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Abstract

This paper uses non-parametric methods to study the efficiency (Dybvig,

1988) and risk-profile (Varian, 1988) of dynamic portfolio choices. We design

an experiment which varies the number of states (complexity), and includes an

equivalent static Arrow-Debreu problem. The results suggest that complexity

reduces efficiency, as does lower cognitive ability. Efficiency is also lower in the

static problem, and in the dynamic task it is mostly driven by a form of stop-loss

strategy. Further, we find that a representative agent exhibits decreasing absolute

risk aversion and constant relative risk aversion, despite significant individual

heterogeneity.
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1 Introduction

Understanding the sources of inefficiency in dynamic portfolio choices has important

implications for theory, policy-making and market participants. Inefficient portfolio

choices have a negative effect on financial well-being, and may enhance the disparity

in performance across investors. Sound financial advice, on the other hand, can help

mitigate some of these inefficiencies. To date, there is no systematic way to identify

the size and source of possible inefficiencies, though some studies point to irrational

behaviours, such as näıve diversification. A major hurdle in identifying the (in)efficient

strategies is the inability to specify the underlying risk preferences of investors. In this

paper, we propose a novel experiment which can simultaneously quantify the efficiency

loss of dynamic portfolio strategies, using the method of Dybvig (1988), and measure

risk preferences, applying the techniques of Varian (1988).

In our experiment, we ask subjects to allocate their endowed wealth between a risky

and a risk-free asset. In the dynamic task, the allocation decision is made for each pe-

riod, and every possible state of a binomial tree, to effectively create a contingency

plan. Consumption occurs only in the final period, where each terminal state has an

equal probability of being drawn. In order to evaluate whether a portfolio strategy is

efficient, we follow Dybvig (1988) who defines a choice as efficient if the final wealth in

the terminal states is non-increasing with respect to state-prices.1 Inefficiency is mea-

sured as the extra cost above the minimum expenditure necessary to achieve the chosen

distribution of final wealth. This approach requires no strong parametric assumptions

about the utility function, nor knowledge of investor risk preferences.2

1If this condition is violated, then it is possible to propose an allocation that first-order stochas-
tically dominates (FOSD) the chosen one. This holds under the assumption of equiprobable states,
which we implement in our design.

2Parametric models of portfolio choice may fail to separate true sub-optimal choices from misspec-
ified investor preferences. Standard preferences cannot explain inefficiencies identified using Dybvig
(1988), who shows that a portfolio strategy is efficient if, and only if, it maximizes a strictly increasing
von Neumann-Morgenstern or Expected Utility function over terminal wealth. Bernard et al. (2014)
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This study complements both theoretical and empirical literature in two ways.

First, measuring inefficiency is difficult in the field because it requires knowledge of

state contingent choices, which are rarely observable. Instead, one needs to rely on the

distribution of returns observed in markets.3 Second, data on state contingent choices,

allows us to analyze the patterns and sources of inefficient strategies. In this regard, we

focus on two main sources of inefficiencies: (i) the length of investment horizon, where

complexity increases with the number of states, and (ii) path-dependent strategies,

such as stop-loss.4 To evaluate the impact of the former, we implement a dynamic

portfolio problem with three and four periods, resulting in eight and 16 terminal states,

respectively. To evaluate the impact of the latter, we implement two analogous static

Arrow-Debreu problems, with eight and 16 states, respectively. This setup is formally

equivalent to the dynamic portfolio decision in our experiment, but without the channel

for path-dependence, and thus allows for a clean comparison across treatments.

Our results show that most of the choices made by subjects are efficient, and

therefore consistent with the maximization of expected utility (EU). Among ineffi-

cient choices, losses are higher when subjects (i) face a greater array of terminal states,

(ii) make allocation decisions in the static Arrow-Debreu environment, and (iii) have a

lower score on the cognitive reflection test (CRT). While the first result confirms our

initial hypothesis regarding the effect of increasing complexity, the second result sug-

gests that breaking down the investment problem into intermediate steps can improve

the efficiency of portfolio choices, relative to the static environment. Our result on the

effect of cognitive skills is consistent with previous evidence that higher CRT scores are

generalizes the approach of Dybvig (1988) and Cox and Leland (2000) by studying state-dependent
constraints.

3The approach of Dybvig (1988) has been applied empirically to study the performance of hedge
funds (Amin and Kat, 2003). There is a relatively recent literature that studies portfolio choices using
the criterion of stochastic dominance, mentioned in the next section.

4Stop-loss strategy prescribes a sale of assets when the price falls below some predetermined level.
Dybvig (1988) shows stop-loss strategy is inefficient.
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positively correlated with performance in laboratory asset markets (such as Corgnet et

al., 2018) and choice under risk (Choi et al., 2014). Additional analyses on the pattern

of strategies from the dynamic environment point to a form of stop-loss inefficiency, at

a particular node in the tree.

Using the data on individual portfolio allocations, we can also categorize investor

risk profiles, following the techniques of Varian (1988), who abstains from making

strong assumptions about the nature of the utility function. On aggregate, we find

that a representative agent’s risk preference is consistent with decreasing absolute

risk aversion (DARA) and constant relative risk aversion (CRRA). At the individ-

ual level, there is significant heterogeneity. An important share of subjects displays

non-monotonic risk-aversion, in contrast to the monotonic assumption frequently used

in standard parametric models. Thus, testing efficiency under CARA or hyperbolic

absolute risk aversion utility (HARA) may lead us to overlook individual heterogeneity

that is present in portfolio choices.

Our findings also have important implications for industry. For example, diversifica-

tion, promoted as a golden rule of investment practice, may not be enough to improve

the financial well-being of individuals. We show that when decisions are dynamic,

people sometimes embrace a form of stop-loss strategy which leads to sub-optimal

outcomes. However, despite the known inefficiency of stop-loss orders, some financial

advisors still promote their use.5

2 Related literature

There exists a long tradition of experiments and empirical studies seeking to analyze

portfolio efficiency with non-parametric methods. These studies use lab experiments

5For example, see https://www.schwab.com/resource-center/insights/content/be-defensive-use-
stop-orders. Extracted on March 3rd, 2020.
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(Baltussen and Post, 2011, Levy et al., 2004, Kroll et al., 1988, Kroll and Levy, 1992,

Sundali and Guerrero, 2009, Biais et al., 2017), surveys (Bateman et al., 2016) and

market data (Post, 2003, Post and Levy, 2005, Kopa and Post, 2009, Amin and Kat,

2003). Most papers in this literature adopt the static portfolio choice framework. To

the best of our knowledge, we are the first to use Dybvig (1988)’s non-parametric

methods to evaluate dynamic portfolio choices.

Our paper also contributes to the literature that elicits risk preferences through fi-

nancial allocation decisions in the lab (see Gneezy and Potters, 1997, Choi et al., 2007,

Friedman et al., 2019, Goldstein et al., 2008, Kaufmann et al., 2013). Most of these

papers use a static allocation task with two state-contingent securities, whereas our ex-

periment provides a richer data set. We are also the first to use Varian (1988)’s method

to non-parametrically estimate risk aversion. Consistent with previous findings, our

results suggest that the format of the elicitation task matters.6 When subjects face a

binomial tree diagram in the dynamic task of our experiment, they exhibit less risk

aversion relative to the price list environment in the static task. Indeed, we find that

many subjects hedge their allocation decision in the static task, behavior consistent

with the equal allocation or 1/n heuristic across funds (Huberman and Jiang, 2006;

Benartzi and Thaler, 2001) as well as with other economic decisions (e.g. Sonnemann

et al., 2013, and Rud et al., 2019).7

In terms of literature on risk preferences, perhaps the most closely related paper

to our work is that of Brocas et al. (2019), where they implement a dynamic portfolio

problem in the lab and employ a parametric approach (HARA) to evaluate the risk

preferences of subjects. Their results show that while subjects are quite heterogeneous,

6Friedman et al. (2019) also compare different risk elicitation tasks, including a jar interface, a
budget line in a two-state economy, and a multiple price list (Holt and Laury, 2002), and find that
(i) while violations of FOSD are not infrequent, they are generally quite small, and (ii) standard EU
preferences cannot explain the observed variations in preferences across tasks.

7Task complexity can also lead to different behavioral rules (e.g. see d’Acremont and Bossaerts,
2008).
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more than half exhibit decreasing absolute risk aversion and increasing relative risk

aversion (DARA-IRRA) preferences.8 At the aggregate level the results are mixed:

Brocas et al. (2019) find evidence of CRRA, but this occurs because subjects who

exhibit DRRA accumulate more wealth than those who exhibit IRRA and thus have

more impact.9

Finally, there are a number of lab experiments exploring specific anomalies related

to dynamic portfolio choices, notably the disposition effect (e.g. Weber and Camerer,

1998, Frydman et al., 2014, Magnani, 2015). Fischbacher et al. (2017) show that

stop-loss strategies may help overcome the disposition effect, but do not analyze the

portfolio inefficiency that such strategies can create.

3 The environment

The experimental design focuses on the portfolio allocation decision in two equivalent

environments which yield the same terminal wealth but have different presentation

formats. We refer to the two tasks as (i) dynamic, and (ii) static.

3.1 Dynamic portfolio choice

In the dynamic task, each investor is endowed with an initial wealth w̄ > 0 which they

must allocate between a risky asset and a risk-free asset for every contingent state s

in periods t = 1, . . . T − 1. The rate of return of the risky asset Rs,t evolves according

8DARA at the subject level is consistent with the prudence measure (a convex marginal utility) of
Kimball (1990), which appears frequently in high-order risk-aversion tests (e.g. see Ebert and Wiesen,
2011, Deck and Schlesinger, 2014, Noussair et al., 2014 and Trautmann and van de Kuilen, 2018 for
a recent overview). The decrease in risk-aversion at the low-priced state is also consistent with the
behavior documented in Thaler and Johnson (1990).

9Similarly, Rapoport et al. (1988), who allow subjects to invest in risky assets and one safe asset
show evidence of IRRA at the aggregate level. In lottery choices, IRRA is found in Holt and Laury
(2002) and Noussair et al. (2014), however Harrison et al. (2007) fail to reject existence of CRRA
using a controlled field experiment with Danish subjects.
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to a binomial process described below. The safe asset pays a risk-free rate of return,

Rf . We denote the investor’s wealth in state s and period t as Ws,t, the amount of

wealth invested in the risky asset as as,t and the amount of wealth invested in the

risk-free asset as bs,t. The objective of an investor is to maximize the expected Von

Neumann-Morgensten utility on terminal wealth u(Ws,T ):

max
{as,t}

E[u(Ws,T )] (1)

subject to

Ws,t+1 = Ws,tRf + as,t(Rs,t −Rf ), (2)

where the risk-free investment can be computed as

bs,t = Ws,t − as,t, (3)

In our implementation we assume the risk-free return is Rf = 1 and the risky asset

return Rs,t follows

Rs,t =


Ru = 2 > Rf = 1 w. prob. 0.5;

Rd = .5 < Rf = 1 w. prob. 0.5.

(4)

Further, the investor is allowed to borrow and short-sell with the constraint that wealth

is greater than or equal to zero in the following period: Ws,t+1 ≥ 0.

3.2 Static portfolio choice

From option pricing theory we know that the dynamic portfolio model can be reformu-

lated as a static model using Arrow-Debreu securities. For each of the S = 2T terminal
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states we can define an Arrow-Debreu security as a state-contingent asset that pays out

one if that state is realized and zero otherwise. The payoff to any portfolio strategy in

the dynamic problem can be replicated by an appropriate portfolio of Arrow-Debreu se-

curities. Moreover, this property can be used to derive the prices of the Arrow-Debreu

securities, or state-prices. If u denotes the number of times the price of the risky asset

increases prior to reaching state s in the binomial tree, and d the number of times the

price decreases, then the price of Arrow-Debreu security s using the parameters of the

risky asset return in equation (4) is:

ps =

(
1

3

)u(
2

3

)d

.

We can also define the state-price density qs as:

qs := ps/πs =

(
2

3

)u(
4

3

)d

. (5)

where πs is the probability of final state s, which equals 1
S

, where S is the number of

terminal states.10 Hence, the investor’s maximization problem can then be specified as

max
{cs}

S∑
s=1

πsu(cs),

subject to
S∑

s=1

pscs = w̄,

cs ≥ 0 ∀s.

(6)

where cs denotes the amount of an Arrow-Debreu security s in the investor’s portfolio.

10πs can be re-written in terms of the number of ups and downs, or πs =
(

1
2

)u ( 1
2

)d
. In our

experiment, the probability of up (down) is 1/2. Dividing ps, known as fair price or risk-neutral price,
by πs, we obtain qs. The risk-neutral price is computed by setting cu = 2a+ b equal to cd = a/2 + b.
Solving for a and b, we obtain a+ b = (1/3) · cu + (2/3) · cd.
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3.3 Efficiency measures

Reformulating the original dynamic portfolio problem into the static Arrow-Debreu

problem allows us to evaluate whether an investment strategy is efficient. Dybvig

(1988) provides an important theoretical result:

Proposition 1. The following are equivalent:

1. The portfolio is optimally chosen by some agent who has strictly increasing and

concave von Neumann-Morgenstern (or Expected Utility) preferences over termi-

nal wealth.

2. Final wealth cs is non-increasing in the terminal state-prices ps.

3. The portfolio minimizes the expenditure
∑
pscs required to achieve the chosen

distribution of final wealth.

Proof: See Theorem 1 in Dybvig (1988).

By solving the static problem, and using the first order condition where marginal

utility u′(.) is proportional to state price density q

u′(c∗s) = λqs , (7)

we can show that (1) implies (2) in Proposition 1. Equation (7) also implies cyclic

monotonicity11 due to the concavity of the utility function

c∗1 ≥ c∗2 ≥ · · · ≥ c∗
2T
⇒ q1 ≤ q2 ≤ · · · ≤ q

S
. (8)

11For a textbook analysis of the monotonicity condition using risk-neutral probabilities, refer to
Chapter 13 of Danthine and Donaldson (2014) which includes a formal derivation of the main propo-
sition of Dybvig (1988).
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Since each state is equiprobable, we can rewrite the above condition as

c∗1 ≥ c∗2 ≥ · · · ≥ c∗
2T
⇒ p1 ≤ p2 ≤ · · · ≤ p

S
. (9)

Proposition 1 shows that cyclic monotonicity is not only a necessary, but also

sufficient condition for EU maximization. Moreover, Proposition 1 guarantees that

only allocations that are non-increasing in prices are efficient, in the sense that they

minimize the expenditure required to achieve the chosen distribution of wealth. If an

agent picks a consumption profile that does not satisfy cyclic monotonicity, then it

is possible to re-order the consumption choices in such way that the agent is able to

achieve the same distribution of consumption and pay less. The savings can be spent

on increasing wealth in any state, resulting in a distribution that first-order stochastic

dominates the initial distribution of wealth.12

The theoretical result leads to a measure of inefficiency: if an investor chooses a

distribution of cs that is not non-increasing in ps, then we can derive a dominating

distribution by reordering the cs to be non-increasing in ps. Denoting the dominating

distribution as c∗s, Dybvig (1988)’s measure of efficiency loss (L) can then be specified

as

efficiency loss (L) :=
∑

pscs −
∑

psc
∗
s =

∑
ps(cs − c∗s). (10)

In experimental and field data, we cannot observe actual preferences of agents. Rather

L in equation (10) represents a tight lower bound on the amount of wealth an agent

would pay to switch from c to an optimal strategy that satisfies the cyclical monotonic-

ity condition in equation (8).

12Recall that a lottery A (strictly) first-order stochastically dominates lottery B iff FA(x) ≤ FB(x)
for all x, with strict inequality for some x. FA(x) is the cumulative distribution function, or the
probability that the realized wealth in profile A is no greater than x.
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3.4 Measuring risk-preferences from portfolio choices

If a portfolio strategy induces a distribution of final wealth that satisfies the cyclical

monotonic condition in equation (8), then it follows that the observed choices satisfy a

maximization process according to EU. Next, we present the non-parametric techniques

originally suggested by Varian (1988) to study the risk profiles revealed by portfolio

choices.

We characterize absolute risk aversion using portfolio choice data and the Arrow-

Pratt measure of risk defined as,

A(c) := −u
′′(c)

u′(c)
= −d log(u′(c))

dc
. (11)

A(c) is the absolute value of the slope of the log of the marginal utility relative to c,

and it follows that an investor will have decreasing (increasing) absolute risk aversion

if and only if the log of marginal utility is convex (concave):

A′(c) < 0⇔ d2 log(u′(c))

dc2
> 0 (12)

While we do not observe marginal utility directly, we can infer it from portfolio choices

of subjects. By choosing an appropriate affine transformation of the utility function,

the first order condition of the static problem

u′(cs) = qs , (13)

suggests that we can use state-prices in place of marginal utilities. If we plot log(qs)

versus cs, we obtain a piece-wise linear demand curve, as illustrated in Figure 1. A

steep (or more inelastic) demand curve represents higher risk-aversion. If the demand

curve is vertical (perfectly inelastic) then an agent will invest all her wealth in the
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risk-free asset, and thus perfectly hedge. Moreover, if log(qs) is convex (concave) in

cs, then we can conclude that the investor has a decreasing (increasing) absolute risk

aversion. Varian (1988) shows that under decreasing absolute risk aversion it is possible

to establish the following bounds for the coefficient A(c) at each wealth level cs, so that

log(qs)− log(qs−1)

cs−1 − cs
≤ A(cs) ≤

log(qs+1)− log(qs)

cs − cs+1

, (14)

where states have been re-numbered so that c1 < c2 < ... < cS and q1 > q2 > ... > qS.

We will refer to this as Varian’s ratio condition. In the case of increasing absolute risk

aversion, the inequalities in (14) are reversed.

cs

log(qs)

c1

log q1

c2

log q2

c3

log q3

A(c2) is bounded by the two slopes

Figure 1: Illustration of Varian (1988) method.

A similar argument can be made to analyze relative risk aversion, defined as

R(c) := −c · u
′′(c)

u′(c)
= −d log(u′(c))

d log(c)
. (15)

If log(qs) is convex (concave) in log(cs), then we can conclude that the investor has a

decreasing (increasing) relative risk aversion. Furthermore, under decreasing relative

risk aversion the coefficient R(c) at each wealth level cs has the following lower and
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upper bounds:

log(qs)− log(qs−1)

log(cs−1)− log(cs)
≤ R(cs) ≤

log(qs+1)− log(qs)

log(cs)− log(cs+1)
, (16)

where states have been numbered so that c1 < c2 < ... < cS and q1 > q2 > ... > qS. As

before, inequalities are reversed for the case of increasing relative risk aversion.

4 Hypotheses

The first environment in our experiment reproduces the dynamic portfolio problem (1).

To test whether inefficiency is affected by the complexity of the portfolio problem, we

implement two versions of problem, one with T = 3 periods and one with T = 4

periods, resulting in eight and 16 terminal states respectively. In addition to the dy-

namic portfolio problem, we include a static portfolio problem (6) which allows us

to test whether efficiency is affected by the use of path-dependent strategies, such as

stop-loss. To allow for a clean comparison with the dynamic portfolio problems, we

similarly employ two versions of the static portfolio problem, one with eight states and

one with 16 states.

Hypothesis 1: Under the assumption of perfect rationality, efficiency loss is zero in

both dynamic and static tasks, and across the number of terminal nodes.

If we assume perfect rationality, then there should be no path-dependent behavior,

and the task format and number of terminal nodes is non-consequential. Thus, we

expect similar efficiency loss L (equation 10) and risk-aversion across all treatments.

Alternatively, under path-dependence (e.g. stop-loss, or lock-in strategies) we ex-

pect that efficiency loss L will be higher in the dynamic task, with the effect stronger
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when there are 16 terminal nodes compared to the eight terminal nodes. Similarly, it

is more likely that a boundedly-rational player, as measured by the CRT score, will

make more mistakes (L > 0).

Hypothesis 2: Under the assumption of expected utility maximization, subjects will

exhibit non-increasing absolute risk aversion in both static and dynamic tasks.

We expect that A(c), as defined in equation (11), is non-increasing in terms of final

consumption or wealth, or A′(c) ≤ 0 for both tasks.

Hypothesis 3: Under the assumption of expected utility maximization, subjects exhibit

non-decreasing relative risk aversion in both static and dynamic tasks.

Following the results of Brocas et al. (2019), who estimate parameters of a HARA

utility function (under EU assumptions) in a dynamic portfolio experiment, we expect

that R(c), as defined in equation (15), is non-decreasing in terms of terminal wealth,

or R′(c) ≥ 0.

5 Laboratory procedures

Our experiment consists of four treatments, labeled D8, D16, S8 and S16, where

the letter denotes either a dynamic (D) or a static (S) environment, and the number

pertains to the terminal states in the task. This is a within-subject design, where

each subject participates in all four versions of the task (D8, D16, S8 and S16). In

some sessions, subjects first complete the dynamic tasks followed by static tasks, while

in other sessions, subjects first complete the static tasks and then dynamic tasks.
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While the static/dynamic task order was randomized, the first task always had eight

terminal states.13 To ensure comprehension, the subjects answered control questions

and practiced each task with four terminal nodes for two rounds. We also include a

survey regarding the field of study and gender, and an incentivized cognitive reflection

test (Frederick, 2005) at the end of the experiment. The subject’s payoff is calculated

using the wealth in an independently drawn terminal state, which is randomly selected

for all four versions of the task (D8, D16, S8 and S16). Payoffs are revealed only after

the subjects complete all tasks.

Figure 2: User-interface of task D8.

The user interface in the dynamic task presents the price of the risky-asset in every

node in the tree. An example of the interface, designed in oTree (Chen et al., 2016), for

D8 is depicted in Figure 2. Each box in the tree displays the price of the risky asset,

the current wealth and the amount of wealth allocated to the risky asset A and to the

risk-free asset B. The initial price of the risky asset A is eight, and follows the process

13We opted for a lower complexity task first to dampen the effect of complexity in the experiment
with experience.
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described by equation (4). In the interface, an upward-pointing (downward-pointing)

arrow represents a price increase (decrease). Subjects can decide how much to invest

in the risky asset (as,t) for all 2T −1 nodes of the tree until the terminal period T . The

user-interface for D16 is similar to the one presented in Figure 2, but with 16 terminal

nodes and 15 asset allocation decisions.

Subjects always begin with an initial wealth of w̄ = 100 or 2 AUD. After the

subjects select the risky allocation as,t at initial node, the interface computes (i) the

risk-free investment bs,t following equation (3), and (ii) the wealth Ws,t+1 in equation

(2) for the next two nodes, in which the asset price either increases or decreases. Recall

that the subjects are allowed to short-sell the risky asset (i.e., take a negative position

on as,t) or borrow from the risk-free bond (i.e., take a negative position on bs,t) with

the constraint that Ws,t+1 ≥ 0. As the subject fills out the investment plan, the

software immediately updates the wealth levels in the subsequent boxes. In Figure 2,

we entered an initial value of a = 34 and the software computed b = 100−34 = 66, and

the subsequent wealth 134 = 2× 34 + 66 in the up state and 83 = 1/2× 34 + 66 in the

down state. When the investment plan is complete (all nodes have an allocation, and

the terminal wealth across all states is non-negative), it can be submitted. Following

submission, the software randomly draws a price path and the subjects final wealth

is realized (without feedback, as subjects learn of outcomes only after completing all

tasks).

In the static task, subjects also begin with an initial wealth w̄ = 100 or 2 AUD,

and allocate their budget to buy tickets across eight or 16 different lotteries, depending

on the treatment. The payoff of a subject is calculated as the number of tickets

bought for a randomly selected lottery. The price of each lottery represents the price

of the Arrow-Debreu security at each of the terminal nodes of the dynamic task. The

interface is a large table with either 8 or 16 rows, where each row represents a lottery.
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Figure 3: User-interface of task S8.

Figure 3 presents the user-interface for the 8 lottery case. The first column contains

the lottery id,14 and the second column posts the lottery ticket prices in terms of 100

units. Lottery prices are computed as state-prices for each of the final states, using the

method described in section 3. The third column is where subjects enter how many

tickets they would like to purchase, and the last column provides the expenditure on

each lottery after the subjects enter the desired quantity. The interface automatically

fills in the quantity of tickets for the last lottery (the lowest-priced lottery) so that

the budget constraint is satisfied. Subjects can purchase only non-negative amounts of

each lottery. If the number of tickets is negative for any lottery, then subjects have to

adjust their allocation across lotteries in order to proceed to the next screen. In our

example in Figure 3, we entered 76 for the first lottery, which is an expenditure of 22.5

(76×0.2963). Once quantities for lotteries 2-7 are entered, and the software computes

the quantity that satiates the budget of 100 for the last lottery.

In all, six sessions were conducted at Monash University (MonLEE lab), with 119

subjects, recruited from all fields of study using the software SONA. Subjects earned

on average 23 AUD, including a show-up fee of 10 AUD. The exchange rate was 100

14The lotteries are sorted in the reverse order of the final states in the dynamic task tree.
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points for 2 AUD. Each correct answer in the CRT task yielded a payoff of 50 points.

From a total of three CRT questions, the average score was 2/3. The participants

were 48 percent female, 66 percent declared their field of study as STEM, 21 percent

as Business and Finance, 7 percent as Art and Humanities, with the rest classified as

Social Science or not a student.

6 Results

We begin our discussion of results with a look at the efficiency loss L, as defined in

equation (10), for each of the four tasks. Recall that a value of zero for L means

that the subject’s consumption choice satisfies the monotonicity condition presented

in equation (8). Table 1 presents the mean and median values of L, as well as the

percentage of choices where L ≤ 2, and where L = 0.

Table 1: Observed and Predicted Inefficiency L

Data Predictions
Task Mean Median % ≤ 2 % = 0 stop-loss lock-in random worst

D16 2.25 0.00 74 57 1.23 4.94 23.57 93.75
D8 1.22 0.00 81 70 0.00 0.00 19.48 87.85
S16 9.92 1.88 51 26 na na 23.57 93.75
S8 7.35 0.19 58 47 na na 19.48 87.85
Note:
a. The statistics are computed across subjects for each treatment, and thus the percentage is in terms of
the total number of subjects. b. The initial asset price is equal to 8. The stop-loss strategy switches to the
risk-free bond when the asset price drops to 4. The lock-in strategy switches to the risk-free bond when the
asset price increases to 16.
c. Random strategy: selects a random allocation of terminal wealth from a flat Dirichlet distribution on
the S-dimensional simplex defined by the budget constraint. The values of L reported are the averages over
5,000 iterations.
d. Worst strategy: assumes that the investor puts all wealth in the most expensive state. The inefficiency
is then computed against switching the wealth to the lowest-priced state

Result 1a: The inefficiency of portfolio choices, measured by L in equation (10), is

small in both dynamic and static tasks. Most of the subjects choose an efficient port-
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folio allocation.

Overall, we find that median value of L is zero in the dynamic task, and close to

zero for the static task (0.19 for S8 and 1.88 for S16). If we look at the percentage of

choices per subject where L ≤ 2, then we find a large percentage of subjects selecting

efficient portfolios in the dynamic task (81 percent for D8 and 74 percent for D16).

For S8 and S16, the percentage of subjects with efficient choices is 58 percent and 51

percent, respectively.

Result 1b: The inefficiency is higher in the tasks with a larger number of terminal

states and higher in static tasks relative to dynamic tasks.

The inefficiency is greater in the static task relative to the dynamic task, and is

increasing in complexity. The mean value of L is about seven and 10 in S8 and S16,

respectively, and about one and two in D8 and D16, respectively.

We test whether inefficiency L varies systematically across treatments using Wilcoxon

tests. The p-values of two-sided tests are summarised in Table 2. We find that tasks

with a greater number of terminal states have higher inefficiency on average. This dif-

ference is statistically significant for both static and dynamic tasks (p-values of 0.043

and 0.009, respectively). We also find that for a given number of terminal states static

tasks have significantly higher inefficiency.

Table 2: Wilcoxon Test: L (p-values)

D16 D8 S16
D16
D8 < (0.009)
S16 > (0.000) > (0.000)
S8 = > (0.000) < (0.043)
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To have a better understanding of the L values observed in our data, we perform

simulations using four portfolio selection strategies. First, we consider two inefficient

dynamic strategies originally featured in the analysis of Dybvig (1988) and which may

be salient for subjects: a stop-loss strategy, and a lock-in strategy. The stop-loss

strategy involves investing all wealth in the risky asset at the initial node, and moving

all wealth to the risk-free asset as soon as the risky asset price falls to 4. The lock-in

strategy involves investing all wealth in the risky asset at the initial node, and moving

all wealth to the risk-free asset as soon as the risky asset price rises to 16. Next, we

consider a random strategy which draws an allocation of terminal wealth from a flat

Dirichlet distribution on the S-dimensional simplex defined by the budget constraint.

To compute the inefficiency of the random strategy we simulate 5,000 portfolio choices

and calculate the average L. Finally, we consider the worst strategy, which allocates

all wealth to the most expensive state. The value of L reported under the worst-case

strategy is computed by switching the consumption from the most expensive state to

the cheapest one. The simulation results of efficiency loss L for all four strategies are

depicted in Table 1.

Across all treatments, subjects outperform the worst-case strategy, which results

in high values of L (about 87 for D8 and S8 and 94 for D16 and S16). The level

of inefficiency generated by the random strategy is also much larger than the average

inefficiency of subjects’ choices in our data. For the stop-loss and lock-in strategies, we

only encounter inefficiencies in the treatment with 16 terminal states. The value of L

in D16 is 1.23 for the stop-loss strategy, and 4.94 for the lock-in strategy. This suggests

that forgoing consumption in up states is more costly compared to the down states.

By design, the static environment does not allow path-dependent strategies, and thus

in Table 1 there are no values to report for S8 and S16. The inefficiency generated by

path-dependent strategies is closer in magnitude to the actual inefficiency we observe
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in our data. We elaborate on whether subjects implement these strategies during the

experiment further below. First, we discuss whether subject characteristics can explain

the observed variation in inefficiency.

Result 1c: Subjects with higher CRT scores make more efficient portfolio choices.

In order to study whether subject characteristics can help predict the efficiency loss

L observed in our sessions, we run OLS regressions with L as a dependent variable. The

results are summarized in Table 3, and include the following as explanatory variables:

(i) Small takes the value of one if the task has 8 terminal nodes, and zero otherwise, (ii)

Dynamic takes the value of one if the task is D8 or D16, and zero otherwise, (iii) Man

takes the value of one if the subject is a self-reported male, and zero otherwise, and

lastly, (iv) CRT can take the value of {0, 1, 2, 3}, and represents the correct number

of questions answered in the cognitive reflection test. Thus, the intercept of 14.83 for

specification (I) in Table 3 captures the inefficiency L of a female subject in the S16

treatment with a CRT score of zero (the average CRT score in our data is 2).

Inefficiency is 7.66 points lower in the dynamic tasks relative to static tasks. In-

efficiency is also 2.57 points lower in tasks with 8 terminal states relative to tasks

with 16 terminal states. The smallest inefficiency is observed in the D8 treatment

(= 14.83− 2.57− 7.66). We do not find any statistically significant interaction effects

between treatments, with the coefficient Dynamic × Small not statistically different

from zero. Furthermore, the inefficiency is also smaller for subjects with higher CRT

scores. An additional correct answer decreases L by 2.43. Lastly, there are no gender

differences in the efficiency of portfolio choices. Specification (II) in Table 3 includes

the same set of independent variables as specification (I), but controls for the field of

studies declared. While we do not find any major differences across the two specifica-
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Table 3: OLS Regressions. Inefficiency L

(I) (II)

Intercept 14.83
∗∗∗

13.06
∗∗∗

(2.85) (2.63)

Dynamic −7.66
∗∗∗ −7.66

∗∗∗

(1.66) (1.67)

Small −2.57
∗∗ −2.57

∗∗

(1.19) (1.19)
Dynamic × Small 1.54 1.54

(1.34) (1.35)
Man 0.14 0.59

(1.33) (1.35)

CRT −2.43
∗∗∗ −2.12

∗∗

(0.84) (0.82)
Field of Study (FE) No Yes
R2 0.13 0.15
N 476 476
Notes:
a. L is defined in equation (10).
b. Standard errors are clustered at the individual level.
∗∗∗

p ≤ .01,
∗∗

p ≤ .05,
∗
p ≤ .1

tions, we do want to note that the field of study reduces the significance of the CRT

from one to five percent, which suggests that these two variables may be correlated.

Result 1d: In D8 and D16, the most common mistakes leading to inefficiency can be

explained by a form of stop-loss, and insufficient risk-taking following early declines in

the price of the risky asset.

To study the sources of inefficiency, we assess whether subjects make common

mistakes in their allocation decisions. Recall that inefficient strategies violate cyclic

monotonicity. In other words, if a strategy is inefficient, then there is at least a pair

of terminal states i and j where pi > pj and the strategy allocates more wealth to

state i than state j (ci > cj). Focusing on inefficient strategies in the dynamic tasks,

we analyze the frequency of different violations of monotonicity, which we refer to as

mistakes below.
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P = 8 w = 100
a = 60 b = 40

P = 16 w = 160
a = 120 b = 40

P = 4 w = 70
a = 0 b = 70

P = 32 w = 280
a = 360 b = −80

P = 8 w = 100
a = 0 b = 100

P = 8 w = 70
a = 0 b = 70

P = 2 w = 70
a = 0 b = 70

P = 64 c1 = 640

P = 16 c2 = 100

P = 16 c3 = 100

P = 4 c4 = 100

P = 16 c5 = 70

P = 4 c6 = 70

P = 4 c7 = 70

P = 1 c8 = 70

Figure 4: Example of inefficient strategy in D8
Note: P denotes the price of the risky asset, w wealth, a the amount of wealth invested in the risky asset, b
the amount of wealth invested in the risk-free asset and ci denotes final wealth in state i. The inefficiency
arises from c4 > c5 at the terminal period. The Arrow-Debreu price at state 4 is 0.1481 while at state 5 is
0.0741. Therefore, the inefficiency L can be computed as L = 2.22 = (100 − 70) × (0.1481 − 0.0741). The
subject stops (a = 0) when the price drops to P = 4 in period 1 and when the price drops to P = 8 in
period 2 after having increased to 16 in period 1.

To begin, we sort the states according to the position of each terminal node in the

binomial tree diagram, from high (s = 1) to low (s = 8 for D8, s = 16 for D16).15

Table 4 presents the count of each type of mistake for D8 and D16, and the median

value of the efficiency loss, L, among subjects who make the same mistake. D16 data

is divided into two sections, upper (nodes 1-8) and lower tree (nodes 9-16). Out of

the 35 subjects that have a value of L greater than zero in D8, 12 subjects made

a mistake where c4 > c5 , and with a median value of L equal to 2.11.16 A form of

stop-loss can explain this mistake, where the market participant leaves the market

once the price falls below the initial level. An example of such strategy, taken from

one of the subjects, is illustrated in Figure 4. The second most common mistake in

D8 involves a misallocation of final wealth in states s = 5 and s = 7. Subjects who

15Note that as in the binomial tree diagram, states are not ordered according to state-prices.
16We use median instead of mean so our measures are not biased by extreme mistakes.
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commit this mistake seem to disproportionately increase their risk tolerance following

two consecutive declines in the price of the risky asset.

Table 4: Mistakes in D8 (N = 35 subjects) and D16 (N = 51 subjects)

D8 D16 upper tree D16 lower tree
Mistake N L (median) Mistake N L (median) Mistake N L (median)
c
2
> c

1
1 5.33 c

2
> c

1
2 43.32 c

10
> c

9
0 –

c5 > c1 1 2.78 c5 > c1 3 34.58 c13 > c9 4 19.16
c4 > c3 4 8.88 c4 > c3 1 34.58 c12 > c11 0 –
c
4
> c

5
12 2.11 c

4
> c

5
10 4.55 c

12
> c

13
10 2.40

c
6
> c

2
2 1.63 c

6
> c

2
2 43.32 c

14
> c

10
3 34.58

c
7
> c

3
5 2.44 c

7
> c

3
2 43.32 c

15
> c

11
16 5.71

c
7
> c

5
7 2.44 c

7
> c

5
4 18.95 c

15
> c

13
2 3.43

c8 > c7 3 3.70 c8 > c7 2 33.36 c16 > c15 3 14.66
c8 > c11 20 2.82

Notes:
a. The terminal nodes are sorted from high (one) to low (eight for D8 and 16 for D16).
b. N is the count of subjects.
c. L is defined in equation (10).
d. The tree for D16 is split in two. The upper tree corresponds to nodes 1-8 and the lower tree to nodes 9-16.

The stop-loss strategy also explains many of the mistakes observed in the D16. In

this task, 51 subjects incur some level of inefficiency. In the upper tree, we observe

ten subjects making a mistake similar to the one described above in the context of

the D8 task, but now the mistakes are costlier given the higher growth of the asset

values (4.55). A similar pattern appears in the lower tree, at nodes 12 and 13. Ten

subjects make this mistake, with the median value of L = 2.40. The most common

mistake in D16 involves states 8 and 11. Although state 8 has a higher state-price

than state 11, 20 subjects opt for a higher terminal consumption in state 8 than state

11, resulting in a median value of L = 2.82. This mistake can also be interpreted as a

form of stop-loss strategy. We illustrate one example of this behavior in Figure 5. The

stop-loss strategy implemented in this case is not triggered by the initial price decrease,

but by the decline in later periods. The stop-loss strategy presented in our simulations

in Table 1, is implemented by one subject, who obtains a terminal wealth of 85, which

required investing 30 in the risky asset and 70 in the risk-free bond at the initial node.
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The same subject also used a lock-in strategy, which yields a wealth of 130 for the top

eight terminal nodes. Using the Arrow-Debreu prices of 0.0988 and 0.0247 for states 8

and 9, respectively, we are able to calculate the inefficiency generated by these choices

as L = 3.33 = (130− 85)× (0.0988− 0.0247).

P = 8 w = 100
a = 40 b = 60

P = 16 w = 140
a = 40 b = 100

P = 4 w = 80
a = 0 b = 80

...

P = 8 w = 120
a = 12 b = 108

P = 8 w = 80
a = 80 b = 0

...

...

P = 4 w = 114
a = 0 b = 114

...

P = 4 w = 40
a = 0 b = 40

...

P = 2 c8 = 114

P = 8 c11 = 40

...

Figure 5: Example of inefficient strategy in D16
Note: P denotes the price of the risky asset, w wealth, a the amount of wealth invested in the risky
asset, b the amount of wealth invested in the risk-free asset and ci denotes final wealth in state i. The
inefficiency arises when c8 > c11 at the terminal period. The Arrow-Debreu price at state 8 is 0.0988 while
at state 11 is 0.0494. Therefore, the inefficiency L due to this mistake can be computed as L = 3.458 =
(114− 40)× (0.0988− 0.0494). The subject stops (a = 0) when the price drops to P = 4 in period 3.

The second most common mistake (16 subjects) in the lower tree of D16 involves a

misallocation of the final wealth in states 11 and 15. The inefficiency can be explained

by the more risk-taking at the upper nodes, which yields less units available for con-

sumption at node 11. This results in the median consumption of 38 at node 11 and 85

at node 15.17

17We also replicate Table 4 using data from the static task. The table is presented in Appendix A.
We find that the most common mistake occurs in the first node. 31 out of 62 subjects with L > 0
in S8 opt for c2 > c1. In S16, we find 49 subjects (out of 88) with L > 0. The first node in the
static task is filled by the software after the subjects enter the S − 1 choices. This implies that many
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Figure 6: Piecewise linear function of log prices and final wealth for the representative agent
(left panel), and in terms of log prices and log final wealth (right panel).

Result 2a: The representative agent exhibits decreasing absolute risk aversion.

Efficient portfolio strategies, rationalized by an EU preference, can be further an-

alyzed using the techniques discussed in Section 3.4. To achieve this, we restrict our

analysis to efficient portfolios only and evaluate whether these portfolios are consistent

with decreasing, constant or increasing risk aversion. Prior to discussing our results,

we first explain how we adapt the methods from Section 3.4 to our data. Each obser-

vation in our data consists of a vector of final wealth levels, (c1, ..., cS) and state-prices

(p1, ..., pS). Some of the final states have the same state-price since different asset price

paths lead to the same total number of ups and downs. The techniques require that we

work with linearly independent states. Therefore, we aggregate states with the same

state-price and compute the average wealth per subject in each independent state. For

D8 and S8 we have four linearly independent states, and for D16 and S16, five linearly

independent states.

subjects do not revise their choices even though they have the option to re-allocate their consumption
before submitting. We also observe significant mistakes at other terminal nodes. For example, 17 (16)
subjects pick c8 > c7 for S8 (S16).
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To characterize the demand function of the representative agent, we aggregate sub-

ject consumption choices (wealth) at each terminal state price. The ratio condition in

equation (14) requires that we work with log prices and levels for final wealth (con-

sumption) in order to measure absolute risk aversion, A(c). The left panel of Figure

6 shows the constructed piecewise linear function, or the demand function, from four

treatments. All four demand curves in the left panel of Figure 6 are clearly convex.

Thus, according to Varian (1988) the choices of a representative agent are consistent

with a decreasing absolute risk aversion (DARA). Moreover, the demand curves for D8

and D16 are flatter than the curves for S8 and S16, especially when prices prices are

low, which implies a lower degree of absolute risk aversion in dynamic tasks relative to

static tasks.

Table 5: Ratio of |∆ log p/∆wT | for the representative agent

Ratios (slopes) D16 S16 D8 S8
I 0.030 0.042 0.018 0.022

[0.448] [0.834] [0.018] [0.892]
II 0.012 0.019 0.008 0.018

[0.067] [0.896] [0.000] [0.018]
III 0.005 0.014 0.003 0.005

[0.000] [0.011] – –
IV 0.002 0.002 – –

– –
R2 0.57 0.10 0.71 0.14
N 595 595 476 476

Notes:
a. The coefficients are estimated using a piecewise linear regression,
in which the dependent variable is the terminal wealth, and the
independent variables are state prices (in logs). We report the inverse
of the coefficients. The slopes are sorted from high to low prices, or
from low to high terminal wealth. There are four slopes in D16 and
S16, and three in D8 and S8.
b. p-values are in brackets. The null hypothesis states that the
difference of ratios at j and j + 1 (marginal effect) is equal to zero.

The ratio
∣∣∣∆ log q

∆wT

∣∣∣, constructed using the points from the left panel of Figure 6, is

presented in Table 5. The ratio values (or the slopes of the demand curve) reported are

27



estimated using a piece-wise linear regression.18 In brackets, we present the p-value of

the test where the null hypothesis states that the marginal effect, or the difference of

the current slope with respect to the one below, is equal to zero. Table 5 presents slope

values, instead of the marginal effects, to help convey the upper and lower bounds of the

Arrow-Pratt measure A(wT ). We sort the data from high to low prices (or low to high

in terms of terminal wealth). Consistent with DARA, the slopes are non-increasing

with respect to wealth for all treatments. As observed in Figure 6, we find that the

demand curves for S16 and S8 are steeper compared to D16 and D8, respectively. The

representative agent is therefore more risk-averse in the static tasks. The low correla-

tion between prices and terminal wealth in the static tasks leads to a lower R2 in Table

5.

Result 3a: The representative agent exhibits constant relative risk aversion.

To study the measure of relative risk aversion, R(wT ) in equation (16), we follow the

same procedure as in our study of A(wT ) above, except that we work with log prices

and log wealth, so that the ratio is
∣∣∣ ∆ log q

∆ logwT

∣∣∣. The piecewise linear function for the

representative agent is depicted in the right panel of Figure 6, and the piecewise linear

regression is presented in Table 6. The representative agent exhibits CRRA across our

treatments, with the static task showing levels of higher risk-aversion. According to

Table 6, the value of R in D16 (0.868) and D8 (0.848) is smaller than in S16 (1.720)

and S8 (1.475), respectively.19

18The piecewise linear regression includes the terminal wealth (wT ) as a dependent variable, and
the state prices (qj , where j = 1, 2, 3, or 4) as independent variables. Table 5 presents the p-values

for the regression coefficients, and the ratio
∣∣∣∆ log q

∆wT

∣∣∣ is presented as the inverse of the coefficients since

wealth is the dependent variable in the regression.
19The R2 in Table 5 (for R(wT )) is higher than in Table 6 (for A(wT )) because the logs smooth

the data, and improve the goodness of fit. Note that in Table 6, we have less observations (N) than
in Table 5 because we cannot take logs where terminal wealth equal is to zero. Overall, we lose 10
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Table 6: Ratio of |∆ log p/∆ logwT | for the representative agent

Ratios (slopes) D16 S16 D8 S8
I 1.142 3.748 1.074 2.166

[0.204] [0.315] [0.416] [0.682]
II 0.888 1.883 0.958 2.684

[0.839] [0.554] [0.324] [0.155]
III 0.920 2.641 0.848 1.475

[0.738] [0.432] – –
IV 0.868 1.720 – –

– –
R2 0.75 0.23 0.78 0.25
N 585 565 454 454

Notes:
a. The coefficients are estimated using a piecewise linear regression,
in which the dependent variable is the log of terminal wealth, and
the independent variables are state prices (in logs). We report the
inverse of the coefficients. The slopes are sorted from high to low
prices, or from low to high terminal wealth. There are four slopes in
D16 and S16, and three slopes for D8 and S8.
b. p-values in brackets. The null is that the difference of ratios at j
and j + 1 (marginal effect) is equal to zero. For example, for D16 we
fail to reject that ratios at III and at IV are equal.

Result 2b: At the subject level, DARA is prevalent in both dynamic and static tasks,

but non-monotonic behavior is also important, particularly for the static task.

At the subject level, we work with the average subject wealth at each state price,

and exclude upward sloping demand curves, and terminal wealth that is equal to zero

from the data, since subsequent analysis requires us to take logs of wealth.20 Table 7

presents the fraction of subjects from the restricted sample, and who are characterized

by (i) decreasing, (ii) increasing, (iii) constant or (iv) non-monotonic absolute risk

aversion, A(wT ). Since we cannot use a statistical test to assess whether a slope

change is different from zero at the individual observation level, we use a threshold.

observations in D16, 30 observations in S16, and 22 observations in both D8 and S8.
20An upward sloping demand means that subjects are making inefficient portfolio choices, or L > 0.
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Specifically, we impute a change in the slope as equal to zero if the actual change is

below a 10 percent threshold.21 Thus, if the percentage changes in the slopes of the

demand curves are all smaller than or equal to 10 percent in absolute value, then the

profile is consistent with constant absolute risk aversion (CARA). If the slopes are

non-increasing (and with at least one slope change greater than 10 percent), then we

say that the profile is consistent with DARA. If the slopes are non-decreasing (and

with at least one slope change greater than 10 percent), then we conclude that the

profile is consistent with increasing absolute risk aversion (IARA). For the other cases,

we classify the profiles as consistent with non-monotonic absolute risk aversion.

Table 7: Risk averse types

Decreasing Constant Increasing Non-monotonic
D16

A 0.83 0.02 0.00 0.15
R 0.33 0.08 0.15 0.44

S16
A 0.45 0.00 0.00 0.55
R 0.39 0.00 0.04 0.57

D8
A 0.81 0.03 0.00 0.16
R 0.42 0.11 0.18 0.29

S8
A 0.39 0.27 0.00 0.35
R 0.33 0.20 0.08 0.39
Note: A denotes absolute risk aversion while R refers to relative risk
aversion. Treatments D8, S8, D16 and S16 use 0.89, 0.82, 0.92 and 0.77
of total observations, respectively. We drop observations due to inefficient
choices and/or zero final wealth.

Table 7 shows that DARA is quite dominant in the treatments D16 andD8. Around

80 percent of the subjects are classified as DARA, while the rest of subjects are classi-

fied primarily as non-monotonic. This means that the slopes of the demand curve are

21Qualitatively, we obtain the same if, instead we work with a threshold of 5, or 20 percent. Since
the slope is not defined when ∆wT = 0, we replace ∆wT with a small number. The purpose of this
replacement is to gain observations without affecting the risk profiles.
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decreasing for some segments, but increasing for others. In treatment S16, 45 percent

of subjects are classified as DARA, with the rest classified as non-monotonic. For the

treatment S8, 39 percent are classified as DARA, 27 percent as CARA, and the rest as

non-monotonic. The main reason of CARA behavior in S8 is due to a constant termi-

nal wealth across states, or hedging behavior. Furthermore, due to higher inefficiencies

in the static task compared to the dynamic task, we retain more observations in D16

(92 percent of total) and D8 (89 percent) compared to S16 (77 percent) and S8 (82

percent), respectively.

Result 3b: Subjects exhibit increasing and decreasing relative risk aversion.

Classification of relative risk aversion (see R in Table 7) at the individual level is

heterogeneous. We find that increasing and decreasing relative risk aversion frequently

appear in the data, and that the combination of both results in a non-monotonic rel-

ative risk aversion. In treatment D16, we observe that 44 percent of subjects are

classified as non-monotonic, 33 percent as DRRA, and 15 percent as IRRA. Treatment

S16 follows a similar profile for DRRA, but the fraction of non-monotonic behavior

increases to 56 percent, and the fraction of IRRA drops to four percent. DRRA is also

common in D8 (42 percent) and S8 (33 percent), followed by non-monotonic behavior,

with 29 percent in S8 and 39 percent in D8. In the dynamics tasks, D8 and D16,

IRRA is observed more frequently than in the static tasks, S8 and S16. CRRA is

observed most frequently in S8 (20 percent), and also in D8 (11 percent).

Result 4: The dynamic task leads to a higher Sharpe ratio relative to the static task.

More efficient portfolio choices and lower risk-aversion in the dynamic task lead to a
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higher Sharpe ratio, relative to the static task. Figure 7 presents the average terminal

wealth across the states (µ) on the y-axis and the standard deviation of the terminal

wealth on the x-axis. We compute the expected value µ and standard deviation σ of

the final wealth allocation as follows:

µ :=

∑
s cs
S

and

σ :=

√∑
s(cs − µ)2

S

In Figure 7, pairs σ, µ are shown for each subject, and each treatment. There is a

significant mass of subjects (about 15 percent) at (0, 100) in S8 and S16, suggesting

perfect hedging, with a risk-free rate of return. The hedging decision is not present at

other points where σ >> 0. Figure 7 shows that D16 and D8 align quite well, following

a similar trend, and that expected wealth appears to be lower in S16 and S8. The

Sharpe ratios, defined as the risk-premium (µ−100) divided by σ, are 0.44 for D16 and

0.26 for S16, which are significantly different (using a Wilcoxon test, with a p-value of

0.001). For D8, the Sharpe ratio is 0.41 and for S8, 0.29 ( with a p-value of 0.001).22

If we exclude choices that result in a negative return (µ < 100), then the Sharpe ratio

for S16 goes up to 0.41, which is statistically equivalent to D16, and to 0.36 for S8,

which is statistically equivalent to D8. The observed Sharpe ratio is smaller than the

maximal Sharpe ratio, defined as [
∑S

s=1 p
2
s/πs − 1]1/2, of 0.61 for S = 8 and 0.72 for

S = 16.23

22The Sharpe ratio is not defined when σ = 0, and hence we omit these observations from our
analysis.

23In a complete market, the maximal Sharpe ratio can be computed by minimizing the mean squared
return subject to an arbitrary return with a cost of zero. See Appendix A of Goetzmann et al. (2007).
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Figure 7: Expected value and volatility of returns

7 Discussion

In this paper we use non-parametric methods to study how individuals make dynamic

portfolio choices in a laboratory experiment. Specifically, we employ a measure of

efficiency proposed by Dybvig (1988) to test the optimality of portfolio choices, without

specifying a parametric model of the investor’s utility function, and then characterize

the risk preferences of efficient choices using the techniques developed by Varian (1988).

Our results show that portfolio strategies of most subjects are efficient. Efficiency

losses, when they occur, are greater when subjects face a large number of terminal

states, when the task is static, and when subjects have a lower cognitive ability score.

The latter complements the work of Grinblatt et al. (2011), who find that higher-

IQ investors achieve higher Sharpe ratios. The correlation between cognitive skills and

portfolio choice efficiency has important policy implications, suggesting that improving

household financial literacy can yield large economic benefits. Further analysis of

subject portfolio choices reveals that a form of stop-loss strategy generates some of the

observed inefficiencies. We also find significant individual heterogeneity in the patterns
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of risk aversion. In particular, an important share of subjects display non-monotonic

risk-aversion.

This paper provides important insights for how researchers should interpret hetero-

geneity in returns with respect to financial wealth. It is a well-known fact that there

is a large variability in returns at the individual level. For instance, using data from

Norway, Fagereng et al. (2020) show that individual returns on wealth have a stan-

dard deviation larger than 20 percent. The standard approach in financial economics

is to interpret this heterogeneity as a result of differences in risk preferences and in

individual exposure to background risk. While our lab experiment does not provide

information on the latter, it does allow us to observe a large degree of heterogene-

ity in risk preferences and quantify the relative contribution of risk preferences and

inefficiency to the overall heterogeneity in returns. Adjusting returns for inefficiency

explains a small part of the variation in expected returns but most of the variation in

risk-adjusted returns (Sharpe ratios).24 We hope that these findings encourage other

researchers and practitioners to apply the methods illustrated in this paper to elicit

risk, and to measure the efficiency of investment choices.
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Appendix A: Inefficiency in static task

Table 8: Inefficiencies in S8 (N = 62 subjects) and S16 (N = 88 subjects)

S8 S16 upper nodes S16 lower nodes
Mistake N L (median) Mistake N L (median) Mistake N L (median)
c
2
> c

1
31 5.93 c

2
> c

1
49 2.43 c

10
> c

9
23 17.78

c
5
> c

1
28 9.26 c

5
> c

1
49 2.58 c

13
> c

9
22 23.73

c4 > c3 23 26.66 c4 > c3 14 29.11 c12 > c11 21 31.35
c4 > c5 18 26.48 c4 > c5 22 20.97 c12 > c13 23 21.56
c
6
> c

2
22 23.70 c

6
> c

2
23 21.56 c

14
> c

10
11 19.75

c
7
> c

3
19 22.95 c

7
> c

3
23 20.60 c

15
> c

11
17 31.35

c
7
> c

5
14 21.48 c

7
> c

5
26 20.49 c

15
> c

13
15 26.86

c
8
> c

7
17 17.18 c

8
> c

7
16 32.34 c

16
> c

15
21 26.67

c8 > c11 22 26.77
Notes:
a. The terminal nodes are sorted from high (one) to low (eight for S8 and 16 for S16).
b. N is the count of subjects.
c. L is defined in equation (10).
d. The nodes for S16 is split in two. The upper nodes are 1-8 and the lower nodes are 9-16.
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set pricing and risk sharing in a complete market: An experimental investigation,”

2017.

Brocas, Isabelle, Juan D Carrillo, Aleksandar Giga, and Fernando Zapatero,

“Risk aversion in a dynamic asset allocation experiment,” Journal of Financial and

Quantitative Analysis, 2019, 54 (5), 2209–2232.

Chen, Daniel L, Martin Schonger, and Chris Wickens, “oTreeAn open-source

platform for laboratory, online, and field experiments,” Journal of Behavioral and

Experimental Finance, 2016, 9, 88–97.

36



Choi, Syngjoo, Raymond Fisman, Douglas Gale, and Shachar Kariv, “Con-

sistency and heterogeneity of individual behavior under uncertainty,” American eco-

nomic review, 2007, 97 (5), 1921–1938.

, Shachar Kariv, Wieland Müller, and Dan Silverman, “Who is (more) ra-

tional?,” American Economic Review, 2014, 104 (6), 1518–50.

Corgnet, Brice, Mark Desantis, and David Porter, “What makes a good trader?

On the role of intuition and reflection on trader performance,” The Journal of Fi-

nance, 2018, 73 (3), 1113–1137.

Cox, John C and Hayne E Leland, “On dynamic investment strategies,” Journal

of Economic Dynamics and Control, 2000, 24 (11-12), 1859–1880.

d’Acremont, Mathieu and Peter Bossaerts, “Neurobiological studies of risk as-

sessment: a comparison of expected utility and mean-variance approaches,” Cogni-

tive, Affective, & Behavioral Neuroscience, 2008, 8 (4), 363–374.

Danthine, Jean-Pierre and John B Donaldson, Intermediate financial theory,

academic press, 2014.

Deck, Cary and Harris Schlesinger, “Consistency of higher order risk preferences,”

Econometrica, 2014, 82 (5), 1913–1943.

Dybvig, Phillip H, “Inefficient dynamic portfolio strategies or how to throw away a

million dollars in the stock market,” The Review of Financial Studies, 1988, 1 (1),

67–88.

Ebert, Sebastian and Daniel Wiesen, “Testing for prudence and skewness seek-

ing,” Management Science, 2011, 57 (7), 1334–1349.

37



Fagereng, Andreas, Luigi Guiso, Davide Malacrino, and Luigi Pistaferri,

“Heterogeneity and persistence in returns to wealth,” Econometrica, 2020, 88 (1),

115–170.

Fischbacher, Urs, Gerson Hoffmann, and Simeon Schudy, “The causal effect

of stop-loss and take-gain orders on the disposition effect,” The Review of Financial

Studies, 2017, 30 (6), 2110–2129.

Frederick, Shane, “Cognitive reflection and decision making,” Journal of Economic

perspectives, 2005, 19 (4), 25–42.

Friedman, Daniel, Sameh Habib, Duncan James, and Brett Williams, “Va-

rieties of risk elicitation,” Technical Report, Working Paper 2019.

Frydman, Cary, Nicholas Barberis, Colin Camerer, Peter Bossaerts, and

Antonio Rangel, “Using neural data to test a theory of investor behavior: An

application to realization utility,” The Journal of finance, 2014, 69 (2), 907–946.

Gneezy, Uri and Jan Potters, “An experiment on risk taking and evaluation peri-

ods,” The Quarterly Journal of Economics, 1997, 112 (2), 631–645.

Goetzmann, William, Jonathan Ingersoll, Matthew Spiegel, and Ivo Welch,

“Portfolio performance manipulation and manipulation-proof performance mea-

sures,” The Review of Financial Studies, 2007, 20 (5), 1503–1546.

Goldstein, Daniel G, Eric J Johnson, and William F Sharpe, “Choosing out-

comes versus choosing products: Consumer-focused retirement investment advice,”

Journal of Consumer Research, 2008, 35 (3), 440–456.

Grinblatt, Mark, Matti Keloharju, and Juhani Linnainmaa, “IQ and stock

market participation,” The Journal of Finance, 2011, 66 (6), 2121–2164.

38



Harrison, Glenn W, Morten I Lau, and E Elisabet Rutström, “Estimating

risk attitudes in Denmark: A field experiment,” scandinavian Journal of Economics,

2007, 109 (2), 341–368.

Holt, Charles A and Susan K Laury, “Risk aversion and incentive effects,” Amer-

ican economic review, 2002, 92 (5), 1644–1655.

Huberman, Gur and Wei Jiang, “Offering versus choice in 401 (k) plans: Equity

exposure and number of funds,” The Journal of Finance, 2006, 61 (2), 763–801.

Kaufmann, Christine, Martin Weber, and Emily Haisley, “The role of expe-

rience sampling and graphical displays on one’s investment risk appetite,” Manage-

ment science, 2013, 59 (2), 323–340.

Kimball, Miles, “Precautionary Saving in the Small and in the Large,” Econometrica,

1990, 58 (1), 53–73.
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