

before the economy returns to steady state. Since the pattern of capital requirement shocks is

similar to that of a decline in bank equity, neither hypothesis can be the predominant factor that

explains the data.

6.2 Transitions after Shocks to Interbank Markets

We consider two sources of disruptions in the interbank market: a shock to the volatility of

withdrawals and a shock to the matching efficiency λ. Figure 6 presents the transitions to these

two shocks.
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Figure 6: Transition after interbank market shocks

Increased Volatility. For a given portfolio, the increase in volatility generates an increase

in liquidity risk. In response, banks increase their buffer of reserves and reduce the supply of

lending. Since the Fed keeps the nominal supply growing at a constant rate, the higher demand

for reserves is accommodated with a drop in the price level. Likewise, the decline in the loan

supply generates an increase in the loan rate. In the aftermath of the shock, equity declines

because banks allocate a lower fraction of their portfolio to loans, the high-return asset. We

also observe that banks borrow more from each other and from the Fed, as a result of the larger

withdrawal shocks that are realized (panels f and g). As the shock dissipates, the dynamics

become similar to the case when equity is below steady state.
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One important takeaway is that the increase in deposit instability can explain the effect on the

liquidity premium and liquidity hoarding, but in contrast to the crisis, it leads to a counterfactual

increase in the activity of the federal funds market. According to these predictions of the models,

the observed pattern in the crisis appears to call for a shock to the efficiency in the interbank

market, λ, which we explore below.

Matching Frictions. Like the increase in volatility, more frictions in the interbank market

generate hoarding of reserves. Qualitatively, the responses are therefore similar with an important

difference: while an increase in volatility raises trade in the interbank market, the reduction in

λ has the opposite effect (panel g). In the following section, we calibrate paths of shocks to σ

and λ to match the observed features of the interbank market and show their contribution to

the decline in lending.

6.3 Transitions after Shocks to Credit Demand
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Figure 7: Transition after credit demand shock

The effects of a negative credit demand shock are captured through a decline in Θt. Figure

7 illustrates the effects of a negative temporary shock to loan demand. The effects contrast

sharply with the effect after the shocks considered above because, there, the supply rather than

the demand for loans contracts. As a result, a key difference is that the demand shocks produce a

decline in the return on loans. Since loans become less attractive, this leads to a higher liquidity

ratio, and lower discount window and interbank market loans.
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6.4 Transitions after Policy Shocks

Interest on Reserves. The next experiment presents a policy increase in the interest on

reserves, iiort , from 0 to 100 basis points in annualized terms. Given that the nominal return

on reserves increases, banks respond by allocating a larger fraction of their portfolio to reserves.

Since the supply of reserves is fixed, the price level declines. Simultaneously, because of this

desired substitution, the supply of loans contracts.31 To restore market clearing in the loans

market, the return on loans increases. As the liquidity ratio increases, there are fewer interbank

market loans and discount window loans. We can also observe a decline in the liquidity premium.

Figure 14 in Appendix A illustrates the transition.
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Figure 8: Transition after Open-Market Operations

Open-Market Operations. The final policy experiment is an open-market operation where

the Fed exchanges reserves for loans. The Fed’s real purchases of loans are shown in Panel (h)

of Figure 8. The Fed’s portfolio profits are rebated back to banks every period. In essence, this

operation exchanges illiquid assets for liquid assets. The overall effect is to increase the total

outstanding loans in the economy, as shown in Figure 8. There is a crowding-out effect of private

holding of loans, though: as the Fed’s purchases put downward pressure on the return on loans,

banks reduce the amount of loans they provide. Bank equity increases, reflecting the larger

overall investment in loans and the fact that the Fed rebates profits to banks. Finally, there are

31If the capital requirement constraint was not binding, banks could end up taking more deposits and increasing
lending.
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Table 2: Summary of Response to Shocks

Loans Reserves Interbank Loans DW Loans LP

Data ↓ ↑ ↓ ↑ ↑

Equity loss ↓ ↓ ↓ ↓ ↓
Capital requirement ↓ ↓ ↓ ↓ ↓
Volatility ↓ ↑ ↑ ↑ ↓
Matching efficiency ↓ ↑ ↓ ↑ ↑
Credit demand ↓ ↑ ↓ ↓ ↑
Interest on reserves ↓ ↑ ↓ ↓ ↓
Note: The table lists the effects of shocks on different variables on impact.

inflationary effects from this policy resulting from the increase in the supply of reserves.

6.5 Summary and Discussion of Transitional Dynamics

Table 2 summarizes the response of the economy to different shocks considered. For reference,

we also include a row with the movements observed in the data during the crisis. As the table

shows, several of these shocks are candidates for explaining the decline in lending during the

crisis. However, these shocks have different implications for other key variables. in the In the

next section, we exploit the lessons from these transitional dynamics, to examine the shocks that

led to the collapse in lending during the crisis.

7 Inspecting the Decline in Lending

We now turn to the quantitative application. We draw on the lessons from the transitional

dynamics to quantitatively examine the causes of the joint contraction in lending and increased

liquid holdings by banks during the 2008 crisis in the United States. We consider four hypotheses:

(i) low bank equity, (ii) precautionary holdings of reserves, (iii) Fed policies, and (iv) weak credit

demand. We discuss other alternatives in Section 8. Details on the motivating facts are discussed

in Appendix L. The data sources are described in Appendix K.
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7.1 Procedure

To weigh each hypothesis, we feed an associated sequence of shocks to parameters into the model.

We should note that while these are transitional dynamics, i.e., not shocks in the technical

sense, we still refer to “shocks” for the ease of exposition. Hypotheses (i) and (iii) are relatively

straightforward to evaluate by feeding an observable path for equity losses (hypothesis i), and Fed

policies (hypothesis iii) into the model.32 Evaluating hypotheses (ii) and (iv) is more challenging

because these shocks are unobservable. To evaluate hypothesis (ii), we associate it with shocks

to the withdrawal volatility and the matching efficiency, whereas for hypothesis (iv), we associate

it with a shock to loan demand. To discipline these unobservable shocks, we infer the sequences

of shocks that allow the model to reproduce the time series for the volumes of discount window

loans, interbank market loans, and bank credit.

We consider the period February 2008 through February 2010, which centers around the

Lehman Brothers’ bankruptcy. We thus have 25 months and three shocks so overall there are

25x3=75 shock values to back out from a numerical procedure. Because we have as many shocks

as observables, the model can, in principle, perfectly reverse engineer the sequence of values

of that replicate the path of the series in the data.33 Below we explain how the model indeed

renders identification. Throughout the experiment, we assume that the Fed keeps inflation at the

steady state value by varying the nominal quantity of reserves. This assumption is numerically

convenient because, with it, we do not need to solve for the initial price level as we search for

shocks. This policy is also consistent with the stable inflation path we observe in the data.

7.2 Identification

We have three shocks to match three series. To explain how we can identify the matching friction,

volatility and loan demand shocks, we take two shocks at a time and plot the combinations of

the value of the shocks that deliver the same data target. When we produce plots, we fix the

third shock at its steady state value. Our goal is to show how the two shocks uniquely pin down

two moment targets.

32The increase in capital requirements is part of hypothesis 1. However, capital requirements turn out to not
play an important role for two reasons: First, the effective increase in capital requirements takes place starting
in 2013 based on Basel, and even the anticipation of these policies has negligible effects. Moreover, if there had
been a tightening of market-based constraints, this would have been offset in our model because the other shocks
we estimate make these capital requirements slack for many periods.

33 This is not guaranteed, however, because there is a limited support of the realization of the endogenous
variables that the model can match. For example, as λ becomes large, the interbank market behaves similarly to
a Walrasian market, in which case volatility shocks do not affect credit.
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Figure 9: Identification for Quantitative Application

Let us use Panel (a) in Figure 9 as a first example. Panel (a) shows combinations of matching

friction λ and volatility σ that deliver the same volumes of trade in the discount window (the

Constant DW curve) and interbank market (the Constant Interbank curve).34 As we can see,

increasing the matching efficiency requires an increase in volatility to keep the discount window

loans constant, which reflects an upward-sloping Constant DW curve. The opposite relation

holds for the Constant Interbank curve: since an increase in matching efficiency increases the

interbank market volume, volatility needs to decrease to keep the interbank market constant. As

a result, there is only one crossing between the two curves. A single shock combination produces

those two moments.

Panels (b) and (c) show that, similarly, one can separate the loan demand and volatility,

and the loan demand and matching efficiency. As loan demand decreases, pushing down the

equilibrium level of loans, one requires a reduction in volatility and an increase in matching

efficiency to keep the level of credit constant. This is reflected in an upward-sloping curve for

the Constant Loans curve in Panel (b) and a downward-sloping one in Panel (c). At the same

time, discount window and interbank market loans are relatively less sensitive to changes in loan

demand. Hence, the Constant DW and Constant Interbank curves are relatively flat in Panels

(b) and (c).35 Based on this, we conclude that discount window loans and interbank loans are

more informative about λ and σ than about Θb.

34Volumes are expressed in terms relative to deposits, that is, we target W/D = 0.2 percent and
min{S−, S+}/D = 2 percent.

35Qualitatively, a decrease in loan demand also increases the level of reserves, and through this effect, it reduces
discount window loans: hence, the negative slope in the constant DW curve in Panel (b). The effect of a decrease
in loan demand over the interbank market depends on whether the market has a deficit or an excess of reserves. For
the relevant case during the crisis period, in which banks had excess reserves, one obtains a positive relationship
between the loans demand and the matching efficiency.
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Figure 10: All Experiments

Note: discount window loans and interbank market loans are expressed as simple devia-
tions from steady state, while loans are expressed as a fraction of the steady state level of
loans. Interbank market loans are expressed in percent. Variables in the data have been
smoothed using a 3-month rolling window.
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7.3 Results

Figure 10 reports the results of our main experiment. In each panel of the upper row, we consider

a different variable. Within each panel, we report the data series and the model analogue under

three different scenarios. For comparison, model variables are expressed as deviations from the

steady state, whereas the data series is reported in deviations relative to the value in January

2008 (see Figure 15 in Appendix L for details on the data series). In the lower row, we present

the series for {λ, σ,Θb} that the model needs to fit the data. To evaluate each hypothesis, we

evaluate the importance of each shock by turning off one shock at a time. The figure reports the

simulations when we turn off interbank market shocks (dash-dotted line), demand shocks (dash

line), and open market operations (dotted line). Although we do not report their corresponding

experiments, it is important to report that neither equity losses nor the increase in interest on

reserves played a quantitatively important role. The reasons is that, as summarized in Table 2,

these hypothesis produce counterfactual predictions and a modest quantitative impact on loan

provision as seen in Section 6.

By construction, the benchmark case that includes all shocks (the matching friction, with-

drawal volatility and loan demand) matches the three data targets perfectly (in the upper panel).

In the lower panels, we report the shocks that the model needs to fit the data: the model needs

a gradual decline in matching efficiency, an increase in withdrawal volatility that spikes around

September 2008 and partially reverts after, and a decline in the loans demand that escalates

starting in 2009. As an external validation, we also plot the model’s fit to the liquidity premium

in the data (Panel d) and the liquidity ratio (Panel e). Quantitatively, the model tracks the

liquidity ratio well. The model also produces a relatively higher liquidity premium around the

Lehman bankruptcy, although the model’s premium is not nearly as volatile as in the data.

The counterfactual simulations show that both the interbank market and demand shocks had

a prevalent role and their timing is instructive. Before the Lehman bankruptcy in September

2008, neither shock produces a substantial decline in credit. However, to match interbank market

features, the model needs a significant matching shock to produce the early pronounced decline

in the volume of interbank credit. In the run-up to the crisis, we also observe a substantial

increase in deposit volatility, consistent with the spike in discount-window loans. Absent these

interbank market shocks, the access to the discount-window and the interbank market would

have remained essentially flat throughout the period.

After the Lehman crisis, both shocks contributed to the decline in lending, as Panel (c) shows.

If we rank the shocks, the credit demand shock produces the lion’s share of the impact, except
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for the period around September 2008 in which the interbank market is more important role. As

a policy counterfactual, we can observe that open-market operations were important to mitigate

the collapse in total credit. To get a sense of their quantitative effect, the model suggests that

the negative effect of the interbank market shock was about the same magnitude as the positive

effect of the open-market operations.

Discussion of the Results. A natural interpretation of the the shocks inferred is that the

2008 crisis was characterized by an episode of increased counterparty risk in the interbank market

and by increased deposit instability. These disruptions in the interbank market would manifest

in our model through an increase in the volatility of deposits and a lower matching probability in

the interbank market. The timing of the shocks is suggestive of a deeper economic phenomenon

in which an initial contraction in the supply of loans, produced by disruptions in the interbank

market, eventually lead to a collapse in credit demand.

8 Extensions of the Baseline Model

8.1 Liquidity Coverage Ratio

The new regulatory framework following the recent financial crisis requires banks to hold a

minimum fraction of total assets in reserves, the so-called liquidity coverage ratio (LCR). In

contrast with the reserve requirement in the baseline model, the required reserve holdings are

tied to the amount of assets rather than liabilities. We show next how this feature is easily

accommodated into our model, and how the introduction of this new regulatory tool affects the

banking system.

In addition to the reserve requirement (5), banks are subject to

mj
t+1 ≥ ρlcrbjt+1. (30)

Here, ρlcr is a parameter that works analogously to reserve requirements but is applied to loans

instead of deposits.36 Since banks need to satisfy both the reserve requirement (RR) and the

LCR, we can redefine the surplus function as

36The parameter ρlcr could be linked to the volatility of deposit withdrawals, so as to capture constraints related
to the Net-Stable-Funding Ratio (NSFR). This constraint could also be imposed in the lending stage instead. If
the constraint binds at the lending stage, shocks need to be large enough to have effects on the reserve-to-loans
ratio.
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Figure 11: Liquidity Coverage Ratio

s(ω)≡min {srr(ω), slcr(ω)}, (31)

where slcr(ωjt ) = ρlcrb̃jt+1 − (m̃j
t+1 +

ωjt d̃
j
t+1(1+ibt+1)

1+iiort+1
), and srr(ω), as defined in (6). The character-

ization of the individual bank problem and the determination of equilibrium remain essentially

unchanged except that the surplus function in Proposition 3 has to be redefined following (31).37

The key difference in the portfolio problem is that reserves carry an additional premium over

loans because an increase in loans tightens the LCR constraint in states where the surplus is

given by s(ω) = slcr(ω).

As Figure 11 shows, the introduction of an LCR increases the demand for reserves and reduces

bank lending. While the LCR was not active throughout the crisis, and hence we do not include

it as one of the hypotheses for the contraction in bank lending, this regulatory tool will be playing

an important role going forward.

37Because sRR and sLCR are linear in ω, the surplus function is characterized simply as

s(ω) =

{
sLCR(ω) if ω < ω̄
sRR(ω) if ω ≥ ω̄

where ω̄ is the value of ω such that sLCR(ω) = sRR(ω).
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8.2 Credit Risk and Risk Aversion

We introduce two other sources of time-varying risk: idiosyncratic shock to loan returns and

variations in risk aversion. On the former, we assume that each bank’s portfolio of loans is

subject to an idiosyncratic “repayment shock” at the beginning of each period. As is the case

for the withdrawal shock, the shock to loan returns is assumed to have zero mean. Besides the

modification to the portfolio problem of the bank, which now incorporates an additional source

of uncertainty, the model remains essentially the same.38 In particular, because the shock has

mean zero, the law of motion for aggregate equity continues to be determined by (26).Figure

12 (straight line) shows the effects of an increase in the variance of this shock: it goes from

zero, as in our benchmark, to 20 bps. Because of banks’ risk aversion, the increase in the risk

of loan returns leads to a decline in total lending and to a concomitant increase in the liquidity

ratio. The liquidity premium also rises on impact, reflecting that banks require a higher premium

on loans to be willing to absorb the increase in risk. As banks have higher reserves, discount

window loans and interbank market loans are reduced on impact. Finally, as equity falls because

of the lower investment in loans, the impact of credit risk on the liquidity premium is eventually

reversed.

To analyze the case of an increase in risk aversion, we consider Epstein-Zin preferences,

keeping the intertemporal elasticity of substitution equal to unity and consider a level of risk

aversion equal to 100.39 Figure 12 (dashed line) shows that the dynamics after an increase in

risk aversion are similar to the dynamics resulting from an increase in credit risk.

In terms of the hypothesis for the contraction in bank lending analyzed in Section 6, the

response of the banking system to an increase in credit risk or risk aversion delivers outcomes

that are qualitatively fairly consistent with various banking variables in the crisis. To the extent

that the financial crisis was characterized by increased uncertainty about loan repayments by

borrowers at the cross section of banks and an increase in risk aversion, this is a shock that could

have played an active role in the crisis.

38Let z be the idiosyncratic default rate on bank loans, with zero mean and variance σz. The portfolio problem
now becomes

Ωt ≡ (1− τt) max
{b̄,m̄,d̄}≥0

{
Eω,z

[
Rbt(1 + z)b̄+ Rmt m̄− Rdt d̄+ χ̄t(m̄, d̄, ω)

]1−γ} 1
1−γ

, (32)

b̄+ m̄− d̄ = 1,

d̄ ≤ κ
(
b̄+ m̄− d̄

)
.

39A version of Proposition 3 applies with Epstein-Zin preferences, and hence tractability is not lost in this case.
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Figure 12: Credit Risk and Risk Aversion

9 Conclusion

Historically, the topics of money and banking had been studied and taught together. Despite

this historical connection, modern monetary models developed independently from banking. The

financial crises of the last decades in the United States, Europe, and Japan, however, have

revealed the need for a unified framework.

This paper presents a tractable quantitative model of banks’ liquidity management and the

credit channel of monetary policy. In the model, banks engage in maturity transformation, which

exposes them to liquidity risk. To insure against unexpected deposit withdrawals, banks hold

reserves as a precautionary buffer. Banks that face large withdrawals deplete their reserves and

must resort to costly interbank market and discount window borrowing. Monetary policy has

the power to alter the liquidity premium and, in that way, to affect real economic activity. As an

application, we study the driving forces behind the decline in bank lending and liquidity hoarding

by banks during the 2008 financial crisis. We argue that this pattern was the result of an early

disruption in the interbank market, followed by a persistent decline in credit demand.

The application we carried out in the paper is one of many possible ones.40 Our model

could be used to shed light on classic historical debates. For example, it could be used to

evaluate the hypothesis in Friedman and Schwartz (2008) that an increase in the deposit-to-

currency ratio was responsible for the colossal credit crunch during the Great Depression. Also,

40We thank an anonymous referee for providing a rich list with possible extensions and applications.
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Friedman and Schwartz (2008) argued that the Fed’s increase in reserve requirements in 1937

was a serious policy mistake, but Tobin (1965) opposed that view, arguing that banks held

considerable excess reserves—such as during the episode we studied here. One could also use

the model to study how different monetary policy and regulatory regimes affect the stability of

bank credit. For example, monetary policy regimes around the world have evolved from a gold

standard system to one that targets monetary aggregates and, more recently, to one that targets

interest rates. One could also use the model to evaluate the desirability and implementation

of liquidity regulations for financial stability, such as LCR. Along similar lines, Safonova (2017)

studies how the network of the interbank affects the transmission of monetary policy. Chen, Ren,

and Zha (2017) use a similar model to study whether tight monetary policy in China induced

shadow banking activities. Exploring these kinds of applications is a future task.
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B List of Variables

Table 3: List of variables

Interest rates
īf average interbank market rate
ib nominal interest rate on loans
id nominal interest rate on deposits
Individual bank variables
Portfolios

b̃ bank loans in lending stage
m̃ reserves held by banks at end of lending stage

d̃ bank deposits at end of lending stage
b loans at beginning of lending stage
m reserves held at beginning of lending stage
d deposits owed at beginning of lending stage
b̄ portfolio share in loans
m̄ portfolio share in reserves
d̄ portfolio share in deposits
Others
c consumption
Ω risk-adjusted value of bank equity
Re return on equity
e real equity
µ Lagrange multiplier on capital requirement constraint
V l .V b value of the bank at lending/balancing stage
V value of the bank as a function of bank equity
Interbank market
ω withdrawal shock
s surplus at beginning of balancing stage after shock ω
θ market tightness in interbank market
f interbank market loans
w discount window loans
Ψ+ probability that a bank with surplus finds a match
Ψ− probability that a bank with deficit finds a match
Aggregates
E bank equity
Θb
t intercept loan demand

ε elasticity loan demand
Θd
t intercept deposit supply

ς elasticity deposit supply
B,Bd loan supply/demand
Ds, D deposits supply/demand
P price level
π inflation
Fed policies
iior nominal interest rate on reserves
idw nominal interest rate on discount window loans
MFed supply of reserves
BFed Fed holdings of private loans
WFed discount window loans



C Microfoundations: Loan Demand/Deposit Supply

In this section, we provide a microfoundation for the loan demand and deposit supply schedule
for the interested reader. In this extension, in addition to bankers, the economy is populated by
overlapping generations of workers and entrepreneurs. Each group has a unit measure, and agents
live for two periods.

Workers. Workers belong to a single family and maximize

max
{cwt ,cwt+1h

w
t ,dt+1}≥0

cw,tt −
(hwt )1+ν

1 + ν
+ β

(
cw,tt+1

)1−1/(ς+1)

1− 1/ (ς + 1)
(33)

subject to
dt+1 + Ptc

w,t
t = ztht and Pt+1c

w,t
t+1 ≤

(
1 + idt+1

)
dt+1.

The first constraint is the time t budget constraint: given a nominal wage zt and a supply of
hours, ht, the worker distributes labor income between time t consumption, cw,tt , at a price Pt and
deposits dt+1. At t + 1, deposits earn a nominal return

(
1 + idt+1

)
. Those savings are used to buy

t+1 consumption at price Pt+1. Here, ς governs the intertemporal elasticity of substitution, which
in turn maps into the elasticity of the deposit supply presented in (13). In turn, ν is the inverse
labor supply elasticity, which also affects the loan demand.

Entrepreneurs. The entrepreneur born at t has linear utility in consumption when old and does
not consume when young. The entrepreneur has access to a production technology that uses hdt units
of labor that are transformed into t+1 output via a production function yt+1 = At+1h

α
t . Production

is scaled by At+1, a productivity shock that works as a loan demand shifter. The term At+1 is known
at t. Entrepreneurs use bank loans to pay workers in the first period. The entrepreneur born at t
solves

Pt+1c
e,t
t+1 = max

{Bdt+1,ht}≥0
Pt+1yt+1 −

(
1 + ibt+1

)
Bd
t+1 +

(
1 + idt+1

)
Dt+1

subject to
ztht ≤ Bd

t+1 and Dt+1 = Bd
t+1 − ztht.

The objective is to maximize t + 1 profits to maximize consumption when old. Profits are the
sum of sales, minus financial expenses, plus earnings on deposits. The entrepreneur borrows Bd

t+1

at an interest rate cost
(
1 + ibt+1

)
and uses these funds to finance payroll, ztht, or save in a deposit

account. To finance this payroll, entrepreneurs borrow from banks. In particular, they obtain a loan
from the banks in the form of a number of deposits that can be used to pay workers. The loan is a
promise to repay

(
1 + ibt+1

)
by t+ 1.

When we consider the non-financial side of the model, there are now two additional market
clearing conditions: labor market clearing and goods market clearing. The goods market clearing
condition is

At+1h
α
t = ce,t−1

t + cw,tt + cw,t−1
t + ct. (34)

This equation states that output is used either as intermediate inputs or for consumption of old
entrepreneurs, young and old workers, and bankers. The market clearing condition in the labor
market is given by

ht = hwt . (35)



Equilibrium in the labor market and the optimal policy functions of entrepreneurs and workers yield
an autonomous system of demand and supply equations for loans and deposits.

Proposition 7. The equilibrium loan demand and deposit supply take the form of (12) and (13),
and the reduced form-parameters are given by

Θb
t = (αAt+1)ε , ε =

(
α

(ν + 1)
− 1

)−1

and Θd
t = β1+ς .

Output and labor are decreasing functions of (1 + ibt)/ (1 + πt).

In the paper we do not make reference to this microfoundation and work with the exogenous
demand schedule for loans (12) and exogenous supply schedule for deposits (13). However, the
definition of equilibria is consistent with the general equilibrium version of the model where we
consider this non-financial sector. Note that Proposition 7 uses a labor market clearing condition.
Then, clearing in the loans and deposit markets, by Walras’s law, imply clearing in the goods market.
Once we compute equilibria taking the schedules as exogenous in the bank’s problem, it is possible to
obtain output and household consumption from the equilibrium rates. One important observation
is that an equilibrium real rate for loans, Rb

t , immediately maps into an equilibrium output. In
particular, the higher the rate, the lower the output. When monetary policy induces a higher rate,
it has the power to reduce output in this environment. This is a notion of the credit channel.



D Equilibrium Conditions

D.1 Transitions

We characterize the set of equilibrium conditions in the main paper. Here, we present a summary of
the conditions in one place. Given a sequence of government policy

{
ρt, κ, i

ior
t , idwt ,Wt, B

Fed
t ,MFed

t , Tt
}

that satisfies the Fed’s budget constraint, the system that characterizes equilibrium yields a solu-
tion for individual bank variables,

{
b̄t, m̄t, d̄t, c̄t,Ωt, vt

}
, aggregate variables, {Bt,Mt, Dt, Et}, and a

system of prices and real returns {Pt, Rb
t , R

m
t , R

d
t , χ̄t}. The system features 15 unknowns to be deter-

mined for all t. However, there is only one endogenous state variable. The Fed’s budget constraint
adds one restriction to the set of policy sequences. Other variables that follow from definitions are
described in Appendix B.

Individual Bank Variables

The portfolio solution to
{
b̄t, m̄t, d̄t

}
and the value of Ωt are the solutions and value of the

following problem:

Ωt ≡ max
{b̄,m̄,d̄}≥0

{
Eω
[
Rb
t b̄+ Rm

t m̄−Rd
t d̄+ χ̄t(m̄, d̄, ω)

]1−γ} 1
1−γ

, (D.1.1)

b̄+ m̄− d̄ = 1,

d̄ ≤ κt
(
b̄+ m̄− d̄

)
.

The value of the bank’s problem is

vt =
1

1− γ

[
1 +

(
β(1− γ)Ω1−γ

t vt+1

) 1
γ

]γ
. (D.1.2)

Dividends depend on {Ωt, vt} via

c̄t =
1

1 + [β(1− γ)vt+1Ωt+1
1−γ]1/γ

. (D.1.3)

This block of equations yields the equations needed to obtain {b̄t, m̄t, d̄t, c̄t,Ωt, vt} for a given path
for real rates

{
Rb
t , R

m
t , R

d
t , χ̄t

}
.

Aggregate Banking Variables

Next, homogeneity in policy functions gives us the aggregate bank portfolio:

Bt+1 = Ptb̄t(1− c̄t)Et (D.1.4)

Mt+1 = Ptm̄t(1− c̄t)Et (D.1.5)

Dt+1 = Ptd̄t (1− c̄t)Et. (D.1.6)

Real aggregate equity evolves according to

Et+1 =
Pt
(
(1 + ibt+1)b̄t + (1 + iiort+1)m̄t − (1 + idt+1)d̄t

)
(1− c̄t)Et − (1 + idwt+1)Wt+1 − PtTt

Pt+1

. (D.1.7)



This block of equations determines {Bt,Mt, Dt, Et} given a path for inflation and nominal rates—which
together determine real rates—and transfers.

Market Clearing Conditions

The real rates and the path for prices follow from the market clearing conditions in all the asset
markets:

Bt+1 +BFED
t

Pt
= Θb

t

(
Rb
t

)ε
, (D.1.8)

Dt+1

Pt
= Θd

t

(
Rd
t

)ζ
, (D.1.9)

MFed
t = Mt, (D.1.10)

Rm
t =

1 + iiort
Pt+1/Pt

. (D.1.11)

The last term is the definition of Rm
t . This block determines {Pt, Rb

t , R
m
t , R

d
t } given aggregate bank

variables. Notice that MFed
t = Mt pins down the price level using Ptm̄t(1 − c̄t)Et. To close the

system, we need the equations that determine χt.

Interbank Market Block

We need to determine χ̄t. This follows from the conditions obtained from Proposition 1:

S−t =

ˆ m̄/d̄−ρt
(1−ρt)

1

s(ω)dΦ and S+
t =

ˆ ∞
m̄/d̄−ρt
(1−ρt)

s(ω)dΦ.

The market tightness is defined as
θt = S−t /S

+
t .

From here, discount window loans are

Wt = (1−Ψ−(θt))S
−
t , (D.1.12)

and the average interbank market rate,
¯
ift , is

i
f

t = φ(θt)i
ior
t + (1− φ(θt))i

dw
t .

This system of equations gives us

χ−t = Ψ−t

(
i
f

t − iiort
)

+
(
1−Ψ−t

) (
idwt − iiort

)
and χ+

t = Ψ+
t

(
i
f

t − iiort
)
. (D.1.13)

Note that here we take the probabilities Ψ−t and Ψ+
t as given functions of market tightness, as in

the main text. This block determines χ̄t and the amount of discount window loans, Wt. Note that
so far, we have provided enough equations to solve for

{
b̄t, m̄t, d̄t, c̄t,Ωt, vt

}
, {Bt,Mt, Dt, Et}, and

{Pt, Rb
t , R

m
t , R

d
t , χ̄t}. The value of Wt enters in the Fed’s budget constraint.

Fed Budget Constraint



The government’s budget policy sequence
{
ρt, κt, i

ior
t , idwt ,Wt, B

Fed
t ,MFed

t , Tt
}

satisfies the fol-
lowing constraint:

Mt(1 + iiort ) + BFed
t+1 +Wt+1...

= Mt+1 +DFed
t (1 + idt ) +BFed

t (1 + ibt) +Wt(1 + idwt ) + PtTt.

Law of Motion for Aggregate Equity

A useful expression is obtained combining the individual laws of motion with the Fed’s budget
constraint:

Et+1 = (Rb
t+1b̄t +Rm

t+1m̄t −Rd
t+1d̄t)Et(1− c̄t)−

BFed
t+2 − M̃t+2 − (BFed

t+1 (1 + ibt+1)− M̃Fed
t+1 (1 + iiort+1))

Pt+1

(D.1.14)
Equation (D.1.14) shows that portfolio choices, market returns, and next-period Fed policies and

price level determine next-period aggregate real equity.

D.2 Stationary Equilibrium

Consider now the equilibrium conditions for a stationary equilibrium. These are summarized by
replacing time subscripts for steady state subscripts ss.

Individual Bank Variables

For the individual bank variables, we have

css = 1− β
1
γ Ω1/γ−1

ss (D.2.1)

vss =
1

1− γ

 1

1−
(
βΩ1−γ

ss

) 1
γ

γ

(D.2.2)

Ωss ≡ max
b̄,m̄≥0,d̄

Eω

[(
(1 + ibt)b̄+ (1 + iiort )m̄− (1 + idt )d̄+ χt(m̄, d̄)

)
(1− τ ss)

1 + πt

]1−γ


1
1−γ

, (D.2.3)

b̄+ m̄− d̄ = 1,

d̄ ≤ κ
(
b̄+ m̄− d̄

)
,

where {b̄ss, m̄ss, d̄ss} are the optimal choices of {b̄, m̄, d̄} in the problem above.

Aggregate Bank Variables and Market Clearing Conditions

The nominal rates and price sequences are given by

(1− css)b̄ssEss = Θb

(
1 + ibt
1 + πt

)ε
−BFed

t+1 /Pt (D.2.4)

(1− css)d̄ssEss = Θd

(
1 + idt
1 + πt

)ζ
(D.2.5)

(1− css)m̄ssEss = MFed
t /Pt. (D.2.6)



Interbank Market Block

The interbank market tightness is
θt ≡ S−t /S

+
t , (D.2.7)

and the interbank market conditions are

W Fed
t = Ψ−t S

−
t (D.2.8)

Ψ−t = Ψ−(θt) and Ψ+
t =Ψ+(θt) (D.2.9)

S−t =

ˆ m̄ss/ ¯dss−ρ
(1−ρ)

1

s(ω)dΦ

S+
t =

ˆ ∞
m̄ss/ ¯dss−ρ

(1−ρ)

s(ω)dΦ

i
f

t = φ(θt)i
ior
ss + (1− φ(θt))i

dw
t , (D.2.10)

χ−t = Ψ−t

(
i
f

t − iiort
)

+
(
1−Ψ−t

) (
idwt − iiort

)
and χ+

t = Ψ+
t

(
i
f

t − iiort
)
. (D.2.11)

Government Budget Constraint and Aggregate Equity

The government budget constraint and the law of motion for equity are given by

BFed
t

(
1 + ibt
1 + πt

)
+W Fed

t

(
1 + idwt
1 + πt

)
= MFed

t

(
1 + iiort
1 + πt

)
+ PtEss

τt
1− τt

,∀t (D.2.12)

Ess =

(
(1 + ibt)b̄ss + (1 + iiort )m̄ss − (1 + idt )d̄ss

)
(1− c̄ss)Ess

1 + πt
− 1 + idwt

1 + πt
W Fed
t /Pt − Ess

τt
1− τt

(D.2.13)
1 + πt = Pt+1/Pt. (D.2.14)



E Expressions for {Ψ+,Ψ−, φ, i
f
, χ+, χ−} in Proposition 1

Here we reproduce formulas derived from Proposition 1 in the companion paper, Bianchi and Bigio
(2017). The companion paper includes the market structure that delivers these functional forms.
This proposition gives us the formulas for the liquidity yield function and the matching probabilities
as functions of the tightness of the interbank market. The formulas are the following.

Given θ, the market tightness after the federal funds trading session is

θ̄ =


1 + (θ − 1) exp (λ) if θ > 1

1 if θ = 1

(1 + (θ−1 − 1) exp (λ))
−1

if θ < 1

.

Trading probabilities are given by

Ψ+ =

{
1− e−λ if θ ≥ 1

θ
(
1− e−λ

)
if θ < 1

, Ψ− =

{(
1− e−λ

)
θ−1 if θ > 1

1− e−λ if θ ≤ 1
.

The reduced-form bargaining parameter is

φ =


θ
θ−1

((
θ̄
θ

)η
− 1
)

(exp (λ)− 1)−1 if θ > 1

η if θ = 1
θ(1−θ̄)−θ̄
θ̄(1−θ)

((
θ̄
θ

)η
− 1
)

(exp (λ)− 1)−1 if θ < 1

,

and i
f

= (1− Φ)idw + Φiior. The slopes of the liquidity yield function are given by

χ+ =
(
idw − iior

)( θ̄
θ

)η (
θηθ̄1−η − θ
θ̄ − 1

)
and χ− =

(
idw − iior

)( θ̄
θ

)η (
θηθ̄1−η − 1

θ̄ − 1

)
.

F Proof of Proposition 7

Worker’s Problem. We substitute t + 1 consumption of worker t ’s problem into his objective to
obtain that his objective equals

cw,tt −
h1+ν
t

1 + ν
+ βU

((
1 + idt+1

)
dt+1

Pt+1

)
.

Then, taking first-order conditions with respect to cw,tt , we obtain

1 = Ptζ
w
t , (F.1)

where ζwt is a Lagrange multiplier on the worker’s time t budget constraint. Then, the first-order
condition with respect to labor supply yields a labor supply that only depends on the real wage:

hνt = ztζ
w
t = zt/Pt. (F.2)



Next, we take the first-order condition with respect to deposits:

ζwt = βU′
((

1 + idt+1

)
Pt+1

dt+1

) (
1 + idt+1

)
Pt+1

.

We rewrite this condition as

Ptζ
w
t = βU′

(
1 + idt+1

Pt+1/Pt

dt+1

Pt

) (
1 + idt+1

)
Pt+1/Pt

.

Thus, noticing that Ptζ
w
t = 1, from (F.1) this expression becomes(

dt+1

Pt

)1/(ς+1)

= β

(
1 + idt+1

Pt+1/Pt

)1−1/(ς+1)

.

Clearing dt+1 we obtain

dt+1

Pt
= βς+1

(
1 + idt+1

Pt+1/Pt

)ς
. (F.3)

Thus, setting βς+1 = Θd
t , we obtain the functional form in Proposition 7.

Next, we move to derive the demand for loans. From the entrepreneur’s problem, we have that

max
Bdt+1≥0,xt+1,ht≥0

Pt+1At+1h
α
t −

(
1 + ibt

)
Bd
t+1 +

(
1 + idt

) (
Bd
t+1 − ztht

)
subject to

ztht ≤ Bd
t+1.

First, observe that

Pt+1At+1h
α
t −

(
1 + ibt

)
Bd
t+1 +

(
1 + idt

) (
Bd
t+1 − ztht

)
= Pt+1At+1h

α
t − ztht −

(
ibt − idt

) (
Bd
t+1 + ztht

)
.

Since ibt ≥ idt , without loss of generality, ztht = Bd
t+1. Thus, the objective is

Pt+1At+1h
α
t −

(
1 + ibt

)
Bd
t+1

with ztht = Bd
t+1. Suppose ht was already chosen by the entrepreneur. Thus, back in the objective

function, we have that

Pt+1At+1h
α
t −

(
1 + ibt

)
ztht.

The first-order condition in ht yields

Pt+1αAt+1h
α
t =

(
1 + ibt

)
ztht.

Dividing both sides by Pt, we obtain

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt

) zt
Pt
ht.



Now, employing the labor supply function (F.2), we have

Pt+1

Pt
αAt+1h

α
t =

(
1 + ibt

)
hν+1
t →

1 + ibt
Pt+1/Pt

=
αAt+1h

α
t

hν+1
t

.

Now, we finally deduce that

Bd
t+1

Pt
=

ztht
Pt

= hν+1
t →

ht =

(
Bd
t+1

Pt

) 1
ν+1

.

Combining, we obtain

1 + ibt
Pt+1/Pt

= αAt+1

(
Bd
t+1

Pt

)−1(
Bd
t+1

Pt

) α
ν+1

→

Bd
t+1

Pt
= Θt

(
1 + ibt
Pt+1/Pt

)ε
.

Thus, the microfoundation yields

Θb
t = (αAt+1)ε and

ε =

(
α

ν + 1
− 1

)−1

.

G Proofs of Propositions 2 and 3 and Liquidity Premium

The proofs of Proposition 2 and Proposition 3 make use of the following two lemmata. First, we
establish the homogeneity in χ:

Lemma 1. The function χ̄t is homogeneous of degree 1 in (m, d).

Proof. We need to show χ̄t (am, ad, ω) = aχ̄t (m, d, ω) for any a > 0. By definition:

χ̄t(am, ad, ω) =

{
χ+
t s if s ≥ 0
χ−t s if s < 0

,

s = am+ aωd
1 + idt+1

1 + iiort+1

− ρad (1 + ω) (G.1)

where χ−t and χ+
t are functions of

{
Ψ−t ,Ψ

+
t , ı̄

f
t , θt

}
and independent of m and d. We can factor the

constant a from the right-hand side of (G.1) and obtain

s = a

(
m+ ωd

1 + idt+1

1 + iiort+1

− ρd (1 + ω)

)
.



Define the position without the scaling factor a as s̃ given by

s̃ =

(
m+ ωd

1 + idt+1

1 + iiort+1

− ρd (1 + ω)

)
.

Observe that (s > 0)←→ (s̃ > 0) , (s < 0)←→ (s̃ < 0) and (s = 0)←→ (s̃ = 0) . Thus,

χ̄t(am, ad, ω) =

{
χ+
t s if s ≥ 0
χ−t s if s < 0

=

{
χ+
t as̃ if s ≥ 0
χ−t as̃ if s < 0

=

{
χ+
t as̃ if s̃ ≥ 0
χ−t as̃ if s̃ < 0

= a

{
χ+
t s̃ if s̃ ≥ 0
χ−t s̃ if s̃ < 0

= aχ̄t(m, d, ω).

The last line verifies that χ is homogeneous of first degree. QED.
The next lemma establishes that an increase in the (gross) nominal policy rates by a constant scales
χt by that constant. We use this lemma in the policy analysis results when we discuss the neutrality
of inflation.

Lemma 2. Let χt be given by two policy rates,
{
iiort , idwt

}
, given θt. Consider alternative rates{

iiora,t , i
dw
a,t

}
such that they satisfy

(
1 + iiora,t

)
≡ k (1 + iiort ) and

(
1 + idwa,t

)
≡ k

(
1 + idwt

)
for some k.

Then, the χ̄a,t associated with
{
iiora,t , i

dw
a,t

}
for the same θt satisfy χ̄a,t = kχ̄t.

Proof. Observe that χt in Definition 1 (which follows from Proposition 1) is a function scaled by
the width of the corridor system (idwt − iiort ). Then,

idwa,t − iiora,t = (1 + idwa,t)− (1 + iiora,t ) = k((1 + idwt )− (1 + iiort )) = k(idwt − iiort ).

Then the result follows immediately from the functional form of χt in Proposition 1. QED.

G.1 Proof of Proposition 2

We have to show that the recursive problems of banks during the lending and balancing stages can
be summarized as a single Bellman equation Vt (e) where e is a single state variable and Vt the value
at the lending stage. To show this, define the after-tax real value of equity at the start of a lending
stage:

et ≡
(1 + ibt)bt + (1 + iiort )mt − (1 + idt )dt −

(
1 + ift

)
ft −

(
1 + idwt

)
wt − PtTt

Pt
.

This term is the right-hand side of equation (14) in Problem 1 over the price level. If we use this
definition, the budget constraint of a given bank satisfies

ct +
b̃t + m̃t − d̃t

Pt
= et. (G.1)

The capital requirement constraint only depends on
{
b̃t, m̃t, d̃t

}
, and the budget constraint is in-

dependent of the composition of real equity; the value V l
t (b,m, d, f, w) depends only on e, not its

composition. Therefore, this implies the relation Vt (e) ≡ V l
t (b,m, d, f, w). This shows that Vt is the

value at the lending stage. Next, we try to find a recursive expression for Vt.
The next step shows that, indeed, Vt (e) can be written recursively. The value of real equity at

t+ 1 can be written in terms of variables determined at the lending stage of period t and the shock



ωt:

et+1 =
(1 + ibt+1)bt+1 + (1 + iiort+1)mt+1 − (1 + idt+1)dt+1 −

(
1 + ift+1

)
ft+1 −

(
1 + idwt+1

)
wt+1 − Pt+1Tt+1

Pt+1

.

By assumption, the tax Tt is proportional to real equity. Thus, we can write Tt+1 = τt+1

1−τt+1
et+1 for

some convenient choice of τt+1. Multiplying both sides by 1− τt+1 and rearranging, we obtain

et+1 =
(1 + ibt+1)bt+1 + (1 + iiort+1)mt+1 − (1 + idt+1)dt+1 −

(
1 + ift+1

)
ft+1 −

(
1 + idwt+1

)
wt+1

Pt+1

(1− τt+1) .

(G.2)
Now, observe that by definition of m̃t+1 and d̃t+1,

mt+1 = m̃t+1 + ωtd̃t+1

(
1 + idt+1

1 + iiort+1

)
+ ft+1 + wt+1,

and
dt+1 = d̃t+1 + ωtd̃t+1.

Substituting these last two expressions in the evolution of equity (G.2), we obtain the after-tax value
of equity (1 + τt+1/ (1− τt+1))Pt+1et+1:

= (1 + ibt+1)b̃t+1 + (1 + iiort+1)

(
m̃t+1 + ωtd̃t+1

1 + idt+1

1 + iiort+1

+ ft+1 + wt+1

)
−(1 + idt+1)(1 + ωt)d̃t+1 −

(
1 + ı̄ft+1

)
ft+1 −

(
1 + idwt+1

)
wt+1

= (1 + ibt+1)b̃t+1 + (1 + iiort+1)

(
m̃t+1 + ωtd̃t+1

1 + idt+1

1 + iiort+1

)
− (1 + idt+1)(1 + ωt)d̃t+1

−
(
ı̄ft+1 − iiort+1

)
ft+1 −

(
idwt+1 − iiort+1

)
wt+1

= (1 + ibt+1)b̃t+1 + (1 + iiort+1)m̃t+1 − (1 + idt+1)d̃t+1 −
(
ı̄ft+1 − iiort+1

)
ft+1 −

(
idwt+1 − iiort+1

)
wt+1.

By Proposition 1 and by the definition of χ (s), (10), the law of motion for et+1 satisfies

et+1 =
b̃t+1(1 + ibt+1) + m̃t+1(1 + iiort+1)− d̃t+1(1 + idt+1) + χ̄t

(
m̃t+1, d̃t+1, ω

)
Pt+1

(1− τt+1). (G.3)

Now, since we already showed that there exists a function Vt (e) = V l
t (b,m, d, f, w), the value function

at the balancing stage can be written in terms of the single state—future equity—as

V b
t (b̃, m̃, d̃, ω) = βVt+1(e′) (G.4)

e′ =
b̃(1 + ibt+1) + m̃(1 + iiort+1)− d̃(1 + idt+1) + χ̄t

(
m̃, d̃, ω

)
Pt+1

(1− τt+1). (G.5)

From here, we substitute this value function at the balancing stage into the value at the lending



stage and obtain

Et

[
V b
t+1(b̃, m̃, d̃, ω)

]
= Et [Vt+1(e′)] ,

and thus, we have that

Vt(e) = max
c,m̃,b̃,d̃

u(c) + βEt [Vt+1(e′)] ,

e =
b̃+ m̃− d̃

Pt
+ c,

d̃ ≤ κ
(
b̃+ m̃− d̃

)
e′ =

b̃(1 + ibt+1) + m̃(1 + iiort+1)− d̃(1 + idt+1) + χ̄t

(
m̃, d̃, ω

)
Pt+1

(1− τt+1).

Using the definitions of real returns in the main text is enough to establishes the claim in the
proposition. QED.

G.2 Proof of Items (i)-(iv) in Proposition 3

This section presents a proof of Proposition 3. Here we show that the single state representation sat-
isfies homogeneity. We follow the guess-and-verify approach, common to all dynamic programming
models. Our guess is that the value function satisfies Vt (e) = vte

1−γ − 1/((1− β) (1− γ)), where vt
is a time-varying scaling factor in the value function, common to all banks. From Proposition 1, the
bank’s problem is summarized by

Vt(e) = max
c,m̃,b̃,d̃

u(c) + βEt [Vt+1(e′)] ,

subject to

c+
b̃+ m̃− d̃

Pt
= e,

d̃ ≤ κ
(
b̃+ m̃− d̃

)
e′ =

(
(1 + ibt+1)b̃+ (1 + iiort+1)m̃− (1 + idt+1)d̃+ χ̄t

(
m̃, d̃, ω

)) (1− τt+1)

Pt+1

.

Note that multiplying and dividing by Pt, we have that e′ can also be written as

e′ =

(
b̃(1 + ibt+1) + m̃(1 + iiort+1)− d̃(1 + idt+1) + χ̄t

(
m̃, d̃, ω

))
Pt

(1− τt+1)

(1 + πt+1)
, (G.1)

where (1 + πt+1) = Pt+1/Pt.



If the conjecture for the value function is correct, then this condition satisfies

vte
1−γ − 1

(1− β) (1− γ)
= max

c,m̃,b̃,d̃

c1−γ − 1

1− γ
+ βEt

[
vt+1 (e′)

1−γ − 1

(1− γ) (1− β)

]
,

subject to

c+
b̃+ m̃− d̃

Pt
= e,

d̃ ≤ κ
(
b̃+ m̃− d̃

)
e′ =

(
b̃(1 + ibt+1) + m̃(1 + iiort+1)− d̃(1 + idt+1) + χ̄t

(
m̃, d̃, ω

))
Pt

(1− τt+1)

(1 + πt+1)
.

Observe that we can factor out constants from the objective:

c1−γ − 1

1− γ
+ βEt

[
vt+1 (e′)

1−γ − 1

(1− γ) (1− β)

]
...

=
c1−γ

1− γ
+ βEt

[
vt+1 (e′)

1−γ
]
− 1

(1− β) (1− γ)
.

Then, if we substitute the evolution of e′ in (G.1), we obtain

vte
1−γ = max

c,m̃,b̃,d̃

c1−γ

1− γ
+ (G.2)

βEω

vt+1


(
b̃(1 + ibt+1) + m̃(1 + iiort+1)− d̃(1 + idt+1) + χ̄t

(
m̃, d̃, ω

))
Pt

(1− τt+1)

(1 + πt+1)

1−γ
subject to

e =
b̃+ m̃− d̃

Pt
+ c (Budget Constraint)

d̃ ≤ κ
(
b̃+ m̃− d̃

)
(Capital Requirement)

Let us define variables in terms of equity, c̄ = c/e. Also, define b̄ = b̃/ ((1− c̄ )ePt) , m̄ =
m̃/ ((1− c̄ )ePt) , and d̄ = d̃/ ((1− c̄ )ePt), as in the statement of Proposition 3. By Lemma 1,
we can factor constants (1− c̄ )ePt from χ̄t and express it as

(1− c̄ )ePtχ̄t

(
m̃

Pt(1− c̄ )e
,

d̃

Pt(1− c̄ )e
, ω

)
= Pt(1− c̄)eχ̄t

(
m̄, d̄, ω

)
.



Using this observation, we can replace c̄ in the value function to obtain

vte
1−γ = max

c,m̃,b̃,d̃
e1−γ c̄1−γ

(1− γ)
+ βvt+1 ((1− c̄) e)1−γ Eω... (G.3)([

b̃(1 + ibt+1)/Pt
(1− c̄) e

+
m̃(1 + iiort+1)/Pt

(1− c̄) e
−
d̃(1 + idt+1)/Pt

(1− c̄) e
+ χ̄t

(
m̄, d̄, ω

)] (1− τt+1)

(1 + πt)

)1−γ

subject to:

b̃+ m̃− d̃
(1− c̄) ePt

= 1 (Budget Constraint)

d̃/Pt
(1− c̄) e

≤ κ

(
b̃/Pt

(1− c̄) e
+

m̃/Pt
(1− c̄) e

− d̃/Pt
(1− c̄) e

)
(Capital Requirement)

From this expression, we can cancel out e1−γ from both sides of (G.3), which verifies that the
objective is scaled by e1−γ. Thus, we verify the guess that Vt (e) = vte

1−γ − ((1− β) (1− γ))−1.
Next, we derive the policies that attain Vt (e) and the value of vt. If the conjecture is correct,

using the definition of b̄, m̄, and d̄, we obtain

vt = max
{c̄,b̄,m̄,d̄}≥0

c̄1−γ

(1− γ)
+ βvt+1 (1− c̄)1−γ ... (G.4)

Eω
([

(1 + ibt+1)b̄+ (1 + iiort+1)m̄− (1 + idt+1)d̄+ χ̄t
(
m̄, d̄, ω

)] (1− τt+1)

(1 + πt)

)1−γ

subject to (G.5)

b̄+ m̄− d̄ = 1 (Budget Constraint)

d̄ ≤ κ (G.6)

Thus, any solution to Vt (e) must be consistent with the solution of vt if the conjecture is correct.
Define real return on equity as follows:

RE
t (b̄, m̄, d̄, ω) ≡ Rb

t b̄+Rm
t m̄−Rd

t d̄+ χ̄t(d̄, m̄, ω),

where Rb
t =

(
1 + ibt+1

) (1−τt+1)
(1+πt)

, Rm
t =

(
1 + iiort+1

) (1−τt+1)
(1+πt)

, Rd
t =

(
1 + idt+1

) (1−τt+1)
(1+πt)

, and

χ̄t(d̄, m̄, ω) = χ̄t
(
m̄, d̄, ω

) (1− τt+1)

(1 + πt)
.

Then, the value function can be written as

vt = max
{c̃,b̄,m̄,d̄}

c̄1−γ

(1− γ)
+ βvt+1 (1− c̄)1−γ Eω

[
RE
t (b̄, m̄, d̄, ω)1−γ] .

We now use the principle of optimality. Let Ωt be the certainty equivalent of the bank’s optimal
portfolio problem, that is,

Ωt ≡ max
{b̄,m̄,d̄}

[
Eω
[
RE
t (b̄, m̄, d̄, ω)1−γ]] 1

1−γ



subject to b̄ + m̄ − d̄ = 1 and d̄ ≤ κ. Assume c̄ is optimal. If γ < 1, the solution that attains vt
must maximize Eω

[
RE
t (b̄, m̄, d̄, ω)1−γ] if vt+1 is positive. If γ > 1, the solution that attains vt must

minimize Eω
[
RE
t (b̄, m̄, d̄, ω)1−γ] if vt+1 is negative. We guess and verify that when γ < 1, the term

vt+1 is positive and vt+1 is negative when γ > 1. Under this assumption, if γ < 1, we have that
vt+1 > 0, so 1− γ > 0. Thus, by maximizing Ωt, we are effectively maximizing the right-hand side
of vt. Instead, when γ > 1, we have that vt+1 < 0, so 1 − γ < 0. Thus, by maximizing Ωt, we are
minimizing Ω1−γ

t , which multiplied by a negative number—vt+1—maximizes the right-hand side of
vt.

Hence, the Bellman equation becomes

vt = max
{c̄,b̄,m̄,d̄}≥0

c̄1−γ

(1− γ)
+ βvt+1 (1− c̄)1−γ Ω1−γ

t .

This yields the statements in items (i) and (ii), provided that vt inherits the sign of (1− γ).
To prove item (iii), we take the first-order conditions with respect to c̄, and raising both sides to

the − 1
γ

power, we obtain

c̄ = (βvt+1)−1/γΩ
−(1−γ)/γ
t (1− c̄) (1− γ)−

1
γ .

We can rearrange terms to obtain

c̄ =
1

1 +
[
βvt+1(1− γ)Ω1−γ

t

]1/γ .
Define ξt = (1− γ)βvt+1Ω1−γ

t . Under the conjectured sign of vt, the term ξt is always positive.
Substituting this expression for dividends, we obtain a functional equation for the value function

vt =

(
1 + ξ

1/γ
t

)−(1−γ)

(1− γ)
+ βvt+1Ω1−γ

t

[
ξ

1/γ
t

1 + ξ
1/γ
t

](1−γ)

=

(
1 + ξ

1/γ
t

)−(1−γ)

(1− γ)
+

ξt
(1− γ)

[
ξ

1/γ
t

1 + ξ
1/γ
t

](1−γ)

and finally,

=
1

(1− γ)

(1 + ξ
1/γ
t

)−(1−γ)

+ ξt

[
ξ

1/γ
t

1 + ξ
1/γ
t

](1−γ)
 .

Thus, we obtain

vt =
1

(1− γ)

 1(
1 + ξ

1/γ
t

)(1−γ)
+

ξ
1/γ
t(

1 + ξ
1/γ
t

)(1−γ)


=

1

(1− γ)

1 + ξ
1/γ
t(

1 + ξ
1/γ
t

)(1−γ)
=

1

(1− γ)

(
1 + ξ

1/γ
t

)γ
.

This verifies that vt inherits the sign of (1− γ). Thus, we can use Ω∗ directly in the value function.



Furthermore, vt satisfies the following difference equation:

vt =
1

1− γ

[
1 +

(
β(1− γ)Ω1−γ

t vt+1

) 1
γ

]γ
. (G.7)

We can treat the right-hand side of this functional equation, solved independently of consumption.
If we solve for this equation independently of the banker’s consumption, we can obtain a solution
to the banker’s consumption policy via

c̄ =
1

1 +
[
βvt+1(1− γ)Ω1−γ

t

]1/γ .
This concludes the proof of items (i)-(iv), for all cases except γ → 1. We work out that case next.

Log-Case. Observe that as γ → 1, then vt in (G.7) explodes. However, we can guess and verify
that

lim
γ→1

vt(1− γ) =
1

1− β
.

This assumption can be verified in equation (G.7). In this case,

lim
γ→1

(1− γ) vt = lim
γ→1

[
1 +

(
β(1− γ)Ω∗1−γt vt

) 1
γ

]γ
= 1 + β/ (1− β) = 1/ (1− β) .

Thus, as γ → 1 , we have that c = (1− β). Thus,

Ωt ≡ max
{b̄,m̄,d̄}

exp
(
Eω
[
log
(
RE
t (b̄, m̄, d̄, ω)

)])
.

QED.

G.3 Derivation of the Liquidity Premium and Its First-Order Term

The derivation of the liquidity premium is immediate from the first-order condition in the problem
that solves Ωt. The first-order term can be expressed as

Eω

[
∂Rχ̄

(
m̄, d̄, ω

)
∂m̄

]
=

1

1 + πt
Eω
[
∂χt(m, d, ω)

∂m̄

]

=
1

1 + πt
Eω

[
∂
(
χ+
t sI [s > 0] + χ−t sI [s < 0]

)
∂m̄

]

=
1

1 + πt
Eω

[
∂
(
χ+
t sI [s > 0] + χ−t sI [s < 0]

)
∂m̄

]

=
1

1 + πt
Eω

 ∂s

∂m̄︸︷︷︸
=1

(
χ+
t I [s > 0] + χ−t I [s < 0]

)
=

1

1 + πt

[
χ+
t (1− F (ω∗)) + χ−t F (ω∗)

]
.



This expression appears in the main text immediately after the derivation of the liquidity premium.
In fact, the entire liquidity premium—considering all non-linear terms—can be written in the same
way:

Eω

[
(Re

ω)−γ

E[(Re
ω)−γ]

∂Rχ̄
(
m̄, d̄, ω

)
∂m̄

]
=

1

1 + πt

[
χ+
t

(
1− F̃ (ω∗)

)
+ χ−t F̃ (ω∗)

]
,

where F̃ is the risk-adjusted distribution of withdrawal shocks:

F̃ (ω) =

ωˆ

−∞

(Re
ω)−γ f(ω)

E[(Re
ω)−γ]

dω.

A corresponding condition can be found for the liquidity premium in terms of deposits. This
condition is given by

Eω

[
∂Rχ̄

(
m̄, d̄, ω

)
∂d̄

]
=

1

1 + πt
Eω
[(
χ+
t I [s > 0] + χ−t I [s < 0]

)(Rd
t − ρRm

t

Rm
t

ω − ρ
)]

.

Similarly, the entire deposit premium can be expressed in terms of a risk-neutral measure.

H Proofs for the Monetary Policy Analysis of Section 3.4

To present formal proofs, we define two important concepts: reserve satiation and neutrality.

Definition 4 (Satiation). Banks are satiated with reserves at period t if the liquidity premium is
zero, that is, if Rb

t = Rm
t .

To discuss policy effects, we compare an original policy sequence—with subindex o—with an
alternative (shocked) policy—subindex s in all of the exercises. We mean that a policy is neutral
relative to the other in the following sense.

Definition 5 (Neutrality). Consider original and alternative policy sequences:{
ρo,t, B

Fed
o,t ,Mo,t,Wo,t, To,t, κo,t, i

ior
o,t , i

dw
o,t

}
and

{
ρs,t, B

Fed
s,t ,Ms,t,Ws,t, Ts,t, κs,t, i

ior
s,t , i

dw
s,t

}
.

Policy s is neutral—relative to o—if the induced equilibria satisfy{
es,t, cs,t, b̄s,t, d̄s,t, m̄s,t

}
=
{
eo,t, co,t, b̄o,t, d̄o,t, m̄o,t

}
for all t ≥ 0.

When the condition holds, real aggregate loans and deposits are also determined. The rest of
this appendix shows the proofs for the classic exercises in monetary policy analysis that we studied
in the main text.

H.1 Proof of Proposition 4 (Conditions for Satiation)

By definition of satiation, the right-hand side of (29) equals zero under satiation:

Rb
t −Rm

t = 0 =

Eω
[
(Re

ω)−γ · ∂R
χ(m̄,d̄,ω)
∂m̄

]
Eω (Re)−γ

.



Since (Re
ω)−γ is a strictly positive function for any ω and

∂Rχ̄(m̄,d̄,ω)
∂m̄

is weakly positive, we must show
that ∂Rχ̄

(
m̄, d̄, ω

)
/∂m̄ = 0. By definition,

∂Rχ̄
(
m̄, d̄, ω

)
∂m̄

=
1

1 + πt
[(χ−I [ω < ω∗] + χ−I [ω > ω∗])], for any ω 6= ω∗.

Since, ω 6= ω∗ is a zero-probability event,

Eω

[
(Re

ω)−γ ·
∂Rχ̄

(
m̄, d̄, ω

)
∂m̄

]
=

1

1 + πt
[χ−Eω

[
(Re

ω)−γ |ω < ω∗
]

Pr [ω < ω∗] +

χ+Eω
[
(Re

ω)−γ |ω > ω∗
]

Pr [ω > ω∗]].

This expression equals zero in two cases:
Case 1. If idwt = iiort , then the condition holds immediately since χ− = χ+ = 0. This case is

condition (i) in the proposition.
Case 2. If idwt > iiort , then it must be that no bank can have a reserve deficit with positive

probability. Recall that {χ−, χ+} satisfy

χ−t = Ψ−t

(
īft − iiort

)
+
(
1−Ψ−t

) (
idwt − iiort

)
χ+
t = Ψ+

t

(
īft − iior

)
.

Suppose that ω < ω∗ in an event with non-zero mass. Then, it must be the case that χ−t = 0. A
necessary condition is that Ψ−t = 1 because

(
idwt − iiort

)
> 0. This is not possible since Ψ−t < 1 when

market tightness θ0 > 0 and λ̄ is finite. Hence, [ω > ω∗] should occur with probability 1. Thus,
we need to argue that the aggregate conditions must guarantee that there are enough reserves so
that all banks can have a positive balance of reserves, for any ω. Clearly, in that case, ω must be
bounded below. Let that lower bound be ωmin, as described in the main text. Under condition (ii)
of the proposition, no bank is in deficit even for the worst shock. QED.

H.2 Proof of Proposition 5 Item (i)

Consider a policy sequence {o} and an alternative policy {s} such that

1. Xs,t = kXo,t for some k > 0 for the balance sheet variables X ∈
{
BFed,M,W

}
,

2. policies are identical for non-balance-sheet variables
{
ρo,t, κo,t, i

ior
o,t , i

dw
o,t

}
=
{
ρs,t, κs,t, i

ior
s,t , i

dw
s,t

}
.

The proposition states that the stationary equilibrium induced by either policy features identical
real asset positions and price levels that satisfy Ps,t = kPo,t .

The proof is by construction and requires us to verify that the equilibrium conditions that deter-
mine {b̄ss, m̄ss, d̄ss, c̄ss, Ess} in Section D.2 are satisfied by any pair of policy sequences

{
Mo,t, B

Fed
o,t ,Wo,t

}
t≥0

and
{
Ms,t, B

Fed
s,t ,Ws,t

}
t≥0

that satisfies the relationship above. We proceed to check that
{
b̄ss, m̄ss, d̄ss, c̄ss, Ess

}
solves the set of equilibrium equations in Section D.2 in both cases.

Consider the original and alternative policies. By the hypothesis of stationary equilibrium, both
satisfy

Ma,t = Ma,t−1(1+πss), B
Fed
a,t = BFed

a,t−1(1+πss) and Wa,t = Wa,t−1(1+πss) for some πss and a ∈ {o, s}.



By hypothesis, inflation and nominal rates are equal under both policies. Thus, the real interest
rate on reserves is equal under both policies. We check the equilibrium conditions in the order in
which they appear in Section D.1.

First, we guess and verify that the real returns on loans and deposits are also equal under both
policies. If both policies yield the same real rates, the solution for bank portfolios (the solution for
Ωt) must also be equal in both equilibria:{

b̄o,ss, m̄o,ss, d̄o,ss, c̄o,ss
}

=
{
b̄s,ss, m̄s,ss, d̄s,ss, c̄s,ss

}
.

Consider now the aggregate supply of loans and reserves under either policy:

(1− css)b̄ssEss = Θb
(
Rb
ss

)ε −BFed
t+1 /Pt.

That equation can be satisfied under both policies becauseBFed
o,t+1/Po,t = (1+g)BFed

o,t+1/(1+g)Po,t =BFed
s,t+1/Ps,t.

This verifies that the real rate on loans is equal under both policies.
The same steps verify that Rd

ss is the same under both policies. Similarly, the demand for reserves
can be satisfied in both equations because

(1− css)m̄ssEss = Mo,t/Po,t = Ma,t/Pa,t.

This verifies market clearing for reserves. Thus, asset market clearing is satisfied under both policies.
Now, the ratio of surpluses to deficits is also equal under both policies:

θss ≡ S−a,t/S
+
a,t for a ∈ {o, s}.

Because θ and policy rates are equal, the liquidity cost function χ is also equal under both policies.
Observe that χ is a function of θ only. With equal inflation under both policies, the liquidity return
Rχ must also be equal. This verifies that all the real rates in both equilibria are the same under
both policies.

We now need to verify that the steady state condition for bank equity is also satisfied and that
both policies are feasible. Observe that the interbank market loans under both policies satisfy
W Fed
o,t /Po,t = W Fed

s,t /Ps,t. Therefore, the law of motion for steady state equity is given by

Ess =

(
(1 + ibt)b̄ss + (1 + iiort )m̄ss − (1 + idt )d̄ss

)
(1− c̄ss)Ess

1 + πss
− 1 + idwt

1 + πss
W Fed
t /Pt − Ess

τss
1− τss

.

Since the nominal rates, portfolios, inflation and real discount loans, W Fed
t /Pt, are the same under

both policies, the equation must yield the same solution Ess under both policy o and policy s.
Finally, we verify that the government budget constraint is satisfied under both policies. In any
steady state,

BFed
t

(
1 + ibss
1 + πss

)
+W Fed

t

(
1 + idwt
1 + πss

)
= MFed

t

(
1 + iiort
1 + πss

)
+ PtEss

τss
1− τss

.

Once we divide both sides of the equation by Pt, we verify that the budget constraint is satisfied by
the second sequence if it is satisfied by the first sequence. QED.



H.3 Proof of Proposition 5 Item (ii)

This statement of the proposition regards superneutrality and non-superneutrality. The proof closely
follows the proof of Proposition 5, item (i). The main difference is that we prove neutrality along an
equilibrium sequence, not only in stationary equilibrium. The proof is again by construction and only
requires that we verify that the equilibrium conditions that determine {b̄t, m̄t, d̄t, c̄t, Et} in Section
D.1 lead to the same values under both policies. Let

{
Mo,t, B

Fed
o,t ,Wo,t

}
t≥0

and
{
Ma,t, B

Fed
a,t ,Wa,t

}
t≥0

be two policy sequences. Again, to ease notation, we follow the order of the equations in Section
D.1.

Consider the original and alternative policies. By the hypothesis of stationary equilibrium, both
equilibria satisfy

XFed
a,t = MFed

a,t−1(1+ga), B
Fed
a,t = BFed

a,t−1(1+ga), and W Fed
a,t = W Fed

a,t−1(1+ga) for some ga and for a ∈ {o, s}.

Also, let both economies feature identical time-zero conditions: Xs,0 = Xo,0 forX ∈
{
MFed, BFed,W Fed

}
.

Then, the condition for the Fed’s balance sheet implies that

Xs,t+1 = (1 + gs)
tXs,0 = (1 + gs)

tXo,0,

Xo,t+1 = (1 + go)
tXo,0,

for X ∈
{
MFed, BFed,W Fed

}
. Thus, we can relate both balancesheet variables via

Xs,t+1 =

(
1 +

gs − go
1 + go

)t
Xo,t+1

Through the proof, we guess and verify the following:

A.1
{
Rb
o,t, R

d
o,t, R

m
o,t, R

χ̄
o,t

}
=
{
Rb
s,t, R

d
s,t, R

m
s,t, R

χ̄
s,t

}
.

A.2 Po,0 = Ps,0 = P0.

A.3 (1 + πs,t) = (1 + πo,t)
(

1 + gs−go
1+go

)
.

First, we verify (A.1). Under the conjecture that real returns are the same along a sequence, we
have that {

b̄o,t, m̄o,t, d̄o,t, c̄o,t
}

=
{
b̄s,t, m̄s,t, d̄s,t, c̄s,t

}
,

so the optimality conditions are satisfied in both cases.
Next, consider the aggregate supply of loans and reserve demand. Equilibrium in the loans

market requires
(1− ct)b̄tEt = Θb

(
Rb
t

)ε −BFed
t+1 /Pt.

If the equation is satisfied under both policies, then we must verify that BFed
o,t+1/Po,t =BFed

s,t+1/Ps,t. To
see that this condition holds, recall that

BFed
s,t+1 =

(
1 +

gs − go
1 + go

)t
BFed
s,0 .

Now, if πs,t − πo,t = (gs − go) / (1 + go), by (A.2) we have that

Pa,t =
t∏

τ=0

(1 + πa,τ )P0 for a ∈ {o, s} .



Combined with the guess (A.3) above, we obtain

Ps,t =
t∏

τ=0

(1 + πo,t)

(
1 +

gs − go
1 + go

)
P0 = Po,t

(
1 +

gs − go
1 + go

)t
.

Therefore,

BFed
s,t+1/Ps,t =

(
1 +

gs − go
1 + go

)t
BFed
s,0 /Ps,t = BFed

0,t+1/Po,t,

which shows that the real holdings of loans under both policies are equal. This is the condition we
needed to verify that under our guess, Rb

t is the same under both policies. That Rd
t is the same

under both policies follows immediately using the same steps. Next, by assumption, note that Rm
t

is the same under both policies because

Rm
o,t =

(
1 + iioro,t+1

)
/ (1 + πo,t+1) =

(
1 + iiors,t+1

)(
1 +

gs − go
1 + go

)
/ (1 + πo,t+1) ,

and by assumption (A.3), the condition is also equal:

(
1 + iiors,t+1

) (1 + πo,t+1)

(1 + πs,t+1)
/ (1 + πo,t+1) = Rm

s,t.

Note that this condition is true because it is one of the assumptions of Proposition 5 that we are
proving.

Next, consider the condition for an equilibrium in the reserve market that gives rise to the
quantity. In any equilibrium, it must satisfy

(1− ct)m̄tEt = Mo,t/Po,t = Ms,t/Ps,t.

This condition is used to verify our guess (A.3). The condition above requires

Ps,t+1

Po,t+1

=
Ms,t+1

Mo,t+1

=

(
1 +

gs − go
1 + go

)t
Mo,t+1

Mo,t+1

=

(
1 +

gs − go
1 + go

)t
.

Then, since by Assumption (A.2), initial prices are the same, we have that

Ps,t+1

Po,t+1

=

t∏
τ=0

(1 + πs,t)P0

t∏
τ=0

(1 + πo,t)P0

=

(
1 +

gs − go
1 + go

)t
⇒

t∏
τ=0

(1 + πs,t) =
t∏

τ=0

(1 + πo,t)

(
1 + gs
1 + go

)
.

Since the condition holds for all t, then A.3 is deduced from the quantity equation of reserves.
The next step is to verify that Rχ̄

t is constant under both policies. For that, observe that the
interbank market tightness is the same under both economies. To see that, simply note that the
ratio of reserves to deposits is the same under both policies, and that this is enough to guaran-
tee that θt is equal under both policies. By Lemma 2 and the condition for policy rates in the



proposition—
(
1 + ixo,t

)
=
(
1 + ivs,t

) (
1+gs
1+go

)
for x ∈ {dw, ior}—in states away from satiation,

χ
(
.; idws,t , i

ior
s,t

)
=

(
1 + gs
1 + go

)
χ
(
.; idwo,t , i

ior
o,t

)
.

Therefore, we have that

Rχ
o,t =

χ
(
.; idwo,t , i

ior
o,t

)
1 + πo,t

=

(
1+gs
1+go

)
χ
(
.; idwo,t , i

ior
o,t

)(
1+gs
1+go

)
(1 + πo,t)

=
χ
(
.; idws,t , i

ior
s,t

)
(1 + πs,t)

= Rχ
s,t.

This step verifies that Rχ̄
o,t = Rχ̄

s,t. So far, we have checked the consistency of assumptions (A.1)
and (A.3), and that the policy rules for

{
b̄t, m̄t, d̄t, c̄t

}
and the real rates are the same under both

equilibria. We still need to show that the sequences for Et are the same under both policies, that the
initial price level is the same, and that the Fed’s budget constraint is satisfied under both policies.
We verify these conditions jointly. Consider the law of motion for aggregate real equity,

Et+1 =
(
Rb
t b̄t +Rm

t m̄t − (1 +Rd
t )d̄t

)
(1− c̄t)Et −

1 + idwt
1 + πt

W Fed
t

Pt
− Et

τt
1− τt

,

and the Fed’s budget constraint in real terms

BFedt

Pt
Rb
t +

WFed
t

Pt

(
1+idwt
1+πt

)
=

MFed
t

Pt
Rm
t + Et

τt
1−τt .

We have already verified that BFed
s,t+1/Ps,t = BFed

s,0 /Po,t. Following the same steps, we can show
that real reserves MFed

t /Pt and discount loans W Fed
t /Pt are identical in both equilibria. Away from

satiation, Rχ
o,t = Rχ

s,t, so that means that real income from the discount window,
WFed
t

Pt

(
1+idwt
1+πt

)
, is

constant under both policies. Provided that τt is constant under both sequences, the Fed’s budget
constraint is satisfied under both policies. Similarly, the law of motion for real aggregate equity is
the same, provided that E0 is the same under both policies. Consider now (B0, D0,M0,W0) , the
initial condition under both policies. If P0 is same initial price under both policies, Eo,0 = Es,0.
This is precisely the pair of initial conditions that we need to confirm our guess Eo,0 = Es,0 and
Po,0 = Ps,0. This finalizes the proof that equilbria are the same along both policies. QED.

H.4 Proof of Proposition 6

Formally, we prove the following result. Consider two policies, o and s, and let the alternative policy
feature an open-market operation performed at t = 0 and reverted at t = 1 in the sense that

1. BFed
s,0 = BFed

o,0 + ∆BFed , MFed
s,0 = MFed

o,0 + ∆MFed, for some loan purchase where ∆MFed =
∆BFed ≥ 0.

2.
{
ρo,t, κo,t, i

ior
o,t , i

dw
o,t

}
=
{
ρs,t, κs,t, i

ior
s,t , i

dw
s,t

}
for all t ≥ 0.

3.
{
ρo,t, B

Fed
o,t ,M

Fed
o,t , ...

}
=
{
ρs,t, B

Fed
s,t ,M

Fed
s,t , ...

}
for all t > 1.

The statement of the proposition says that the operation is neutral only if banks are satiated with
reserves at time zero. Away from satiation, the policy has real effects.

The proof is in two steps. First, we show that if the policies induce identical allocations, the
equilibrium prices Po,0 = Ps,0 must also be equal. Then, we show by contradiction that if the price



is constant, the open-market operation must have real effects away from satiation. If banks are
satiated, the policy has no effect.

Next, we prove the auxiliary lemma corresponding to the first step of the proof.

Lemma 3. Consider two arbitrary policy sequences o and s as described above. If real loans, deposits,
dividends, reserves, and bank equity are the same in all periods in both equilibria, then Po,0 = Ps,0.

Proof. We proceed by contradiction. Let us avoid the use of the time subscript and remember
that the policy change is at time zero. Without loss of generality, normalize the price in the original
equilibrium to Po = 1. If both policies have no effects on real loans and real deposits, then, given
the demand and supply functions, Rb

o = Rb
s and Rd

o = Rd
s . These rates are consistent with a real

quantity of loans B and deposits D.
Consider now the representative bank. By hypothesis, real dividends are equal in both equilibria

co = cs and eo = es. Let
{
bFedo , bo

}
and

{
bFeds , bs

}
be the holding of real loans by the Fed under

the original policy and the alternative policy. Also, let {mo,ms} be the real balances under both
policies. Then, we know that by market clearing in the loans market,

B = bFedo + bo (H.1)

= bFeds + bs.

Since equity, dividends, and real deposits are constant, from the bank’s budget constraints we obtain

bo − bs = ms −mo. (H.2)

From the quantity equation we obtain

Mo + ∆M = Psms

= Ps (bo +mo − bs)
= Ps

(
bo +mo −

(
B − bFeds

))
. (H.3)

The second equality follows from (H.2) and the third from (H.1). Now consider the definition of real
loans held by the Fed in the alternative policy:

bFeds =
bFedo + ∆B

Ps
=
bFedo + ∆M

Ps
=
bFedo

Ps
+

∆M

Ps
.

Substituting the last term into (H.3), we obtain

Mo + ∆M = Ps

(
bo +mo −B +

bFedo

Ps
+

∆M

Ps

)
= Ps

(
bo +mo −B +

bFedo

Ps

)
+ ∆M.

Thus, we have that the price under the alternative policy satisfies

mo = Ps

(
bo +mo − B̄ +

bFedo

Ps

)
.

Because this equation is independent of ∆M, it must hold for any open-market operation, in par-
ticular, for ∆M = 0. Therefore, it must be that Po = Ps = 1. QED.



Next, we establish that if the policy is neutral, we reach a contradiction. To reach that contra-
diction, assume that the policy is neutral. First, observe that if policy s is neutral with respect to
policy o, real assets and bank equity must be equal in both equilibria. For that to hold, portfolios
must be the same in both equilibria. Thus, consider the first-order condition for loans and reserves.
Then, under the original policy,

Rb −Rm =

Eω
[
(Re

ω)−γ · ∂χ̄t(m̄,D̄,ω)
∂m̄

|mo
]

Eω (Re)−γ
≡ Λ

(
mo, D̄

)
.

Assume the economy is away from satiation, and assume the false hypothesis that the two policy
sequences lead to the same real loans, deposits, and dividend sequences. Now, since banks are
away from satiation but hold different portfolios, there are differences in the discount window loans.
Since the policy is identical from t = 1 onward, any difference in Fed income from discount window
loans must be offset with t = 1 transfers to banks under the alternative policy. That means that if
the hypothesis is right, the policy leads to the same equity growth sequence. Since the increase in
discount loans is rebated to banks, the return on bank equity is the same if the bank’s portfolio is
the same. By Lemma 3, the price sequence is the same under both policies. This implies that Rm

is the same in both equilibria. Since the aggregate amount of loans is constant, the liquidity premia

must be constant. This is where the contradiction appears: away from satiation
∂Λ(m,D̄)

∂m
≤ 0, and

ms > mo, the first-order condition cannot hold under both policies. This contradiction proves that
away from satiation, the policy must have real effects.

Next, we verify that under satiation, the policy change has no effects. We verify that under
satiation, the quantity and real rate of deposits are invariant under both policies. Under satiation,

Λ
(
mo, D̄

)
− ∂Λ(mo,D̄)

∂mo
= 0 and Rb = Rm = (1 + iior). Since Rb depends on real quantities of loans,

we have that

Rb = Θb
(
bo + bfedo

)ε
.

Now, consider the alternative policy. Under the hypothesis that the policy has no effects, the price
is constant and equal to 1. Thus, ∆b̄fed = ∆m̄. Then, the balance sheet changes to

bfedo −mo = bfedo + ∆bfed − (mo + ∆m̄) .

Since banks are indifferent between holding loans and reserves, as long as Rb = Rm, we must verify
that

Rb = Θb
(
bo + bfedo

)ε
= Θb

(
bs + bfedo + ∆bfed

)ε
.

From the budget constraint of the bank,

bs = bo −∆m = bo −∆bfed.

Thus, Θb
(
bs + bfedo + ∆bfed

)ε
= Θb

(
bo −∆bfed + bfedo + ∆bfed

)ε
, which is precisely what we needed

to show to verify that loans remain constant. Since under both policies real asset returns are the
same, real deposit rates are also the same. The same is true about dividends. Finally, since the Fed
earns zero profits from the discount window under both policies and the Fed buys assets with equal
returns, the operation leads to the same transfers. This verifies that the policy has no effects under
satiation. QED.



I Law of Motion for Aggregate Equity

To derive the law of motion for aggregate equity, we combine the Fed’s budget constraint with the
bank’s budget constraint and use the market clearing conditions. The budget constraint for the Fed
during the balancing and lending stages is

MFED
t+1 = M̃FED

t+1 +W FED
t+1 (I.1)

M̃FED
t (1 + iiort ) +BFed

t+1 = M̃FED
t+1 +W FED

t (1 + idwt ) +BFed
t (1 + ibt) + PtTt. (I.2)

Combining these two constraints, we obtain

(1 + iiort )MFed
t +BFed

t+1 +W Fed
t+1 = MFed

t+1 + (1 + ibt)B
Fed
t + (1 + idwt )W Fed

t + PtT
Fed
t . (I.3)

Iterating forward for one period and using (I.2), we obtain

Tt+1 =
−M̃Fed

t+1 (1 + iiort+1)−W Fed
t+1 (idwt+1 − iiort+1)−BFed

t+1 (1 + ibt+1) + M̃t+2 −BFed
t+2

Pt+1

. (I.4)

On the bank’s side, recall that individual equity is defined as

ejt =

(
m̃j
t(1 + iiort ) + b̃jt(1 + ibt)− d̃

j
t(1 + idt ) + wjt (1 + idwt ) + f jt (i

f

t − iiort )− PtT jt
Pt

)
(I.5)

Iterating one period forward, integrating across banks, and the market clearing for reserves, discount
window, and interbank market loans, we obtain:

Et+1 =
M̃t+1(1 + iiort+1) + B̃t+1(1 + ibt+1)− D̃t+1(1 + idt+1) +Wt+1(idwt+1 − iiort+1)− Pt+1T

j
t+1

Pt+1

. (I.6)

Multiplying and dividing by Pt in the denominator, and using definition of real returns,

Et+1 = (Rb
t+1b̄t +Rm

t+1m̄t −Rd
t+1d̄t)Et(1− c̄t)−

W Fed
t+1 (idwt+1 − iiort+1)

Pt+1

− Tt+1. (I.7)

If we replace this condition by (I.4), we obtain

Et+1 = (Rb
t+1b̄t −Rd

t+1d̄t)Et(1− c̄t) +
M̃t+2 + (BFed

t+2 −BFed
t+1 (1 + ibt+1))

Pt+1

. (I.8)

which is equation (26).
Law of Motion under Satiation and M̃t = BFed

t . Following Proposition 4, consider a Fed
policy of idwt+1 = iiort+1 to generate satiation, and in addition, assume M̃t = BFed

t (for any t). From
(I.4), we must then have that Tt = 0. Thus, by (I.7) we have that

Et+1 = (Rb
t+1b̄t +Rm

t+1m̄t −Rd
t+1d̄t)Et(1− c̄t).

Thus, under satiation we have that Rb
t = Rm

t , and hence we obtain

Et+1 = (Rb
t+1(b̄t + m̄t)−Rd

t+1d̄t)Et(1− c̄t),



and because b̄t + ¯mt = 1 + d̄, we have that

Et+1 = (Rb
t+1 + d̄(Rb

t+1 −Rd
t+1))Et(1− c̄t).

However, we know that under satiation, either Rb
t+1 = Rd

t+1 or capital requirements bind and d̄ = κ.
Thus, this law of motion is written as

Et+1 = (Rb
t+1 + κ(Rb

t+1 −Rd
t+1))Et(1− c̄t). (I.9)



J Dynamical Properties

In this section, we study the dynamical properties of the model. We fully characterize these dynamics
when banks have log utility and the Fed carries out a policy of no distortions in the interbank market.
Both assumptions simplify the analysis. Although the results are not general, for small deviations
around that policy, the dynamic properties should be similar.

Stationary Equilibrium and Policy Effects with Satiation. We begin describing the
transitional dynamics of the model when the Fed carries out a policy that satiates the market with
reserves and sets Mt = BFed

t . By satiating the market for reserves and maintaining an equal amount
of reserves as Fed loans, the Fed induces no distortions in the credit market. A spread between
loans and deposits only results from capital requirements. This characterization is useful because
it describes the dynamics of the model in absence of any distortions. As long as the Fed does not
deviate too much from this policy, the properties should go through.

For this section, it is useful to define the inverse demand elasticity of loans and supply elasticity
of deposits, ε̄ ≡ ε−1 and ς̄ ≡ ς−1, respectively, as well as the intercept of the inverse demand for loans

and supply of deposits, Θ̄b ≡
(
Θb
)1/ε

and Θ̄d ≡
(
Θd
)1/ς

. We obtain the following characterization
for a transition:

Proposition 8. [Transitions under Satiation] Consider a policy sequence where the Fed induces
satiation at all t and satisfies Mt = BFed

t . Then:

1. Dynamics. Real aggregate bank equity follows:

Et+1 =
(
Rb
t + κmin

{(
Rb
t −Rd

t

)
, 0
})
βEt, with E0 > 0 given.

2. Existence and uniqueness. There ∃! steady state level of Ess > 0. The steady state features
binding capital requirements if and only if(

Θ̄b
) ς̄
ς̄+ε̄
(
Θ̄b
) ε̄
ς̄+ε̄ κ

ε̄ς̄
ς̄+ε̄ (1 + κ)(−ε̄)( ς̄−ε̄ς̄+ε̄) < β. (J.1)

3. Sufficient condition for monotone convergence. If (1− ε̄) / (1 + ς̄) > κ/ (κ+ 1) , then
Et converges to Ess monotonically.

In the paper, we satisfy the parameter restrictions of items 2 and 3 in Proposition 8.

J.1 Proof of Proposition 8

The proof of the proposition is presented in three steps. First, we derive a threshold equity level
where capital requirements are binding. Second, we prove that there can be at most one steady
state. Third, we provide conditions such that the equilibrium features binding reserve requirements.
Finally, we derive the sufficient condition for monotone convergence. We then establish the result
for the rate of inflation and the determination of the price level.

Part 1 - Law of Motion of Bank Equity. As shown in the Proof of Proposition 3, under log
utility c̄t = (1− β). Then, the law of motion in (I.9) becomes

Et+1 =
(
Rb
t + κmin

{(
Rb
t −Rd

t

)
, 0
})
βEt.

This shows that the law of motion of bank equity satisfies the differential equation in the proposition.
Thus, we have obtained a law of motion for bank equity in real terms. We use this to establish



convergence. Consider now the condition such that capital requirements are binding for a given
Et = E. For that we need that Rb

t > Rd
t . Using the inverse of the loan demand function, Rb

t can be
written in terms of the supply of loans using the market clearing condition:

Rb
t = Θ̄b

(
b̄βEt +

BFed
t

Pt

)−ε̄
,

but since BFed
t = M̃t,

Rb
t = Θ̄b (βEt (1 + κ))−ε̄ .

Using the result that capital requirements are binding, Rb
t > Rd

t , we obtain

Θ̄b (βEt (1 + κ))−ε̄ > Θ̄d (βEtκ)ς̄ .

Clearing E at equality delivers a threshold,

Eκ =
1

β

[
Θ̄b/Θ̄d

(1 + κ)ε̄ κς̄

] 1
ς̄+ε̄

,

such that for any E < Eκ, capital requirements are binding. Thus, the law of motion of capital is
broken into a law of motion for the binding and non-binding capital requirements regions.

We obtain
Et+1 = Θ̄b (βEt (1 + κ))1−ε̄ − Θ̄d (βEtκ)1+ς̄ for Et ≤ Eκ

and
Et+1 = Θ̄b ((1 + dt)βEt)

−ε̄ βEt for Et > Eκ.

Here, we substituted d̄ = κ in (I.9) for the law of motion in the constrained region and d̄t
(
Rb
t −Rd

t

)
=

0 in the second region.
Part 2 - Uniqueness of Steady State. Here we show that there cannot be more than one

steady state level of real bank equity. We prove this in a couple of steps. First, we ask whether
there can be more than one steady state in each region—in the binding and non-binding regions.
We show that there can be only one steady state in each region. Then, we ask if two steady states
can co-exists, given that they must lie in separate regions. The answer is no.

To see this, define

Γ (E) ≡ Θ̄b (β (1 + κ))1−ε̄E−ε̄ − Θ̄d (β (1 + κ))1+ς̄ E ς̄ .

If a steady state exists in the binding region, it must satisfy the following condition:

1 = Γ (Ess) and Ess ≤ Eκ.

It is straightforward to verify that

Γ′ (E) < 0, lim
E→0

Γ (E)→∞, and lim
E→∞

Γ (E)→ −∞.

Since the function is decreasing and starts at infinity, and the function ends at minus infinity, there
can be at most one steady state—with positive E—in the constrained region, Ess < Eκ.

In the unconstrained region, Ess ≥ Eκ a steady state is occurs only when

1 = Rb
tβ.



We need to find the level of equity that satisfies that condition. Also, we know that Rd = Rb in the
unconstrained region. Thus, the supply of loans in the unconstrained region is given by

βEt +
(
Rd
)− (

Rb
)
,

the sum of real bank equity plus real deposits. Thus, we can define the equilibrium rate on loans
through the implicit map, R̃b (E) , that solves

R̃b (E) ≡
{
R̃|R̃ = Θ̄b

(
βE +

(
Rd
)− (

R̃
))−ε̄}

.

If we can show that R̃b (E) is a function and R̃b (E) = β−1 for only one E, then we know that there
can be at most one steady state in the unconstrained region. To show that R̃b (E) is a function, we
must show that there is a unique value of R̃b for any E. Note that R̃b (E) = R̃ for R̃ that solves(

R̃
)− 1

ε̄ −
(
Rd
)− (

R̃
)

= βE.

Thus, since (R)−
1
ε̄ is decreasing and −

(
Rd
)−

(R) is decreasing, R̃b (E) is a function. Observe that

lim
R̃→0

(
R̃
)− 1

ε̄ −
(
Rd
)− (

R̃
)

=∞, and lim
R̃→∞

(
R̃
)− 1

ε̄ −
(
Rd
)− (

R̃
)

= −∞,

so R̃b (E) exists for any positive E. Since R̃b is decreasing in E and defined everywhere, there exists
at most one value for E such that R̃b (E) = (β)−1. This shows that there exists at most one steady
state in the unconstrained region.

Next, we need to show that if there exists a steady state where Ess ≤ Eκ, there cannot exist
another steady state where Ess ≥ Eκ. To see this, suppose that there ∃ a steady state in the
unconstrained region. Thus, there exists some value Eu > Eκ such that

R̃b (Eu) = 1/β.

Since R̃b is decreasing and Eu > Eκ, by assumption we obtain that

1/β < R̃b (Eκ) = Rb (βEκ (1 + κ)) , (J.1)

where the equality follows from the definition of Eκ.
As a false hypothesis, suppose that there is another steady state where Ec < Eκ. Then, using

the law of motion for equity in the constrained region,

Rb (βEc (1 + κ)) = 1/β − κ
(
Rb (βEc (1 + κ))−Rd (βEcκ)

)
Rb (βEc (1 + κ)) < 1/β, (J.2)

where the second line follows from Rb > Rd for any Ec < Eκ. Thus,

Rb (βEκ (1 + κ)) < Rb (βEc (1 + κ)) < β−1

because Rb is decreasing. However, (J.2) and (J.1) cannot hold at the same time. Thus, there ∃!
steady state with positive real equity.

Part 3 - Conditions for Capital Requirements Binding at steady state. Since R̃b is



decreasing, it suffices to show that if
Rb
t (Eκ) < β,

there exists no steady state with Eκ > Ē. This condition is guaranteed if

Θ̄b

([
Θ̄b/Θ̄d

(1 + κ)ε̄ κς̄

] 1
ς̄+ε̄

(1 + κ)

)−ε̄
< β →

(
Θ̄b
) ς̄
ς̄+ε̄
(
Θ̄b
) ε̄
ς̄+ε̄ κ

ε̄ς̄
ς̄+ε̄ (1 + κ)(−ε̄)( ς̄−ε̄ς̄+ε̄) < β,

which is the condition in the statement of the proposition.
Part 4 - Conditions for monotone convergence. Assume that parameters satisfy the

conditions for a steady state with binding capital requirements. Observe that if Et > Eκ, then
Et+1 < Et since Rb

t < (β)−1 for all E > Eκ. Thus, any sequence that starts from E0 > Ē
eventually abandons the region. Thus, without loss of generality, we only need to establish monotone
convergence within the E < Eκ region.

Now consider Et < Ess. We must show that Et+1 also satisfies Et+1 < Ess if that is the case.
Employing the law of motion of equity in the constrained region, notice that

Et+1 − Ess = Θ̄b (βEt (1 + κ))1−ε̄ − Θ̄d (βEtκ)1+ς̄ − Ess.

Define g (E) ≡ Γ (E)E. Thus,

Et+1 − Ess = Γ (Et)Et − Ess

= −
ˆ Ess

Et

g′ (e) de.

It is enough to show that g′ (e) > 0 for any e. We verify that under the parameter assumptions,
this is indeed the case. Note that

g′ (e) = (1− ε̄) Θ̄b (β (1 + κ))1−ε̄ e−ε̄ − (1 + ς̄) Θ̄d (βκ)1+ς̄ eς̄

= (1− ε̄)Rb (β (1 + κ) e) β (1 + κ) > (1 + ς̄)Rd (βκe) βκ,

where the second line follows from the definition ofRb andRd and the result that capital requirements
are binding in E < Ess. Furthermore, since in this region, Rb > Rd for all E < Eκ, then a sufficient
condition for g′ (E) > 0 is simply that,

(1− ε̄) β (1 + κ) ≥ (1 + ς̄) βκ.

Thus, a sufficient condition for monotone convergence is

(1− 1/ε)

(1 + 1/ς)
≥ κ

(1 + κ)
.



K Data Sources

Except for the liquidity premium and the equity losses, all the macroeconomic variables we use are
obtained from the Federal Reserve Bank of St. Louis Economic Research Database (FRED c©) and
are available at the FRED c©website. The original data sources for each series are collected by the
Board of Governors of the Federal Reserve System (US). We use the following series corresponding
to:

• the volume of interbank market loans:

– Board of Governors of the Federal Reserve System (US), Interbank Loans, All Commercial
Banks [IBLACBW027NBOG], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/IBLACBW027NBOG

• the volume of discount window loans:

– Discount Window Borrowings of Depository Institutions from the Federal Reserve [DIS-
CBORR], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/DISCBORR

• the interest on discount window loans:

– Board of Governors of the Federal Reserve System (US), Primary Credit Rate [DP-
CREDIT], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/DPCREDIT

• the interest on reserves:

– Board of Governors of the Federal Reserve System (US), Interest Rate on Required Re-
serves [IORR], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/IORR

• bank deposits:

– Board of Governors of the Federal Reserve System (US), Deposits, All Commercial Banks
[DPSACBM027NBOG], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/DPSACBM027NBOG

• the T-Bill rate is:

– Board of Governors of the Federal Reserve System (US), 3-Month Treasury Bill: Sec-
ondary Market Rate [TB3MS], retrieved from FRED, Federal Reserve Bank of St. Louis;

http://research.stlouisfed.org/fred2/
https://fred.stlouisfed.org/series/IBLACBW027NBOG
https://fred.stlouisfed.org/series/DISCBORR
https://fred.stlouisfed.org/series/DPCREDIT
https://fred.stlouisfed.org/series/IORR
https://fred.stlouisfed.org/series/DPSACBM027NBOG


https://fred.stlouisfed.org/series/TB3MS

• bank loans:

– Board of Governors of the Federal Reserve System (US), Commercial and Industrial
Loans, All Commercial Banks [BUSLOANS], retrieved from FRED, Federal Reserve Bank
of St. Louis;

https://fred.stlouisfed.org/series/BUSLOANS

The series that corresponds to open-market operations is the ratio of a measure of Fed’s assets,
normalized by total bank credit. The references for these series are:

• total bank credit

– Board of Governors of the Federal Reserve System (US), Bank Credit of All Commercial
Banks [TOTBKCR], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/TOTBKCR

• Fed’s assets are the sum of (WSRLL) securities, unamortized premiums and discounts, repo,
and loans held by the fed minus treasury securities (WSHOTS)

– Board of Governors of the Federal Reserve System (US), Assets: Securities, Unamortized
Premiums and Discounts, Repurchase Agreements, and Loans [WSRLL], retrieved from
FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/WSRLL

– Board of Governors of the Federal Reserve System (US), Assets: Securities Held Outright:
U.S. Treasury Securities [WSHOTS], retrieved from FRED, Federal Reserve Bank of St.
Louis;

https://fred.stlouisfed.org/series/WSHOTS

The return on the illiquid bond is obtained from Nagel (2016), which uses the return of a the
three-month general collateral repurchase agreements. The liquidity premium corresponds to the
difference between the return of this asset and the interest on reserves.

• liquidity ratio

– Board of Governors of the Federal Reserve System (US), (Cash Assets, All Commercial
Banks/Total Assets, All Commercial Banks)*100, retrieved from FRED, Federal Reserve
Bank of St. Louis;

https://fred.stlouisfed.org/graph/?g=IW4

https://fred.stlouisfed.org/series/TB3MS
https://fred.stlouisfed.org/series/BUSLOANS
https://fred.stlouisfed.org/series/TOTBKCR
https://fred.stlouisfed.org/series/WSRLL
https://fred.stlouisfed.org/series/WSHOTS
https://fred.stlouisfed.org/graph/?g=IW4


L Background Facts

To frame the discussion in the quantitative application, we collect some features of the data recorded
during the crisis. The data for the period of June 2007 to February 2010. is presented in Figure 15

Fact 1: Depressed Lending. Panel (a) presents the normalized series for commercial and
industrial (C&I). We observe a decline in lending that begins around in late 2007. The decline
continues through mid 2008 until there’s a partial recovery during the last quarter of 2008, possibly
accounted for the drawdown of bank credit lines. Nevertheless, the decline in lending accelerates
dramatically from January 2009 until the end of our sample in mid 2009.

Fact 2: Deposit Expansion. Panel (b) presents the normalized series for deposits. We can
observe that throughout the period, banks continued to issue deposits, suggesting that there was
not a systemic problem of bank funding.

Fact 3: Increased Discount Window Loans. Panel (c) plots the monthly series the ratio
of Fed discount window loans relative to total deposits. The figure shows an increase in discount
loans by the Fed that begun in early 2008. The the volume of discount window loans jumps rapidly
around the Lehman Brothers crisis in September 2008 and then reverts to pre-crisis levels.

Fact 4: Depressed Fed Funds Market Borrowing. Panel (d) plots the monthly series for
total Fed Fund market loans relative to deposits. The figure shows a continuous decline that begins
in early 2007. The decline persists throughout the entire sample, as emphasized in Afonso and
Lagos (2015) and Afonso and Lagos (2014). Together with Fact 3, this figure shows a substitution
away from interbank lending to discount window lending. The figure also shows that the decline in
interbank lending precedes the expansion of the Fed’s balance sheet observed in Panel (f). This and
the series in Panel (c) are used to reproduce a series for the withdrawal volatility of deposits in the
application of Section 7.

Fact 5: Increased interest on reserves. Panel (e) plots the monthly series for the Fed’s
interest payment on reserves. The figure shows how the Fed began paying interest on reserves since
October 2008. Following an initial increment, the rate on reserves dropped to a floor of 25 bps.

Fact 6: Fed Balance Sheet Expansion. Panel (f) shows the large scale open-market opera-
tions of the Fed. We can see how since the beginning of our sample, the Fed carried out a sequence
of expansions of its balance sheet. The series begins with a balance sheet which amounts to 0.5
per cent of total bank loans but by the end of the sample, the size of the Fed’s balance sheet is 12
percent of private loans.

Fact 7: Increase Liquidity Ratio. Panel (g) shows the substantial increase in the the liquidity
ratio, which is the counterpart of the decline in bank lending.

Fact 8: Increased Liquidity Premium. Panel (h) presents the liquidity premium. We
compute the liquidity premium as the difference in return between the three-month general collateral
repurchase agreements (GC repo) , and reserves at the Federal Reserve. The GC repo is effectively
an interbank loan collateralized with Treasury securities. This definition of liquidity premium follows
from Nagel (2016) except that we use the interest on reserves as opposed to the return on T-bills.
We observe that following an initial decline in the first quarter of 2008, the premium spikes during
the third quarter of that year and begins a decline in 2009. For more details, see Nagel (2016) or
Del Negro et al. (2017).

Fact 9: Bank Equity Losses. Begenau et al. (2017) report that during the crisis, banks losses
reached a peak of about 7% relative to bank book equity. That paper also shows that the entirety of
those losses were offset by equity issuances —both preferred and common equity. That paper shows
that market-value losses where much greater. In our experiments, we consider a 2 per cent loss in
bank equity as middle grounds between losses before and after recapitalizations.
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Figure 15: Data



M Algorithms

This appendix presents the numerical algorithms that we use to solve the model. We first present
the algorithm to solve the stationary equilibrium in which the Fed’s nominal balance sheet grows at
rate gm. We then present the algorithm to solve for transitional dynamics.

M.1 Computation: Stationary Equilibrium

We describe the algorithm to solve for the stationary equilibrium. In a stationary equilibrium, all
nominal variables grow at rate gm and real variables are constant. We also set a value for Rdand
then obtain the value for Θd that is consistent with that value.

1. Set the growth rate of the Fed’s nominal balance sheet to gm and fix a level for BFed,MFed.
Assume BFed = 0.

2. Guess a stationary value for the return on loans Rb
ss and market tightness θss.

3. Given market tightness, policy rates, and Rd, compute the liquidity yield function using (10).

4. Solve banks’ optimization problem:

(a) Compute portfolio weights {b̄, d̄, m̄} and certainty equivalent value Ω with (22) with
conjectured real return on loans and liquidity yield function computed in step 3.

(b) Compute value of the bank v and consumption using (D.2.2) and (D.2.1), respectively.

5. Check whether banks’ policies are consistent with steady state:

(a) Compute aggregate gross equity growth as

(1− c̃)Eω(Rb
ssb̄+ m̄−Rdd̄).

(b) Compute implied market tightness:

S− =

ˆ m̄/d̄−ρ
(1−ρ)

1

s(ω)dΦ and S+ =

ˆ ∞
m̄/d̄−ρ
(1−ρ)

s(ω)dΦ.

Market tightness is defined as
θ̃ = S−/S+.

6. If the equity growth rate is zero and θ̃ = θss, move to step 7. Otherwise, adjust the guess for
Rb
ss and θss and go to step 3.

7. Compute the nominal amount of reserves and the intercepts of the loan demand and deposit
supply functions using that real equity and the initial price level are normalized to one and

M̃Fed = E(1− c̃)m̄EP,

Θb

(
1

Rb

)ε
=

(
Eb̄(1− c̃)

)
− BFed

P
,

Θd

(
1

Rd

)−ς
= Ed̄(1− c̃).



8. Compute nominal returns using definitions of real returns and T from the Fed budget con-
straint:

W Fed(idw − π) +BFed(ib − π) + PT = MFed(iior − π),

where

MFed = M̃Fed +W,

W = = (1−Ψ−(θ))S−.

To compute expectations, we use a Newton-Cotes quadrature method. Specifically, we apply the
trapezoid rule with a grid of 2,000 equidistant points. To specify the lower and upper boundary of
the grid, we take the shock values that guarantee 10−5 mass in the tails of the distribution.

M.2 Computation: Transitional Dynamics under Baseline Policy

The algorithm to solve for transitional dynamics starts by conjecturing an initial price level, and then
solves for all sequences of prices and quantities using market-clearing conditions and bank problems.
After that, we check that the initial price leads the economy to converge to the stationary equilibrium
after many periods. The balance sheet of the Fed grows at rate g and sets 1+idwt+1 = (1+rdwt+1)(1+πt+1).
We assume log utility.

1. Establish a finite period T ∈ N for steady state convergence and convergence criterion ε.

2. Set initial deviation from real steady state equity δ ∈ (0, 1) such that E1 = (1− δ)Ess.

3. Guess an initial price level P0.

4. Set t = 1.

5. Given Et, Pt, M̃
Fed
t+1 , ∀t = 1, ...T define the real fixed supply of reserves share:

m̃ ≡
M̃Fed

t+1

βPtEt
.

6. Given m̃ compute (b̄t, m̄t, d̄t, r
b
t+1, r

ior
t+1, r

d
t+1), which solve

m̄t = m̃,

βEtd̄t = Θd
t

(
1 + rdt+1

)ζ
,

βEtb̄t = Θb
t

(
1

1 + rbt+1

)ε
+
BFed
t+1

Pt
,

b̄t + m̄t − d̄t = 1,

where (
b̄t, m̄t, d̄t

)
= arg max

b̄,m̄,d̄

{
Eω
[

ln(Rbt+1b̄+R
b
t+1m̄−Rdt+1d̄+χ(st))

]}
s.t. b̄+ m̄− d̄ = 1

d̄ ≤ κ,



This is a system of six equations and six unknowns. Notice that if the capital requirement
constraint binds, the system can be reduced to one unknown Rm

t+1 and one equation,

arg max
m̄

Eω

[
ln

((
βEt
Θb
t

−
BFed
t+1

Pt

)− 1
e

(1 + κ− m̄)
e−1
e +Rm

t+1m̄−
(
βEt
Θd
t

) 1
ζ

κ
ζ+1
ζ + χ(st)

)]
= m̃

If the capital requirement does not bind, the system can be reduced to two unknowns {Rb
t+1, R

m
t+1}

and two equations,

arg max
m̄,d̄

{
Eω
[
ln
(
Rb
t+1

(
1 + d̄− m̄

)
+Rm

t+1m̄ −
(
βEt
Θd
t

) 1
ζ

d̄
ζ+1
ζ + χ(st) =m̃,

Θb
t

(
Rb
t+1

)−e
+

BFedt+1

Pt

βEt
+ m̃− 1


7. Given Rm

t+1 and the nominal interest on reserves set by the Fed (iiort+1), compute inflation as

πt+1 =

(
1 + iiort+1

Rm
t+1

)
− 1.

8. Given πt+1 and Pt, compute next period price Pt+1 = (1 + πt+1)Pt.

9. Compute next period equity

Et+1 = β
(
Rb
t+1b̄t + m̄t −Rd

t+1d̄t
)
Et −

(
BFED
t+2

Pt+1

)
−

(
M̃FED

t+2

Pt+1

)
.

10. If t < T return to step 6 with t = t+ 1.

11. Compute criteria for convergence of z = PT+1 − P0(1 + πss)
T .

12. If |z| < ε, exit algorithm. Otherwise, adjust P0 and go to step 4.

M.3 Transitional Dynamics under Inflation Targeting

We describe the transitional dynamics when the Fed adjusts the balance sheet to keep the price level
growing at the steady state inflation rate. To do this, we expand the tools of the Fed with deposits
on banks, which we denote by DFed

t+1 . Given this, the budget constraint of the Fed becomes

MFed
t (1 + iiort ) +BFed

t+1 +DFed
t+1 +W Fed

t+1 = MFed
t+1 +DFed

t (1 + idt ) +W Fed
t (1 + idwt ) + PtTt,

and we assume the Fed offsets variations in Mt with DFed
t (i.e., ∆MFed

t = ∆DFed
t ). Given this,

following the same steps as in (I.8), the law of motion for aggregate equity becomes



Et+1 = (Rb
t+1b̄t −Rd

t+1d̄t)Et(1− c̄t) +
M̃t+2 +DFed

t+1 (idt+1 − iiort+1) + (BFed
t+1 (1 + ibt+1)−BFed

t+2 )

Pt+1

. (M.1)

We continue to assume as in our baseline that the Fed sets 1 + idwt+1 = 1+rdw

1+πt+1
. Notice that

since Pt+1/Pt = 1 + π, we have that the real return on reserves is entirely determined by policy
Rm
t = (1 + iiort )/(1 + π). We assume log utility.

1. Establish a finite period T ∈ N for steady state convergence and convergence criterion ε.

2. Set initial deviation from real steady state equity δ ∈ (0, 1) such that E1 = (1− δ)Ess.

3. Set t = 0.

4. Find (d̄t, b̄t,m̄t, R
b
t+1, R

d
t+1,M

Fed
t+1 , D

Fed
t+1 ) that solve

βEtd̄t = Θd
t

(
1

Rd

)ζ
+DFed

t+1 /Pt,

βEtb̄t +BFed
t+1 /Pt = Θb

t

(
1

Rb
t+1

)ε
,

m̄t. =
M̃t

βPtEt
,

∆MFed
t = ∆DFed

t ,

where

(̄bt, m̄t, d̄t) = arg max
¯

m, ¯b,d̄

{
Eω
[
ln
((
Rb
t+1

)
b̄+

(
1 + riort+1

)
m̄−

(
1 + rdt+1

)
d̄+ χ(st)

)]}
s.t. b̄+ m̄− d̄ = 1,

d̄ ≤ κ.

This system of seven equations and seven unknowns can be solved block recursively. If the
capital requirement constraint binds, the system can be reduced to one unknown m̄ and one
equation,

arg max
m̄

{
Eω

[
ln

((
βEt
Θb
t

)− 1
ε

(1 + κ− m̄)
ε−1
ε +Rm

t+1m̄−
(
βEt
Θd
t

) 1
ζ

κ
ζ+1
ζ + χ(st)

)]}
= m̃.

If the capital requirement is not binding, the system can be reduced to two equations and two
unknowns Rb, Rd. In order to solve this system, conjecture a pair (Rb, Rd), solve the portfolio
problem, find the rates consistent with market clearing conditions, and then update the guesses
for Rb, Rd accordingly.

5. Compute next period equity using (M.1).

6. If |Et − Ess| < ε, exit algorithm. Otherwise, t = t+ 1 and go to step 4.


