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Abstract

Speculation, in the spirit of Harrison and Kreps (1978), is introduced into a standard real business cycle model.

Investors (speculators) hold heterogeneous beliefs about firm growth. Firm ownership, and thus, the firm’s dis-

count factor varies with waves of optimism and leverage. These waves ripple into firm investments in hours. The

firm’s discount factor links the equity premium and labor volatility puzzles. We obtain an upper bound to the am-

plification that can be generated by speculation for any model of beliefs—a factor of 1.5. A calibration based on

diagnostic beliefs amplifies hours volatility by a factor of 1.15 and produces a bubble component of 20 percent.
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“I’m happy to say I am a Harrison-Kreps-Keynesian.”

Thomas Sargent, New York Times, October 29, 2011.

1 Introduction

One of the most prominent views about deep economic downturns is that, in part, these are due to waves of

speculation. This tradition can be traced to historical narratives of Hyman Minsky, Charles Kindleberger, and more

recently of Robert Shiller. These narratives share common elements. A wave of excess optimism about earnings-

growth prospects prompts a wave of speculation. Speculation then triggers asset bubbles which are fueled by

increased leverage. Implicit in this narrative is a call for corrective measures because once the bubble bursts in

Wall Street, the blast wave impacts Main Street. These narratives are supported by evidence that large stock market

turnover, high price-earnings (P/E) ratio, and expansionary credit measures, increase the hazard rate of recessions

(Shiller, 2000). We can dub these narratives as the theory of “speculation-driven business cycles.”

Different from models of rational bubbles, the models of Harrison and Kreps (1978), and more recently of

Scheinkman and Xiong (2003), formalize the notion of asset-price bubbles and crashes driven by waves of opti-

mism and pessimism. The virtue of these models is that speculation is done in a way that only subtly departs from

the discipline of rational expectations. Yet, in these models bubbles are speculative, because investors believe

they can resell assets to someone more optimistic in the future. These models layout the necessary ingredients to

generate speculative asset-price bubbles (Xiong, 2013), but remain silent about how bubbles spill over to the real

economy. To close the loop toward a quantitative model of speculation-driven business cycles, we must embed

speculative bubbles into a real business cycle backbone. This step, to the best of our knowledge, is missing. In

fact, when questioned about the nature of business cycles, Thomas Sargent, a pioneer of the rational expectations

movement, gave the following answer:1

“[...] economists have been working hard to refine rational expectations theory. [...] An influential

example of such work is the 1978 QJE paper by Harrison and Kreps. [...], for policymakers to know

whether and how they can moderate bubbles, we need to have well-confirmed quantitative versions of

such models up and running.”

In this response, Sargent proposes a departure from rational expectations, embraces the theory “speculation-

driven business cycle”, but calls for a quantitative model that can scrutinize the theory.2 However, once we want to

take on Sargent’s challenge, we immediately confront several barriers. For one thing, it is not clear how to marry

models of speculation with business cycle theory; for the other, the curse of dimensionality brings analytic and

computational complexity to the problem. This paper does two things. First, it presents a model that lays out the

necessary elements to marry speculation with real business cycle (RBC) theory, in a way that qualitatively fits the

1Interview with Thomas Sargent, The Region, August 26, 2010. Available at https://www.minneapolisfed.org/article/2010/interview-with-
thomas-sargent.

2Interestingly, Hyman Minsky was Thomas Sargent’s undergraduate thesis advisor. Whereas Sargent departs methodologically and calls for
a quantitative approach to economic research, there is agreement in the nature of business cycles.
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narrative. Second, it presents a calibration exercise meant to give a sense of the quantitative impact that specula-

tion can have on business cycles, with minimal frictions. In this quantitative exercise, to circumvent the curse of

dimensionality, we remove some model ingredients, necessary to generate the asset-price dynamics inherent in

the narratives, but ingredients that do not alter the business cycle properties of the model. We see these tasks as a

first step toward having “well-confirmed quantitative versions” of speculation-driven business cycle theory.

In a nutshell, we minimally modify a standard RBC model to fit the narrative of speculation-driven business

cycles. As in any business cycle model, there is a representative worker and representative firm. Different from an

RBC model, shares of the firm are bought and sold by a set of investors who agree to disagree about the evolution

of the growth rate of total factor productivity (TFP). To this core, we introduce three essential ingredients, each

producing a different effect, as depicted in Figure 1. The first ingredient is time-to-build, which is enough to pro-

duce fluctuations driven exclusively by investor sentiments, even in absence of speculative bubbles. However, to

fit the narrative, we need two additional ingredients. As shown by Harrison and Kreps (1978), to produce specula-

tive bubbles, the second ingredient is short-selling constraints coupled with alternating degrees of optimism. The

third ingredient is market segmentation. This ingredient produces bubbles that manifest in high P/E ratios, and

not in high interest rates.

We introduce time-to-build as in the original Kydland and Prescott (1982) framework, which translates into a

model where labor is hired one period in advance. Thus, labor is a form of investment. This assumption is impor-

tant to produce economic fluctuations from changes in asset prices. It is also important that the firm’s investment

is in hours, and not in physical capital, because it is well understood that capital investment cannot drive the cy-

cle (Chari et al., 2007).3 Along those lines, we present a formula that connects the firm’s discount across states to

the excess returns in the stock market. When excess returns are high, the firm’s discount factor is also high. The

connection between asset prices and business cycles emerges because the firm’s discount factor determines the

investment in labor. This mechanism is grounded on evidence by Lustig and Verdelhan (2012) which finds that

risk-adjusted excess returns are high in recessions.4

In the model, the firm’s discount factor is a function of investor sentiments. Here, investors make portfolio

decisions; they borrow and lend at a risk-free rate and invest in shares.5 When more optimistic investors increase

their ownership of firms, they become more representative in the shareholder pool. Their wealth, leverage, and

relative optimism, influences the firm’s hiring decisions, through the firm’s discount factor. In the environment,

the equity premium and labor volatility puzzles are intimately linked.

3Investment is small relative to the capital stock in a business cycle model. Thus, fluctuations in investment do not meaningfully impact
the production possibility frontier.

4As the authors emphasize, due to this higher risk-adjusted costs of capital during recessions, even unconstrained firms should invest and
hire less. Recent work by Hall (2017) puts a similar mechanism to work in a Diamond-Mortensen-Pissarides framework. When discounts (or
risk premiums) are high, firms invest less in creating jobs and, thus, unemployment increases. By imposing fluctuations in premiums that
match the data, he shows the model can account for the bulk of fluctuations in unemployment.

5Since Mehra and Prescott (1985), the field of asset-pricing has found environments that can help explain the equity premium puzzle
(Cochrane, 2017). In particular, Bansal and Yaron (2004) show that to produce volatile stochastic discount factors we need recursive pref-
erences, long-run risk, and time-varying volatility. We follow Epstein and Zin (1991) and Tallarini (2000), and endow speculators with non-
separable recursive preferences. We also allow for “long-run” risks, shocks to firm TFP growth—rather than the level. Speculators disagree
about the distribution of TFP growth rates. We let heterogeneous beliefs be the source of time-varying volatility.
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Time-to-build
(sentiment drives hours)

Short-selling Constraints
+

Alternating Optimism

(bubbles) External Funds

(pro-cyclical P/E)

Speculation-driven

Business Cycles

Figure 1: Diagram of model features.

With only time-to-build, belief heterogeneity can be enough to amplify fluctuations in hours. This amplifica-

tion is due to counter-cyclical movements in excess returns. However, on their own, these features do not produce

asset-price dynamics that fit the narratives of speculation-driven business cycles. In principle, it is not obvious

that fluctuations in excess returns will reflect on fluctuations in P/E ratios; they can also reflect on the risk-free

rate. For that, we show that a model needs a particular form of market segmentation.6 Namely, some agents

(workers, in the present model) do not participate in the stock market and their supply of funds must be suffi-

ciently interest-rate elastic. This formulation of segmented markets is motivated by Guvenen (2009), for example.7

With this formulation of segmented markets, the pressure of speculation is reflected on movements in the P/E ra-

tio, and not movements in the risk-free rate. This particular issue does not appear in Harrison and Kreps (1978) or

Scheinkman and Xiong (2003) because the interest rate is exogenous in their models; thus, speculation shows in

stock prices. In a business cycle model, without segmentation, the interest rate absorbs the impact of speculation.

6We demonstrate this through a simple formula for the stock price, which holds for any specification of beliefs and degrees of risk-aversion,
and that holds for intertemporal elasticity of substitution approximately equal to one.

7Guvenen (2009) shows that this assumption, coupled with heterogeneous intertemporal elasticity of substitution among participants and
non-participants, renders the model consistent with several features of asset prices, including high equity premium.
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The final ingredient of the model is short-selling constraints coupled with alternating degrees of optimism. As

highlighted by Harrison and Kreps (1978), this is needed to speculative asset-price bubbles. With this ingredient,

the model is complete to fit the narratives. Section 3 lays out the environment and Section 4 showcases the effects

of these ingredients and why they are needed.

To calibrate the model and make quantitative statements, one must model beliefs parsimoniously. Beliefs must

be calibrated to generate an alternating optimism, and this must be done in a way that can be disciplined with data.

Toward that end, we build on the work of Gennaioli and Shleifer (2010). Concretely, we assume that speculators

are either rational (who hold the correct beliefs) or “diagnostic.” Gennaioli, Shleifer, and a series of co-authors

argue that diagnostic expectations explain a myriad of social phenomena.8 Here, when TFP shocks are persistent,

diagnostic beliefs produce extrapolative behavior. Investors expect shocks to be more persistent than they actually

are. As a result, diagnostic beliefs produce the alternating pattern of optimism that is core to the narrative. In

particular, once compared to rational investors, diagnostics are over-optimistic in high growth states, but over-

pessimistic in adverse states. Beyond this appeal, diagnostic beliefs are a convenient formulation for quantitative

purposes, as these can be summarized with a single parameter. We discuss the calibration of the belief process in

Section 5.

After calibrating the model, we complement the analysis by studying the qualitative predictions of the model,

via simulations—Section 6. The framework reproduces the qualitatively patterns of the speculation-driven busi-

ness cycle narrative. Waves of optimism amplify the business cycle as the optimistic investors lever to buy shares.

As the high TFP growth state persists, optimists accumulate wealth. This increasing wave of overoptimism leads

to a greater willingness to bear risk, which induces lower excess returns, and thus a higher P/E ratio. Since firm

beliefs reflect the average stockholder’s stochastic discount factors, the firm employs more. The presence of diag-

nostic investors produces deeper recessions and large turnover after the economy transitions from high- to low-

TFP growth. This is because diagnostic investors accumulate wealth during booms, but once a recession hits, they

become pessimists. However, diagnostics remain relatively wealthy since they accumulated wealth in prior high

growth states. Thus, during downturns, diagnostics remain representative in the shareholder pool and inject pes-

simism to the firm’s discount factor. This lowers the desire to hire workers. Ultimately, this mechanism produces

asymmetric real business cycles: the longer the boom, the more severe the bust.

We also compare simulations between economies that feature short-selling constraints and economies that do

not. This showcases the importance of speculative behavior. Short-selling constraints increase employment across

states. Intuitively, overall willingness to bear risk by the marginal buyer increases in all states due to the reselling

option. We also compare simulations with and without the external supply of funds by workers. Consistent with

the analysis, without the external supply of funds, P/E ratios are stable, and excess returns are mostly driven by

changes in the real interest rate. However, the business cycle dynamics are quantitatively similar in both cases,

when we include or exclude the external supply of funds.

We lever on the latter result to produce quantitative statements, in Section 7. As explained above, a full-blown

8Related to this paper, Bordalo et al. (2018) and Bordalo et al. (2019a) show that diagnostic expectations can explain how agents forecast
stock returns, and Bordalo et al. (2018) argue that they can generate credit cycles.
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quantitative exercise must overcome the curse of dimensionality. However, since the supply of external funds

plays only a role in producing the cyclicality of the P/E ratio, but does not alter the business cycle properties, we

can study how beliefs amplify the cycle in a version that shuts down the external fund to investors. This allows us

to make progress toward quantitative questions because it reduces one state variable from the model.

In the quantitative analysis, we show that the amplitude of the cycle of hours be amplified by speculation by

a factor of at most 1.50. For a calibration of diagnostic beliefs, based on Bordalo et al. (2019a), the amplification

factor is 1.15. That calibration is also consistent with a stock-market bubble component of 20 percent relative to

fundamental value. We interpret this quantitative result as a sizable direct effect due to speculation, that would be

amplified should other frictions, such as sticky prices or fire-sales externalities, accounted for. We discuss how this

paper fits in the the literature in the next section, and then proceed to the main body.

2 Literature review

This paper is, of course, related to the large literatures on real business cycles and the equity premium puzzle orig-

inated in Kydland and Prescott (1982) and Mehra and Prescott (1985), respectively. As in our paper, a recent strand

links fluctuations in risk premiums to real business cycles. Di Tella and Hall (2019) stresses the role of uninsurable

idiosyncratic risk and precautionary savings, whereas Hall (2017), Borovička and Borovičková (2019) and Kehoe et

al. (2019) study unemployment fluctuations in the context of the Diamond-Mortensen-Pissarides search model.

Our paper also fits into the recent macro-finance literature that emphasizes the importance of the wealth share

of special individuals (e.g., financial intermediaries) for the business cycle. For example, He and Krishnamurthy

(2011), Brunnermeier and Sannikov (2014), Mendo (2018), Silva (2019), among others. In our case, the wealth

share of diagnostic investors is key. Relatedly, Caballero and Simsek (2019) show how financial trading between

optimistic and pessimistic investors, by affecting the evolution of the distribution of wealth among them, amplify

a recession generated by a decline in risky asset valuations when output is determined by aggregate demand.

Our paper is also related to the natural selection literature, which asks whether those agents with incorrect be-

liefs eventually disappear. Blume and Easley (1992, 2006) and Sandroni (2000) argue that only those with more

accurate beliefs survive in the long-run in an environment with complete markets and separable preferences.

However, this result is not robust to the market structure, as shown by Beker and Chattopadhyay (2010), Blume

et al. (2018) and Cao (2018), and also not robust to preferences that are non-separable recursive even when mar-

kets are complete, as shown recently by Dindo (2019) and Borovička (n.d.). Closely related is Cao (2018), who

works out the same investor problem as ours, but does not link beliefs to TFP shocks in an RBC economy. In fact,

the paper studies the natural selection hypothesis in an endowment economy with incomplete markets.9

Regarding the literature on heterogeneous beliefs and speculative behavior, we borrow the key ingredients from

Harrison and Kreps (1978) and Scheinkman and Xiong (2003). The interaction with financial markets is explored

9Below we confirm the natural selection hypothesis in an example with separable preferences and without short-selling constraints. In
addition, despite these recent contributions, in all simulations reported in the paper, rational investors eventually accumulate the entire stock
of investors’ wealth.
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by Geanakoplos (2003, 2010), Fostel and Geanakoplos (2008), Simsek (2013), Iachan et al. (2019), among others.

Other papers have studied different transmission mechanisms of speculative behavior and bubbles to the real

sector. In Gilchrist et al. (2005), monopolistic firms can overcome short-selling by issuing shares at a price above

fundamental value, which lowers the cost of capital and enhance investment. Bolton et al. (2006) present an agency

model in which over-investment occurs during a bubble episode due to stock-based executive optimal compensa-

tion contracts that emphasize short-term stock performance. In contrast, Panageas (2005) shows that once invest-

ment subject to quadratic costs is introduced in a model with heterogeneous beliefs and short-selling constraint,

despite the speculative behavior of agents, the neoclassical q theory of investment remains valid. Related to our

work, Buss et al. (2016) study policy implications in a quantitative framework in which agents trade for both risk-

sharing and speculative reasons, and speculation reduces investment and welfare as it pushes the cost of capital

up. As opposed to our work, these papers focus on investment in capital rather than hours, and not all of them

feature models that are amenable to quantitative exercises.

By assuming that some agents hold diagnostic beliefs in the spirit of Gennaioli and Shleifer (2010), this paper is

also related to the literature that explores how subjective beliefs affect the business cycle. See, for example, Eusepi

and Preston (2011), Angeletos et al. (2018), Bordalo et al. (2018), Bhandari et al. (2019), among others. Relatedly,

Adam and Merkel (2019) show that (homogeneous) extrapolative beliefs can explain the stock price and business

cycles altogether. Both cycles are connected as high stock prices signal profitable investment opportunities to

capital producers. In contrast to our work, these papers abstract from speculative behavior.

Finally, a large literature studies other types of bubbles that emerge for reasons other than heterogeneous be-

liefs, such as the so-called “rational bubbles” (Blanchard and Watson, 1982; Santos and Woodford, 1997). Similar

to our purpose, Martin and Ventura (2012) and Miao and Wang (2018) provide environments in which the collapse

of rational bubbles leads to a recession. Other recent contributions emphasize the interaction of rational bubbles

and policy, for example, Gaĺı (2014), Hirano et al. (2015), Allen et al. (2018), and Asriyan et al. (2019). We leave the

study of the role of policy in versions of our speculation-driven business cycle framework for future research.

3 Environment

Consider an infinite-horizon closed economy set in discrete time (t = 0, 1, ...). We introduce investors into a stan-

dard real business cycle (RBC) model with a representative worker and a representative firm. Investors (or potential

speculators) differ in beliefs regarding the evolution of the growth of total factor productivity (TFP), and may hold

(or issue) risk-free bonds and hold (or short-sell) risky shares of the firm. Workers do not hold stocks. The differ-

ences of beliefs induce the desire to lever and may introduce speculative portfolios, in the spirit of Harrison and

Kreps (1978) and Scheinkman and Xiong (2003). In addition, we assume the firm hires labor one period in advance.

This links portfolio decisions and labor fluctuations, through the valuation of the firm.

Investors. The economy is populated by a finite number of infinite-lived investors, indexed by i ∈ {1, ..., I},
and with corresponding masses µi. Investor i derives utility from the flow of consumption ci,t. In particular, we
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adopt Epstein-Zin recursive preferences:

Ui,t = c1−βi,t

(
Ei,t

[
U1−γ
i,t+1

]) β
1−γ

, (1)

where β ∈ (0, 1) is the discount factor and γ ≥ 0 is the risk-aversion parameter. The coefficient associated with

the intertemporal elasticity of substitution (IES) in the Epstein-Zin formulation is set to 1, so to obtain analytic

expressions.10

Heterogeneity regards beliefs. Thus, expectations about future states, Ei,t, are indexed by the agent identity.

In particular, investor i forms beliefs {piss′} regarding the TFP growth, gt, which takes value in {ḡ1, ..., ḡS}. TFP

growth may transit from state s to s′, and is assumed to follow a Markov process with S states. Differences in

beliefs regarding TFP growth of the representative firm translate into differences in beliefs about its future profits

and stock returns, which creates a motive for trade in the financial market.

Investor i chooses consumption ci,t, shares of the representative firm ni,t+1 and risk-free bonds bi,t+1 to maxi-

mize (1) subject to the borrowing constraint,

ci,t + qtni,t+1 + bi,t+1 = (qt + πt)ni,t +Rtbi,t.

Here, qt is the price per share,11 and πt are the profits of the representative firm. Investors can increase their

leverage by issuing bonds. To get speculative behavior, we study versions of the model that differ in the extent of

short-selling constraints. But in general, both bi,t+1 and ni,t+1 can take negative values. Finally, Rt is the risk-free

rate that accrues to bonds bought in period t− 1 and carried over period t.

Within this framework, investors who are overly optimistic about future TFP prospects will buy more shares

and tend to issue bonds. The more pessimistic tend to save by holding bonds that yield the risk-free rate. As we

explain below, differences in beliefs determine ownership, which in turn, defines the representative investor of the

firm. This determines the firm’s discount factor, which in turn, produces labor-market fluctuations.

The worker. The representative worker derives utility from consumption cw,t but disutility from labor hours ht.

We assume preferences are GHH. In particular, the worker chooses cw,t ≥ 0 and ht ≥ 0 to maximize

Ew,0

[ ∞∑
t=0

βtu

(
cw,t − ξAt−1

h1+ν
t

1 + ν

)]
, subject to cw,t +Bt+1 = wtht +RtBt,

where u′ > 0 and u′′ ≤ 0. ξ > 0 is the scale factor on labor disutility, ν > 0 is the inverse of the Frisch elasticity, and

β ∈ (0, 1) is the discount factor. Finally, wt is the wage rate, and Bt+1 is the worker’s savings.

10To obtain these preferences, just take the limit ρ→ 1 of the more standard formula in Epstein and Zin (1991),

Ui,t =

{
(1− β)c

1−1/ρ
i,t + βEi,t

([
U1−γ
i,t+1

]) 1−1/ρ
1−γ

} 1
1−1/ρ

,

where ρ is the IES were the model deterministic.
11The total amount of shares are normalized to 1.
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The worker’s budget constraint features an implicit assumption. Asset markets are segmented. In particular,

the representative worker cannot hold shares.12 This assumption implies that the worker’s savings Bt+1 is a vari-

able that determines an important feature of the model. This variable, as we explain below, determines how the

impact of speculation is absorbed by the cost of capital. In particular, it determines whether speculation shows

up in qt or Rt+1. To make the arguments as simple as possible, we do not take a stance on how the worker makes

consumption-savings decisions. In principle, next-period savings (or the supply of funds schedule) can be any

function of the state variables, to be introduced in the next section, as long as it follows a balanced growth path.

Hence, although our numerical simulations assume rule-of-thumb behavior, all analytical results derived in what

follows are consistent with optimal behavior.

The disutility of labor supply also merits some discussion. The scaling factorAt−1 is necessary to guarantee the

existence of a balanced growth path as in Jaimovich and Rebelo (2009). It can be interpreted as a long-run wealth

effect. Also, note that since the firm hires labor one period in advance, then ht is the labor hired at t − 1 but only

supplied at t, when the worker experiences the disutility of working. In principle, the worker’s perceived stochastic

process of TFP growth, {pwss′}, used to form expectations Ew,t, can be different from the true process and from

those perceived by the other agents in the economy.

The firm. The representative competitive firm hires labor ht+1 that will be employed at t + 1 one period in

advance (before the realization of the shock) to maximize expected profits,

Ef,t
[
Atgt+1h

α
t+1 − wt+1ht+1

]
,

where wt+1 is the wage rate paid at t + 1. Given an initial level A0, TFP evolves according to At = At−1gt, where

gt ∈ {ḡ1 < ḡ2 < ... < ḡS} follows a S-state Markov process with transition probabilities {pss′}. The current

state s and future state s′ take values in {1, ..., S}. Qualitative results do not change if we assume disagreement

regarding the evolution of the TFP level rather than its trend, but assuming the latter improves the behavior of risk

premiums (Bansal and Yaron, 2004). We assume the firm uses its own beliefs {pft,ss′} regarding the evolution of

TFP growth to form expectations Ef,t. Firm’s beliefs reflect ownership. Given that labor is chosen one period in

advance, probabilities are adjusted to account for the stockholders’ stochastic discount factors. Akin to Hall (2017),

fluctuations in risk premiums generate fluctuations in investment in hours. We spell out the precise formula for

firm’s beliefs below, after we introduce the recursive version of the model.

3.1 Market clearing

Given the consistent notation for labor ht in both the firm’s and worker’s optimization problems, we already impose

market clearing in the labor market. By taking the first order conditions (FOCs) with respect to ht in both problems,

12We could relax this assumption by assuming a less extreme form of market segmentation. The worker, for instance, could hold some
shares, as long as some costs prevent the adjustment of the portfolio immediately.
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and equalizing supply and demand in the labor market,13 one obtains,

ht+1 =

(
αEf,t[gt+1]

ξ

) 1
1+ν−α

and
wt+1

At
= ξ

(
αEf,t[gt+1]

ξ

) ν
1+ν−α

. (2)

Hence, realized profits at t+ 1 are given by

πt+1

At
=

(
1

ξ

) α
1+ν−α

(Ef,t[gt+1])
1+ν

1+ν−α

{
gt+1

Ef,t[gt+1]
α

α
1+ν−α − α

1+ν
1+ν−α

}
.

To close the model, we specify the remaining market clearing conditions. Market clearing for goods requires

that
I∑
i=1

µici,t + cw,t = At−1gth
α
t ,

whereas market clearing for bonds and shares require that

Bt+1 = −
I∑
i=1

µibi,t+1 and
I∑
i=1

µini,t+1 = 1,

respectively. Note that the total amount of shares are normalized to 1. The definition of the equilibrium is standard.

The model features balanced growth path, with all variables growing at the same rate except labor hours ht, the

risk-free interest rate Rt+1 and share holdings ni,t+1. Let x̂t = xt/At−1 denote a generic de-trended variable.

4 Analysis

The model features one exogenous state variable s ∈ {1, ..., S}, which indexes the growth in TFP. Denote the current

aggregate endogenous state variables by X, to be defined below, whereas the future ones by X ′. Let the law of

motion of X be given by a transition function ψ, such that X ′ = ψ(X, s, s′). Finally, the recursive formulation for

firm’s de-trended profits is the following,

π̂(X, s, s′) =
1

ξ
α

1+ν−α

{
ḡs′
(
αEfX,s[g]

) α
1+ν−α −

(
αEfX,s[g]

) 1+ν
1+ν−α

}
,

which depends on X only indirectly trough firm’s beliefs, that reflect firm’s ownership as well as shareholders’

stochastic discount factors, to be specified below. The next subsections present the recursive representation of the

model and some additional results.
13The labor supply schedule and the labor demand schedule arewt+1 = ξAthνt+1 andwt+1 = αAtEf,t[gt+1]/h1−αt+1 , respectively.
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4.1 Investor problem

Recall that de-trended variables are expressed as x̂t = xt/At−1. To solve the investors’ problem, we perform a

change of variables. First, define the individual state to be

âi,t = (q̂t + π̂t)ni,t +Rtb̂i,t,

which is the investor i’s de-trended wealth in the current period. Hence, the budget constraint can be rewritten as

ĉi,t + q̂tni,t+1 + gtb̂i,t+1 = âi,t.

Second, after omitting the subscript t and using the apostrophe for next-period variables, define c̃i = ĉi/âi =

ci/ai as the consumption share of wealth; ñi = q̂n′i/âi(1 − c̃i) as the share of invested wealth, i.e. after deducing

consumption, that is invested in risky shares; and, analogously, b̃i = gb̂′i/âi(1 − c̃i) is the share of invested wealth

that goes to risk-free bonds. Hence, the budget constraint can be written as ñi + b̃i = 1.

Let the returns on shares be denoted by

Rn(X, s, s′) =

[
q̂(ψ(X, s, s′), s′) + π̂(X, s, s′)

q̂(X, s)

]
ḡs,

and the risk-free rate on bonds bought today and carried out until tomorrow by Rb(X, s). Next period de-trended

wealth, after substituting ñi = 1− b̃i, is given by

â′i =
1

ḡs

[
Rn(X, s, s′)(1− b̃i) +Rb(X, s)b̃i

]
âi(1− c̃i). (3)

Let the subscript−1 denote last-period variables. The optimization problem of investors can be written as

Ui(âi, X, s;A−1) = max
c̃i,b̃i

{
(c̃iâiA−1)1−β (Ei,s [Ui(â′i, X ′, s′;A)1−γ]) β

1−γ

}
,

subject to (3). For now, we consider the version without short-selling constraints. We follow a guess-and-verify

method to characterize the solution. Conjecture that Ui(âi, X, s;A−1) = Vi(X, s)âiA−1. We state the following

lemma, whose proof is presented in Appendix A.1.

Lemma 1. Given the law of motion X ′ = ψ(X, s, s′) and prices Rb(X, s) and Rn(X, s, s′) for all X, s, s′, the optimal

consumption share for investor i is c̃i(X, s) = 1− β, and the optimal portfolio weight b̃i(X, s) is defined implicitly by

Ei,s

 (Vi(X
′, s′))1−γ [Rb(X, s)−Rn(X, s, s′)][

Rn(X, s, s′)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)
]γ
 = 0. (4)
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In addition, Vi satisfy the following recursion,

lnVi(X, s) = (1− β) ln c̃i(X, s) + β ln(1− c̃i(X, s)) +
β

1− γ
×

× ln

(
Ei,s

[(
Vi(X

′, s′)
[
Rn(X, s, s′)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)

])1−γ
])

.

Firm beliefs. Given the characterization above of the investor problem, now we are in a position to define firm’s

beliefs, {pfss′(X)}, which reflect ownership and stochastic discount factors. To spare notation, let vi(X, s, s′) =

Vi(ψ(X, s, s′), s′). An inspection of FOC (4) reveals that the stochastic discount factor of the speculator reads

SDFi(X, s, s
′) =

(vi(X, s, s
′))1−γ[

Rn(X, s, s′)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)
]γ . (5)

Invoking equation (3) and the fact that ĉi = (1 − β)âi, the stochastic discount factor reads v1−γ
i,t+1β

γ
(
gtĉi,t+1

ĉi,t

)−γ
, a

more familiar representation.

We let firm’s beliefs be given by investors’ risk-adjusted beliefs averaged across them. In particular,

pfss′(X) =
∑
i

ωi(X, s)

[
SDFi(X, s, s

′)piss′∑
s′ SDFi(X, s, s

′)piss′

]
, (6)

where
{

SDFi(X,s,s
′)pi

ss′∑
s′ SDFi(X,s,s

′)pi
ss′

}
s′

are the risk-neutral transition probabilities (or risk-adjusted beliefs) of investor i re-

garding all possible future states, and {ωi(X, s)}i are weights (summing one) that reflect ownership of the firm by

investors.

Risk-neutral probabilities are simply beliefs adjusted for stochastic discount factors. The idea is that the firm

maximizes on behalf of its shareholders, and internalizes that employment decisions induce profit risk due to

the assumption that they must be taken one period in advance. Since the interaction of profit risk and portfolio

decisions affects investors’ well being, firm’s beliefs must be adjusted in a way that maximizes shareholders’ prefer-

ences. Risk-neutral probabilities accomplish this goal. Importantly, portfolio and employment decisions become

closely connected, tying fluctuations in stochastic discount factors to fluctuations in labor hours.

Risk-adjusted beliefs across investors are aggregated using weights {ωi(X, s)}i. For now, we do not take a stance

on the weights given to investors. One possible example is to assume that weights are given by the proportions of

shares. In this case,

ωi(X, s) =
I{ñi(X,s)>0}ηiñi(X, s)∑
i I{ñi(X,s)>0}ηiñi(X, s)

,

where ñi(X, s) = 1−b̃i(X, s) is the proportion of wealth after deducing consumption that is invested in risky shares,

and ηi = µiâi∑
i µiâi

is the wealth share of speculator i.

Specialization: S = 2 and γ = 1. In Appendix B, we workout FOCs (4) and SDFs (5) when S = 2, say s ∈ {L,H}
with ḡL < ḡH . S = 2 is a natural benchmark. Absent any bounds on portfolio choices as assumed in this subsection,
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it renders market completeness due to the presence of two assets (risk-free bonds and risky shares) that can be used

to transfer consumption through time and across states.

For γ 6= 1, the solution makes explicit the dependence of b̃i(X, s) andSDFi(X, s, s′) on vi(X, s, s′) = Vi(ψ(X, s, s′), s′),

for which we do not have a closed form solution. When γ = 1, this dependence on vi(X, s, s′) is eliminated, which

enhances tractability. The quasi-closed forms in the following lemma are obtained.

Lemma 2. Let γ = 1 and S = 2 with s ∈ {L,H}, then the optimal portfolio decision is

b̃i(X, s) = pisL
Rn(X, s,H)

Rn(X, s,H)−Rb(X, s)
− pisH

Rn(X, s, L)

Rb(X, s)−Rn(X, s, L)
.

In addition, individual wealth evolves according to

ḡsâ
′
i(X, s, s

′)

βâi
=

1

SDFi(X, s, s′)
= piss′Rb(X, s)

[
Rn(X, s,H)−Rn(X, s, L)

|Rb(X, s)−Rn(X, s,−s′)|

]
.

Hence, for any configuration of weights ωi(X, s), firm’s probabilities adjusted for the investors’ stochastic discount

factors are given by

pfss′(X) =
|Rb(X, s)−R(X, s,−s′)|
Rn(X, s,H)−Rn(X, s, L)

(7)

The result is immediate once we set γ = 1 in equations (12) and (13) in Appendix B, where we characterize

the evolution of wealth and the investor’s portfolio for the case of when γ = 1 (log preferences) and S = 2. In

that specific case, the model is solved almost analytically. By multiplying SDFi and piss′ to compute shareholder i’s

risk-adjusted beliefs in (6), piss′ in the numerator and in the denominator cancel out. This reveals that risk-adjusted

beliefs are the same for all investors, and are an explicit function of excess returns. In turn, excess returns reflect

the degree of belief heterogeneity in the economy.

This result has two implications. First, we do not need to take a stance on how adjusted beliefs are aggregated

to form the firm’s beliefs. As long as weights {ωi(X, s)} sum to one, they can be anything.

Second, the simple formula in (7) connects two branches of modern macroeconomics. To the extent that firm’s

beliefs depend on excess returns, it ties the equity premium puzzle to the real business cycles, in particular labor

market fluctuations. Intuitively, when excess returns are low (good state), and therefore investors are willing to

bear risk, probabilities are distorted favoring the good state, and more labor hours are employed. Analogously,

when excess returns are high, the firm employs less. In that sense, the inability of a standard real business models

to generate both large fluctuations in hours (without relying on a large labor supply elasticity) and large volatility

in the equity premium can be interpreted as a single puzzle.

Given that the FOCs with respect to the portfolio decisions hold with equality, subjective valuations of (per-

ceived) flow of dividends of all speculators must coincide and, hence, must equal the price per share. Indeed,

if someone’s subjective valuation differs from the price per share, there would be an arbitrage opportunity. As

Miller (1977) and Harrison and Kreps (1978) emphasize, the presence of short-selling constraints, by preventing

those willing to short-sell from arbitraging the market, generates subjective valuations that differ from the price
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per share. This leads to the possibility of speculative bubbles, something we explore in the paper.

Toward that end, we study what occurs when we impose a margin constraint on shares, b̃i ≤ 1 + κ. The coef-

ficient κ ≥ 0 is introduced to avoid excessive short-selling. In the extreme case of no short-selling, the constraint

ni,t+1 ≥ 0 must be satisfied, which is equivalent to b̃i ≤ 1. When κ > 0, then qtni,t+1 ≥ −κβai,t is equivalent to

b̃i ≤ 1 + κ, meaning that wealthier investors can short-sell proportionally more. If this upper bound is binding,

b̃i(X, s) = 1 + κ, the evolution of individual de-trended wealth in (3) reads

â′i(X, s, s
′) =

β

ḡs
[(1 + κ)Rb(X, s)− κRn(X, s, s′)] âi.

4.2 State variables

Now we are in a position to introduce the endogenous aggregate state variables that determine X. One natural

candidate is the whole distribution of wealth: RB̂ for the worker,14 and {âi}Ii=1 for investors. We can encode the

wealth distribution among investors by keeping track of aggregate wealth
∑I
i=1 µiâi coupled with the wealth shares

for I − 1 agents, i.e. {ηi}I−1
i=1 , where ηi = µiâi/

∑I
i=1 µiâi.

Nonetheless, although R is pre-determined,
∑I
i=1 µiâi depends on price q̂ which is an equilibrium object. To

circumvent this problem, and get a pre-determined state variable, we use the definition of individual wealth, the

market clearing conditions for bonds and shares, and the government budget constraint, to get

∑
i

µiâi = q̂(X, s) + ḡsh
α − ŵh︸ ︷︷ ︸
=Ê

−RB̂. (8)

Note that Ê and RB̂ are pre-determined. Hence, X ≡
{
RB̂, Ê, {ηi}I−1

i=1

}
is the set of aggregate endogenous state

variables. Both Ê and RB̂ have simple interpretations. The former is de-trended realized profits (dividends re-

ceived by shareholders), whereas the latter is the aggregate previous de-trended debt the speculators need to honor

or the worker’s current wealth.

4.3 Equilibrium

The next proposition derives an equilibrium relationship between the price per share, current profits, and “net

liquidity” available to speculators. Fix B̂′(X, s) which is the worker’s de-trended aggregate savings carried out from

today to tomorrow. We take it as a partial equilibrium object, albeit a useful one.

Proposition 1. The price per share is given by

q̂(X, s) =
1

1− β

[
βÊ + ḡsB̂

′(X, s)− βRB̂
]
. (9)

14As opposed toR andB, which are the risk-free interest rateR on bondsB issued yesterday, we coupled the subscript b and the superscript
prime to denote the risk-free interest rate Rb(X, s) on bonds B′(X, s) issued today, respectively. Finally, by de-trending the worker’s budget
constraint, one obtains ĉw,t + gtB̂t+1 = ŵtht +RtB̂t.
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The proof is found in Appendix A.2. Equation (9) is a quasi-closed form for the price per share. It is derived using

all equilibrium conditions in the model, except the FOCs (4) with respect the portfolio choices of the investors.

This equation is fairly general, holding for any value of the risk aversion parameter γ, any configuration of beliefs

{piss′} including homogeneous beliefs, and any supply of funds schedule B̂(X, s) including the optimal one. It also

holds if bounds, such as debt and/or short-selling constraints, are imposed on portfolio decisions. Hence, it is

consistent with speculative behavior. Critical in the equation, however, is that the IES equal to one anchors the

marginal propensity to consume out of wealth to 1 − β. In more general formulations, the marginal propensity

to consume is time varying, but remarkably stable—hence the equity premium puzzle. We lever on this result to

argue that equation (9) captures the main quantitative forces that drive stock price dynamics.

In particular, equation (9) directly links the price per share q̂(X, s) to discounted profits, βÊ, and a measure of

flow of funds (or “net” liquidity available) to investors, ḡsB̂′(X, s) − βRB̂. Both expressed in present value, given

the 1 − β in the denominator. If the worker is hand-to-mouth such that B̂′(X, s) = B̂ = 0, then the P/E ratio,
q̂(X,s)

Ê
= β

1−β , is constant. This is true even in the presence of the ingredients that make the economy prone to

speculative bubbles. Hence, aside dynamics effects on the stock price through the evolution of profits, the interest

rate Rb(X, s) absorbs the effects of speculation. A bubble component, meaning that current stock price q(X, s)

is above all subjective valuations (based on the investors’ perceived flow of dividends), may arise because future

dividends are discounted at a higher interest rate.

To obtain a pro-cyclical P/E ratio, the flow of funds to investors relative to current profits, ḡsB̂
′(X,s)−βRB̂

Ê
, must

be higher at the good states, which of course, depends on how B̂′(X, s) is specified, although there is a force

through growth ḡs pushing funds up at good states. As a final extreme example, if liquidity supply is unlimited

at a given interest rateR, speculation only affects q̂(X, s). This emphasizes the importance of market clearing con-

ditions, as well as the net liquidity supply available to investors. To sum up, given (X, s), if “appetite” for shares (in

fixed supply) due to speculation is high, the extent to which q̂(X, s) orRb(X, s) reflects such “appetite” depends on

the flow of funds to speculators.15

Bubble component. In the presence of a bidding short-selling constraint, and alternating optimism and pes-

simism among speculators, the economy is prone to bubbles. Following Scheinkman and Xiong (2003), we define

the bubble component encoded in the the price per share as the log-difference of the price per share and the largest

subjective valuation,

log q̂(X, s)− log(max
i
q̂i(X, s)),

where the subjective valuation q̂i(X, s) satisfies the following recursion:

q̂i(X, s) =
∑
s′

piss′SDFi(X, s, s
′)(q̂i(ψ(X, s, s′), s′) + π̂(X, s, s′))ḡs.

In words, the bubble component is precisely the resale option value of the marginal buyer of shares.

15In Appendix C, we describe the remaining equations that characterize the equilibrium, and outline an algorithm to solve the model nu-
merically.



16

Specialization: S = 2 and γ = 1. Recall that, absent any bounds on portfolio choices, S = 2 implies complete

markets. In addition, γ = 1 makes the model highly tractable. If S = 2, γ = 1, and there are no short-selling

constraints (κ = ∞), we get fairly simple formulas for portfolio shares and the evolution of wealth, as Lemma

2 highlights. In addition, we also get a simple expression for the evolution of wealth shares {ηi}, with a precise

implication for its limit distribution.

Lemma 3. If γ = 1, S = 2 with s ∈ {L,H}, and κ =∞, then the evolution of the individual investor j’s wealth share

is governed by

η′j(X, s, s
′) =

pjss′ηj∑I
i=1 p

i
ss′ηi

, which implies
η′j(X, s, s

′)

η′k(X, s, s′)
=
pjss′

pkss′

ηj
ηk

for all j, k. (10)

In addition, if one investor is rational, say speculator i = 1 such that p1
ss′ = pss′ for all s, s′, then η1 → 1 almost surely.

A proof is found in Appendix A.3. Regarding the evolution of the wealth distribution, upon the realization of

s′, the larger the ratio pjss′/p
k
ss′ , the higher the increase in relative wealth, ηj/ηk. Intuitively, investors who believed

that the realized state s′ was more likely to realize ex-ante, also chose portfolios that perform better in such state.

Regarding the limit result, only rational investors (i.e., those with correct beliefs) survive. In other words, they

eventually acquire the whole investors’ stock of wealth. This is a well-known result in a complete markets context

with non-recursive preferences. See, for example, Sandroni (2000) and Blume and Easley (2006). In the next sec-

tion, we assume a rational investor exists. But if none of the investors are rational, one can extend this result by

following the steps in Blume and Easley (2006), and show that investors with the closest beliefs to the truth survive.

Finally, the limit result is not general to other values (rather than one) of the risk aversion parameter γ, as shown

by the recent contribution of Borovička (n.d.). Also, the result does not generalize to any incomplete markets

structure in the presence of a debt-limit constraint, even when γ = 1, as Beker and Chattopadhyay (2010) and

others show in related contexts.

4.4 Discussion

The model we have discussed so far is tailored to speak to many features of the speculation-driven business cycles.

This can be easily seen for the specialization in which γ = 1, S = 2 with s ∈ {L,H}, and κ = ∞. As the good state

s = H persists, the law of motion for wealth shares, equation (10), implies that optimistic investors accumulate

wealth on average. Hence, asset prices reflect this increasing overoptimistic view. As in a standard macro-finance

model, this wave of overoptimism leads to more willingness to bear risk, and this induces lower excess returns.

The transmission from lower excess returns to higher hours worked can be seen through adjusted firm’s beliefs in

equation (7). A great willingness to bear risk not only affects excess returns, but also distort firm’s beliefs in favor

of good states. Whether lower excess returns reflect a higher risk-free interest rate or higher stock prices (i.e., lower

stock returns) depends on the supply of liquidity to investors. As equation (9) highlights, if high relative to profits

during good times, the economy displays high P/E ratio, credit expansion and increased leverage, commonly asso-

ciated to speculative episodes. The counterpart of this argument as the bad states persist also holds. As pessimistic
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investors accumulate wealth, the economy displays higher excess returns and lower labor hours.

By contrast to the most RBC models, technological shocks affect growth rates rather than levels. This is a stand

in for growth prospects in the economy. Nonetheless, the same conclusions would emerge if we had assumed

TFP shocks at the level in an economy without trend growth. Indeed, by reinterpreting gt as levels, it is enough to

substitute ḡs for one in all equations above. We opt to keep growth shocks for two reasons. First, they are important

to make stochastic discount factors more volatile, and thus, generate somewhat larger risk premiums. Second, as

equation (9) highlights, ḡs pushes the net flow of funds to speculators up at good states, something the model

requires to generate pro-cyclical P/E ratio.

The next section takes a stand on the heterogeneity of beliefs, as a final step to make the model speaks compre-

hensively to the speculation-driven business cycles view.

5 Modeling beliefs

So far, we have been agnostic about beliefs, but in order to make progress toward quantitative statements, we need

a model of beliefs. Hence, the last step to formalize the speculation-driven business cycle view is to impose some

discipline on the heterogeneity of beliefs. We take a stance on the number of participants and assume I = 2 types

of investors. We let i = 1 represent the rational investor who holds correct beliefs, p1
ss′ = pss′ for all s, s′. We call

i = 2 the “diagnostic” investor.

Diagnostic expectations are formalized by Gennaioli and Shleifer (2010, 2018) based on prior work by Daniel

Kahneman and Amos Tversky, and applied by them and co-authors to explain a wide range of social phenomena.

Suppose an agent wants to form beliefs regarding the distribution of types (next-period shocks in our case) in a

given group (current shock s in our case). Then a specific type (say s′) is diagnostic or representative of this group

if its true probability of realization (pss′) is large relative to its true probability of realization in some reference group

(for example, pks′ , such that the reference group is a shock k other than s). Diagnostic expectations attribute more

weights to diagnostic types.

We follow Bordalo et al. (2018), who formalize diagnostic expectations in the context of an AR(1) process. As

reference group, they consider past conditions as if no news were received in the meantime. If past conditions

mean one period with no news, the probability of realization of s′ in such reference group is
∑
k ps−1kpks′ , which

comes at a cost of tracking one more state variable, the previous shock s−1. This extra state variable would be

avoided if the reference group is described by conditions in the long past, such that the probability of s′ realizes

is
∑
k p̄kpks′ , where {p̄s} is the invariant distribution associated with {pss′}. In particular, i = 2’s diagnostic beliefs

are given by:

p2
ss′ = pss′

(
pss′∑
k p̄kpks′

)θ
Zs, (11)

where Zs is a constant that guarantees that
∑
s′ p

2
ss′ = 1, and θ > 0 measures the extent to which beliefs are

distorted.
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Hence, given that θ > 0, beliefs are distorted by attributing more probability towards types (shocks) that are

more diagnostic. Psychologically, diagnostic types are over sampled from limited and selective memory. Impor-

tant for our purposes is the relevance of diagnostic expectations to explain how individuals forecast stock market

returns (Gennaioli et al., 2016; Bordalo et al., 2019a).

If S = 2 with s ∈ {L,H}, a simple algebra reveals that p2
LL > pLL and p2

HH > pHH if and only if pLLpHH >

(1 − pLL)(1 − pHH). In words, whenever shocks are persistent, diagnostic investors believe that states are more

persistent than they really are. This is the case for TFP shocks as observed in the data.

This simple and intuitive result has two implications for the speculation-driven business cycle view we evaluate

in this paper. First, the diagnostic investor is optimistic at the good state but pessimistic at the bad state. Under

the presence of a binding short-selling constraint, this observation allows the possibility of bubbles, as noted by

Harrison and Kreps (1978). Indeed, at the good state, the price per share not only reflects the diagnostic’s valuation

but also the option to resell the share to the rational agent if the bad state realizes. Similarly, at the bad state,

a bubble may arise as the relatively optimistic rational is willing to pay a higher price than valuation due to the

resell option. As salient during speculation episodes, with the presence of diagnostic speculators and short-selling

constraints, turnover of shares is amplified, and a bubble component arises.

Second, the diagnostic agent accumulates proportionally more wealth as the states (whether good or bad) per-

sist whereas the rational accumulates when the states transit. This observation implies that the longer is the boom

within a cycle, the larger is the drop in employment once the bust arrives. Indeed, as the good state persists, the

optimistic diagnostic investor accumulates an increasing amount of wealth, also meaning an increasing amount

of hours worked due to the aforementioned transmission mechanism. Once the bad state realizes, the diagnostic

becomes pessimistic. The larger is the wealth previously accumulated, the larger is the fall in hours employed.

Indeed, a wealthier pessimistic investor at the bad state implies that less hours are employed. We illustrate this

and other implications of the model in the next session.

6 Speculation-driven business cycles

This section illustrates the mechanics of the model through simulation exercises. In a benchmark case, we assume

there are no external funds to speculators, B̂′(X, s) = B̂ = 0. Then, we show how the supply of funds changes the

financial moments implied by the model, but does not alter the transmission mechanism and the amplification

of shocks. Also, to highlight the role of speculation and bubbles, in both instances we present results with and

without short-selling constraints.16

No external funds to investors. We begin with a description of the results when there are no flow of funds to

investors, B̂′(X, s) = B̂ = 0.17 Figures 2 and 3 compare simulations for three economies: the first economy features

16As discussed above, with short-selling constraint, b̃i is bounded above by 1 + κ, where κ = 0 implies no short-selling at all. Except for
Proposition 1, the analytical expressions obtained are not generalized when short-selling constraints bind for some speculators. However, as
discussed in Appendix C, we can easily implement these constraints numerically.

17In Appendix C.1, we discuss how this assumption coupled with γ = 1, S = 2 and I = 2 simplifies the solution and the numerical
implementation.
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homogeneous investors and the other two, heterogeneous investors; in one economy investors are allowed to

short-sell (κ = ∞) and, thus, bubbles cannot arise in this case; in the other short-selling constraints are present

(κ = 0), which generates a bubble. In all the exercises that follow, the economy is initiated at a steady-state with

only rational investors, η1 = 1—which is an absorbing state. Also, TFP growth is initiated in the good state. For the

economies with belief heterogeneity, at t = 1, a mass of agents that hold twenty percent of the wealth unexpectedly

becomes diagnostic. We simulate these economies for eight periods of expansions, followed by four consecutive

periods of recession. After that the economy recovers fully.

Figure 2 plots the evolution of the rational’s wealth share and of (log) hours worked. Figure 3 shows the evolu-

tion of the financial market outcomes (excess returns, firm’s adjusted probabilities, share’s price, risk-free rate and

the bubble component of the stock price).
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Figure 2: Typical business cycle.

Note: The figure is computed using a a symmetric Markov chain, with pss′ = 0.70 if s′ = s, and θ = 2, such that p2
ss′ = 0.927 if s′ = s. In

addition, β = 0.99, ν = 0.5, ξ = 1, γ = 1, α = 2/3, ḡL = 1 and ḡH = 1.02.

Compare first the economy with homogeneous beliefs (solid line), with the economy with heterogeneous be-

liefs without short-selling constrains (dashed line). It is clear that the economy with heterogeneous beliefs fea-

tures a cycle with greater persistence and amplitude. The explanation is that as the expansion persists, increasing

overoptimism dominates the economy. With a greater overall willingness to bear risk, excess returns decline dur-

ing the expansion. As a consequence, the firm’s risk-adjusted probability of a transition to a recession falls and,

thus, employment increases throughout the cycle. Once the recession is realized, the diagnostic investors become

pessimistic. Because diagnostics are relatively pessimist during recessions, and because they hold a non-negligible

share of total wealth, employment falls to a level below its counterpart in an economy with only rational investors.

As the recession persists, the diagnostic investors further accumulate wealth implying an increasing pessimism of

the representative investor. This reflects in a path of increasing excess returns and declining hours.
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Figure 3: Financial variables along a typical cycle.

Note: Parameter values are the same as those used in Figure 2.

When comparing the results between the economy with short-selling constraint (dotted lines) and the econ-

omy without (dashed-line), two conclusions emerge. First, the rational’s wealth becomes a slower moving variable

and fluctuates less once the constraint is present. Thus, conditional on being in an expansion, risk premiums,

adjusted probabilities, and hours employed move more slowly. Second, with short-selling constraints, the firm

employs more hours irrespective of the state. Intuitively, once the short-selling constraint is imposed, the overall

willingness to bear risk by the marginal buyer increases in both states—due to the bubble component that cap-

tures the resell option. In particular, in recessions, when the rational speculator is the marginal buyer, outcomes

become closer to the economy with only the rational investor. Similarly, in expansions, outcomes reflect the more

optimistic beliefs of the diagnostic speculator, the marginal buyer in booms. Hence, excess returns are depressed

across states in the economy with short-selling constraints. Lower excess returns translate into higher firm risk-

adjusted probabilities of future high TFP growth and, thus, more hours employed.

Regarding the financial variables, excess returns are qualitatively aligned with the data. They decline in expan-

sions and increase in recessions. Also, the model captures the boom-bust narrative of bubbles. However, without

an elastic supply of funds by workers, counterfactually, the P/E ratio is constant due to general equilibrium forces—

see equation (9). Also, as in a standard RBC model, we find a counter-cyclical risk-free rate, although the effect is
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mitigated by heterogeneous beliefs and short-selling constraints. As emphasized by Harrison and Kreps (1978) and

Scheinkman and Xiong (2003), the presence of short-selling constraints produces an asset-price bubble. Yet, with-

out external funds it is the risk-free rate that mostly absorbs the pressure from speculation. A bubble component

arises not because the P/E ratio increases, but because subjective valuations (of the perceived flow of dividends)

fall due to higher discounting.

As we emphasize throughout the paper, the supply of funds to speculators is crucial to get the full narrative

right. In the next subsection, we simulate an economy with external funds that produces the right cyclicality of

the P/E ratio. Nonetheless, it is important to reiterate that excess returns are the relevant financial moment for the

pass-through to real activity. Despite missing the P/E ratio dynamics, as long as the supply of funds does not affect

much excess returns, the business cycles are quantitatively similar with or without external funds.

Finally, to clarify the extent of amplification as a function of the length of a boom, Figure 4 reproduces two

cycles for the economy with heterogeneous beliefs, but without short-selling constraints. The comparison is now

between two expansions, one that lasts 8 periods (dot-dashed line) and the original 4-periods expansion (dashed

line). There is a noticeable pattern. The longer the boom, the more severe the bust. This is an immediate im-

plication of the extra additional time diagnostic investors accumulate wealth. The takeaway is that cycles are

asymmetric despite we calibrate the Markov chain symmetrically.
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Figure 4: Responses for cycles of different length.

Note: Parameter values are the same as those used in Figure 2.

Flow of funds to investors. To illustrate how the liquidity flow to investors fixes the financial moments, we

consider a rule-of-thumb supply of funds from the worker,

B̂′(X, s) = φs(ŵh+RB̂),
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where φs is the state-dependent propensity to accumulate out of current income plus current wealth, ŵh+ RB̂.18

Recall that ŵt = ξhνt , and note that both the wage bill ξh1+ν
t and labor ht are pre-determined variables that can be

easily recovered from pre-determined profits Ê. By combining the equation above with equation (9), one obtains

q̂(X, s) =
1

1− β

[
βÊ + φsξh

1+ν
t + (φs − β)RB̂

]
.

This expression showcases that as the boom persists, higher wages and higher flow of funds to the speculators

boost the stock price. In addition, φH > φL enhances the chances of getting a pro-cyclical P/E ratio.19 Note that the

supply of funds we employ here does not depend on the risk-free interest rate Rb(X, s), which is counter cyclical

as in standard RBC models. Hence, if savings were very sensitive to Rb(X, s), there would be a counteracting force

depressing the stock price during booms. As long as this substitution effect is not too strong, the rule-of-thumb

supply of funds should approximate fairly well a properly derived counterpart. We do not pursue a full derivation

of the worker supply of funds due to tractability and for ease of exposition.

Figures 5 and 6 are analogues of Figures 2 and 3, but for economies with external supply of funds. In this case,

we report the evolution of the P/E ratio instead of the bubble component.
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Figure 5: Typical business cycle with elastic supply of funds.

Note: Parameter values are the same as those used in Figure 2. Additionally, we set φH = β = 0.99 and φL = 0.988. These figures imply that
the worker holds 23.7 percent of the total wealth in the steady-state with η1 = 1.

The figures show how an external supply of funds can fix, at least qualitatively, the financial moments. In

this case, the price per share increases (declines) in expansions (recessions). Not only does the P/E ratio become

pro-cyclical, but heterogeneous beliefs and speculation increase its amplitude. Nonetheless, the business cycle

properties remain very similar, regardless of the presence of an external supply of funds. We build on this last result

18In Appendix C.2, we discuss how to solve the model numerically for this case.
19This formulation of the supply of funds can be justified by a precautionary motive as the worker faces incomplete markets, or by con-

sumption smoothness as in Guvenen (2009) who assumes that non-stockholders have a lower IES than stockholders.



23

to study the role of speculation on business cycles, in the version without external funds. We know this version

misses some of the financial aspects of the theory, but it is likely to produce similar business cycle properties to

the version with external funds.
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Figure 6: Financial market variables with elastic supply of funds.

Note: Parameter values are the same as those used in Figure 2.

7 Quantitative exploration

In this section we conduct a quantitative analysis of the potential that speculation can have to magnify business

cycles fluctuations, along the lines of the narratives of Minsky, Kindleberger and Shiller. Because we abstract from

financial frictions and pecuniary externalities as in Dávila and Korinek (2017), or sticky prices and aggregate de-

mand externalities as in Caballero and Simsek (2019), if anything, this quantitative exploration should be seen as

a lower bound. In this section, B̂′(X, s) = B̂ = 0, so as anticipated, we miss the pro-cyclically of the P/E ratio, but

arguably obtain similar quantitative business cycle implications.

Calibration. The calibration is standard. We set the model period to quarters, so β = 0.991. Regarding the

production function, we assume a labor share of α = 2/3. The good state is associated with quarterly growth of

1.2 percent, gH = 1.012, where the bad state with a recession of -0.4 percent, gL = 0.996. The average duration
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of a recession (expansion) is four (ten) quarters, implying that pLL = 0.75 (pHH = 0.90). These figures are in

congruence with rough calculations using the NBER recession dates, or with more elaborated estimations such

as Hamilton (1989). The Frisch elasticity is set to 2, meaning that ν = 0.5. We set the relative risk aversion to

γ = 1 (log preferences). ξ is just a scale parameter, normalized to one. These parameters are fixed throughout all

specifications, and summarized in Table 1.

Parameter Meaning Value Reference

β discount factor 0.991 average real rate of 4%

α decreasing returns 2/3 labor share of 2/3

gH high-state growth 1.012 quarterly growth of 1.2% in booms

gL low-state growth 0.996 quarterly growth of -0.4% in recessions

pHH high-to-high transition prob. 0.90 Hamilton (1989)

pLL low-to-low transition prob. 0.75 Hamilton (1989)

ν inverse labor-supply elasticity 0.5 standard RBC

ξ labor scaling factor 1 normalization

γ risk-aversion 1 tractability

Table 1: Calibration table.

An upper bound for amplification. Consider the baseline model with time-to-build in which beliefs are ho-

mogeneous and rational. For the aforementioned calibration, firm’s adjusted probabilities are pfLL = 0.759 and

pfHH = 0.896, implying that the standard deviation of (log) hours is 0.57 percent, and hours decline by 1.25 percent

upon a transition from high to low TFP growth states. In this section we aim to compute how much these figures

are amplified due to heterogeneous beliefs and speculation.

But before, for any model of beliefs, we compute the maximal amplifications of the standard deviation of (log)

hours and hours decline once the recession hits. These upper bounds are given by a version of the model with-

out time-to-build. To see why, notice that equation (2) reflects that labor is employed taking into consideration

expected TFP growth one period ahead, and not the realized TFP growth. Since TFP growth is a mean reverting

process, expected TFP growth is lower than actual TFP growth in booms, and higher in recessions. Thus, time-

to-build per se limits the amplitude of the cycle. The fluctuations in a model without time-to-build are an upper

bound to fluctuations in a model with time-to-build, for any configuration of beliefs. Absent time-to-build, hours

decline by 1.91 percent upon a transition from high to low TFP growth states. The overall standard deviation of

(log) hours is 0.86 percent.20 Heterogeneous beliefs and speculation cannot amplify business cycles beyond those

levels.

Taking these observations into account, for any model of beliefs, the maximal amplifications are given by a

factor of 1.51 in the standard deviation (0.86 in the model without time-to-build divided by 0.57 in the model

20This quantity is in line with the findings of early real business cycle models, e.g. Cooley and Prescott (1995).
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with time-to-build and homogeneous-rational beliefs), and a factor of 1.53 in the amplitude of hours decline (1.91

divided by 1.25). Indeed, the maximal amplifications are obtained when beliefs distort expectations and make

perceived TFP growth as persistent as possible. This is because, the more persistent the beliefs, the closer the

model with time-to-build to a model without time-to-build, which is in turn an upper bound. Hence, the maximal

cycle amplification due to heterogeneous beliefs and speculation is obtained when investor beliefs always reflect

in firm risk-adjusted probablities of pfLL = pfHH = 1, yielding the same business cycle properties of the model

without time-to-build.

Amplification in the calibration. To gauge the role of heterogeneous beliefs in amplifying the cycle, we next

discuss the amplification we obtain for various values of θ. As above, we present results with and without short-

selling, κ =∞ and κ = 0, respectively.21

Figure 7 depicts how p2
LL and p2

HH vary with θ. As explained above, these two distorted probabilities govern the

amplitude of hours worked, as they approximate the model with belief heterogeneity to the upper-bound obtained

in a model without time-to-build. Bordalo et al. (2019a), Bordalo et al. (2018) and Bordalo et al. (2019b) estimate

θ to be around 0.9, 0.9, and 0.6 in the context of forecasting stock returns, explaining credit cycles, and forecasting

macroeconomic variables, respectively. Hence, moderate values of θ can distort substantially subjective proba-

bilities of remaining in a recession. For instance, if θ = 0.4, diagnostic investors believe that the economy will

remain in a recession with a probability of 87 percent as opposed to the true probability of 75 percent. As θ further

increases, such probability actually surpasses the subjective probability of remaining in a boom, despite that the

high TFP-growth state is more persistent. In words, conditional on being in the bad state, the bad state is very

diagnostic, and thus subject to lots of disagreement given the presence of rational investors.
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Figure 7: Diagnostic beliefs.

Note: Diagnostic beliefs for θ ∈ [0, 2] are computed using equation (11) in Section 5.

The top panels of Figure 8 showcase the amplification of the decline in hours when the economy transits from

an expansion to a recession, for different values of θ. In particular, for each value of θ in the x-axis, each of the

top panels reports the effects of the amplification, relative to a model with homogeneous beliefs, when a recession

occurs after two-and-a-half years of expansions—the average cycle encoded in the Markov chain of TFP growth. As

before, each top panel reports the amplification, for different values of η1 in the initial period, capturing different

21In all simulations when κ = 0, the economy always converges to the steady-state in which η1 = 1. Hence, short-selling constraints are not
binding in steady-state.
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waves of optimism.22 Dashed-lines consider the economy without short-selling constraints (κ = ∞), and thus,

without bubbles; in the case of dotted-lines, the economy does not feature short-selling (κ = 0).

The figure shows that when θ = 1 and κ = ∞, for example, the decline in labor is amplified by 36, 24, and 11

percent when the economy is initiated at η1 equal to 0.2, 0.5 and 0.8, respectively.23 Given that the upper bound for

amplification is about 50 percent for any configuration of beliefs, the calibration to diagnostic beliefs studied here

goes a long way to that upper bound.
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Figure 8: Amplification in labor responses and bubble components.

Note: Simulations start from the steady-state reached during a boom when η1 = 1. Columns correspond to belief shocks at t = 1 that bring
the rational wealth share to 0.2, 0.5, and 0.8. A recession hits after two-and-a-half years of expansions. For θ ∈ [0, 2], and for κ ∈ {0,∞}, top
panels plot the amplification in labor decline relative to a model with homogeneous-rational beliefs. For θ ∈ [0, 2], when κ = 0, bottom panels
plot bubble components right before the recession (BubbleH), and in its first year (Bubble L). The calibration is reported in Table 1.

A salient feature is that the role of short-selling constraints (κ = 0, dotted-lines) is non monotone. Once tight

short-selling constraints are imposed, the amplification may be higher or lower than the one in the economy with

22For each path, we start from the steady-state reached during a boom when η1 = 1, and then shock the economy by making a fraction
of agents diagnositc. The columns correspond to belief shocks that bring the rational wealth share to 0.2, 0.5, and 0.8, respectively. One can
interpret each path as waves of optimism inherent to the speculation-driven business cycle narratives.

23We consider θ = 1 as the benchmark value for the diagnostic parameter. As the model does not feature a representative agent, we increase
it above the upper end of the estimations in Bordalo et al. (2019a), Bordalo et al. (2018) and Bordalo et al. (2019b), due to the presence of rational
agents in the model that might countervail the aggregate effects of diagnostic expectations.
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loose constraints. Intuitively, bubbles depress excess returns and boost employment in both states. Hence, the

overall effect is ambiguous as they may attenuate or exacerbate the labor decline once the recession hits.

The bottom panels of Figure 8 depict the bubble components before and after the bust—for the case of short-

selling constraints, the only case that produces a bubble. In particular, the dashed-lines represent the bubble

prior to the bust, whereas the solid-lines, the bubble component in the first period of the recession. The x-axis

considers different values of θ. For θ = 1, for instance, the bubble component ranges from 10 percent to 20 percent,

depending on the initial value for the share of rational wealth, η1. Interestingly, depending on such initial value,

the bubble component in recessions can actually exceed the bubble component in booms—this does not mean

that the stock price is higher, but only the price above its fundamental value. Thus, the model fits the narrative

of “bursting bubbles” in recessions only for specific degrees of optimism and initial wealth. For example, for an

initial wealth of η1 = 0.8 and θ = 1, the “burst” of the bubble is moderate taking the bubble component only from

12.8 to 10.4 percent. In fact, for lower values of initial η1, say for η1 = 0.2, beliefs disagreement actually mitigates

the decline in the stock price due to the bubble component—see the bottom left panel.

We also study the degree of amplification contributed by short-selling constraints. At the same time that short-

selling constraints may mitigate the decline in hours in the first cycle after a wave in optimism, they can also

generate greater unconditional volatility of hours. These results seem to contradict each other, but they are an ar-

tifact of a counterveiling force. Short-selling constraints limit the extent of losses by diagnostic agents, prolonging

their survival—diagnostic wealth becomes a slower moving variable in the presence of constraints.

To illustrate this point, we set θ = 1 and simulate economies. We compute (a) the evolution of the average

twenty-year rolling-windows standard deviation of (log) hours, and (b) the path of the average wealth share of ra-

tional agents. Results are reported in Figure 9. Each column of panels represents simulations initiated at η1 equal to

0.2, 0.5 and 0.8. Dotted-lines represent economies without short-selling (κ = 0), whereas dashed-lines correspond

to economies that allow for short-selling (κ = ∞). The top panels present the amplification in standard devia-

tion of (log) hours, relative to an economy with homogeneous-rational beliefs; and bottom panels the respective

evolution of the rational wealth share.

The conclusions that emerge from these simulations are that the volatility of hours increases in both economies,

with and without short-selling constraints, relative to the economy with homogeneous beliefs. Nonetheless, the

long-run amplification is stronger in the presence of short-selling constraints. Again, this is because short-selling

constraints make diagnostic agents survive longer, and this sustains a longer amplification of labor responses. In

terms of unconditional moments, this translates into more volatile business cycles when short-selling constraints

are allowed. The effects are sizable taking into consideration that there is an upper bound of a nearly 50 percent

increase in hours volatility. Indeed, in the initial periods, the standard deviation of hours is amplified by 15, 12, to

8 percent for initial values of rational wealth share of 0.2, 0.5 and 0.8, respectively.
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Figure 9: Amplification of the volatility of hours and wealth evolution.

Note: We simulate 10,000 economies that start from the steady-state when η1 = 1. Columns correspond to belief shocks at t = 1 that bring the
rational wealth share to 0.2, 0.5, and 0.8. Top panels plot the evolution of the average (across economies) twenty-year rolling-windows standard
deviation of (log) hours. Bottom panels plot the evolution of the average (across economies) wealth share of rational agents. We consider
economies with κ ∈ {0,∞} and θ = 1. The remaining calibration is reported in Table 1.

8 Conclusion

This paper adapts a standard real business cycle model to fit the speculation-driven business cycle narrative. We

spell out some key ingredients that are sufficient to account for that narrative and present a quantitative evaluation

of the narrative. In what follows, we summarize some of our findings, and point to directions for future research.

The paper presents an equilibrium equation that relates the price per share to current profits and the flow of

funds to investors. Given that markets are segmented, the price per share should reflect fluctuations in the net

supply of funds to the financial sector. This expression is valid for any configuration of beliefs, any value for the

risk aversion, and independent of the presence of short-selling (or borrowing) constraints. The price that absorbs

speculation, whether the price per share or the risk-free interest rate, depends on the amount of funds supplied at

good and bad states. In particular, a bubble arises even without a surge in the stock price.

This result speaks to the leaning against the wind debate—see Gourio et al. (2018) for a recent contribution.
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Suppose the government can control the risk-free rate—this can be accomplished through fiscal, monetary or

macro-prudential policy. If heterogeneous beliefs and short-selling constraints are the driving forces behind bub-

bles, this result suggests that the government cannot fully “burst” a bubble, but it can decide to what extent the

stock price or the risk-free rate should absorb speculation. Hence, policy must trade-off the stabilization of one

price against the cost of making the other one fluctuate more. In a world with aggregate demand externalities or

pecuniary externalities, the policymaker faces a trade-off.

With respect to the qualitative amplification of the business cycle, a few conclusions are worth emphasizing.

First, as diagnostic investors accumulate wealth during booms and recessions, real business cycles are amplified.

Second, the longer the boom period, the more severe is the bust. Although the modeling of workers is stylized,

these results hold for any supply of funds schedule—including one appropriately derived from optimal behavior.

Finally, if short-selling constraints are imposed, such that the economy becomes prone to bubbles, simulations

suggest we get further amplification in booms, but an attenuation during busts.

A quantitative exercise suggests that the effects of heterogeneous beliefs and speculation can be sizeable rel-

ative to a homogeneous beliefs benchmark. As well, the bubble component of asset prices can be sizable. By

construction, cycles cannot be amplified more than 50 percent in our quantitative exploration. A concrete calibra-

tion shows that the volatility of hours can be amplified up to 15 percent, and bubbles can reach up to 20 percent

of the asset fundamental value. We see these quantitative results as sizable because they respond directly to het-

erogeneous beliefs and speculation. Arguably these could be amplified were other frictions, such as sticky prices

or fire-sales externalities, accounted for.
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Appendices

A Proofs

A.1 Proof of Lemma 1

Proof. By conjecturing that Ui(âi, X, s; ;A−1) = Vi(X, s)âiA−1, after a monotone transformation by taking logs,

one obtains,

lnVi(X, s) + ln âi = max
c̃i,b̃i

{
(1− β)(ln c̃i + ln âi) +

β

1− γ
ln
(
Ei,s

[
(Vi(X

′, s′)a′i)
1−γ
])}

.

By plugging (3) into the equation above, after some algebra, one verifies that ln ai cancels on both sides, and ob-

tains,

lnVi(X, s) = max
c̃i
{(1− β) ln c̃i + β ln(1− c̃i)}+

+
β

1− γ
ln

(
max
b̃i

{
Ei,s

[(
Vi(X

′, s′)
[
Rn(X, s, s′)(1− b̃i) +Rb(X, s)b̃i

])1−γ
]})

,

which separates consumption from portfolio decisions. In particular, the FOC with respect to consumption yields

c̃i(X, s) = 1− β for all i and (X, s), and the FOC with respect the portfolio weight yields equation (4).

A.2 Proof of Proposition 1

Proof. We further develop equation (8) by using the market clearing condition for goods, the optimal consumption

plan ĉi = (1− β)âi from the investors’ optimization problem, the worker’s budget constraint, and the equilibrium

labor market outcomes in equation (2). Hence, the following equation is obtained,

β
∑
i

µiâi = q̂(X, s)− ḡsB̂′(X, s).

By plugging this expression back into equation (8), one obtains equation (9).

A.3 Proof of Lemma 3

Proof. The first part is a direct implication of Lemma 2. To prove the second part, note that there are I absorbing

states, each with ηj = 1 for some j, and ηi = 0 for i 6= j. Indeed, suppose an absorbing state features ηj ∈ (0, 1)

for some js. Hence,
∑I
i=1 p

i
ss′ηi = pjss′ for all j such that ηj ∈ (0, 1), which contradicts heterogeneous beliefs. With

an abuse of notation, upon reaching sate s today, denote the continuation history m periods ahead by sm|s =

{s, s1, s2, ..., sm}. Investor j attaches probability pj(sm|s) = pjs,s1
∏m−1
t=1 pjst,st+1

that such history will occur. In
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addition, given that investor i = 1 has the correct beliefs, pj(sm|s)
p1(sm|s) is a non-negative martingale and, thus, converges

almost surely. Hence, ηjη1 also converges almost surely, meaning that η1 → 1 almost surely.

B Wealth evolution (3) and FOC (4) for S=2

In this appendix, given q(X, s), Rb(X, s), Rn(X, s), ψ(X, s, s′) and vi(X, s, s
′) = Vi(ψ(X, s, s′), s′), we derive quasi-

closed form solutions for the optimal portfolio choices when S = 2. Equation (4) can be rewritten as

Ei,s

 (vi(X, s, s
′))1−γ [Rb(X, s)−Rn(X, s, s′)][

Rn(X, s, s′)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)
]γ
 = 0.

Under the assumption of two shocks, say s ∈ {L,H},

pis,L

 (vi(X, s, L))1−γ [Rb(X, s)−Rn(X, s, L)][
Rn(X, s, L)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)

]γ
 = −pis,H

 (vi(X, s,H))1−γ [Rb(X, s)−Rn(X, s,H)][
Rn(X, s,H)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)

]γ
 ,

which can be rewritten as{
pis,L(vi(X, s, L))1−γ [Rb(X, s)−Rn(X, s, L)]

} 1
γ

Rn(X, s, L) + [Rb(X, s)−Rn(X, s, L)]b̃i(X, s)
=

{
pis,H(vi(X, s,H))1−γ [Rn(X, s,H)−Rb(X, s)]

} 1
γ

Rn(X, s,H)− [Rn(X, s,H)−Rb(X, s)]b̃i(X, s)
.

By further developing the expression above,

{
pis,L(vi(X, s, L))1−γ [Rb(X, s)−Rn(X, s, L)]

} 1
γ {Rn(X, s,H)− [Rn(X, s,H)−Rb(X, s)]b̃i(X, s)} =

=
{
pis,H(vi(X, s,H))1−γ [Rn(X, s,H)−Rb(X, s)]

} 1
γ {Rn(X, s, L) + [Rb(X, s)−Rn(X, s, L)]b̃i(X, s)}.

Hence, after collecting terms,

b̃i(X, s) =

{
pis,L(vi(X, s, L))1−γ

[
Rb(X, s) − Rn(X, s, L)

]} 1
γ Rn(X, s,H) −

{
pis,H (vi(X, s,H))1−γ

[
Rn(X, s,H) − Rb(X, s)

]} 1
γ Rn(X, s, L){

pi
s,H

(vi(X, s,H))1−γ
[
Rn(X, s,H) − Rb(X, s)

]} 1
γ [Rb(X, s) − Rn(X, s, L)] +

{
pi
s,L

(vi(X, s, L))1−γ
[
Rb(X, s) − Rn(X, s, L)

]} 1
γ [Rn(X, s,H) − Rb(X, s)]

. (12)

Now, by plugging the equation above in equation (3), i.e. ḡsa
′(X,s,s′)
βa = Rn(X, s, s′)+[Rb(X, s)−Rn(X, s, s′)]b̃i(X, s),

and working it out, one obtains that

Rn(X, s, s
′
) + [Rb(X, s) − Rn(X, s, s

′
)] ×

×

{
pis,L(vi(X, s, L))1−γ

[
Rb(X, s) − Rn(X, s, L)

]} 1
γ Rn(X, s,H) −

{
pis,H (vi(X, s,H))1−γ

[
Rn(X, s,H) − Rb(X, s)

]} 1
γ Rn(X, s, L){

pi
s,H

(vi(X, s,H))1−γ
[
Rn(X, s,H) − Rb(X, s)

]} 1
γ [Rb(X, s) − Rn(X, s, L)] +

{
pi
s,L

(vi(X, s, L))1−γ
[
Rb(X, s) − Rn(X, s, L)

]} 1
γ [Rn(X, s,H) − Rb(X, s)]

=

=

{
pi
s,s′ (vi(X, s, s

′))1−γ
[
|Rb(X, s) − Rn(X, s, s′)|

]} 1
γ [Rb(X, s) − Rn(X, s, L)]Rn(X, s,H) +

{
pi
s,s′ (vi(X, s, s

′))1−γ
[
|Rb(X, s) − Rn(X, s, s′)|

]} 1
γ [Rn(X, s,H) − Rb(X, s)]Rn(X, s, L)

{
pi
s,H

(vi(X, s,H))1−γ
[
Rn(X, s,H) − Rb(X, s)

]} 1
γ [Rb(X, s) − Rn(X, s, L)] +

{
pi
s,L

(vi(X, s, L))1−γ
[
Rb(X, s) − Rn(X, s, L)

]} 1
γ [Rn(X, s,H) − Rb(X, s)]

=
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=

{
pi
s,s′ (vi(X, s, s

′))1−γ
[
|Rb(X, s) − Rn(X, s, s′)|

]} 1
γ {

[Rb(X, s) − Rn(X, s, L)]Rn(X, s,H) + [Rn(X, s,H) − Rb(X, s)]Rn(X, s, L)
}

{
pi
s,H

(vi(X, s,H))1−γ
[
Rn(X, s,H) − Rb(X, s)

]} 1
γ [Rb(X, s) − Rn(X, s, L)] +

{
pi
s,L

(vi(X, s, L))1−γ
[
Rb(X, s) − Rn(X, s, L)

]} 1
γ [Rn(X, s,H) − Rb(X, s)]

=

=

{
pi
s,s′ (vi(X, s, s

′))1−γ
[
|Rb(X, s) − Rn(X, s, s′)|

]} 1
γ Rb(X, s)[Rn(X, s,H) − Rn(X, s, L)]

{
pi
s,H

(vi(X, s,H))1−γ
[
Rn(X, s,H) − Rb(X, s)

]} 1
γ [Rb(X, s) − Rn(X, s, L)] +

{
pi
s,L

(vi(X, s, L))1−γ
[
Rb(X, s) − Rn(X, s, L)

]} 1
γ [Rn(X, s,H) − Rb(X, s)]

. (13)

To obtain the expressions reported in Lemma 2, just set γ = 1 into equations (12) and (13) above.
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C Equilibrium equations and numerical algorithm

Throughout the main text, we consider X = {Ê, {ηi}I−1
i=1 , RB̂} because it facilitates exposition and intuition. How-

ever, to implement the model numerically, we propose a change of the state space that renders the algorithm more

efficient.

First, instead of usingRB̂ as a state variable, we consider ηw = RB̂∑
i µiâi+RB̂

. Recall that
∑
i µiâi+RB̂ = q̂(X, s)+

Ê. Hence by substituting RB̂ for ηw(q̂(X, s) + Ê) in the model, we can characterize the equilibrium in terms of

ηw, which is bounded in between zero and one, rather than RB̂. Note that we do not change the definition of

ηi = µiâi∑
i µiâi

, which represents wealth shares among investors only.

Second, instead of using the current de-trended profits Ê, we consider the previous expected value for TFP,

computed using firm’s adjusted beliefs. Call it ε. Hence, with slight abuse of notation, current de-trended profits

are given by

π̂(X, s) =
1

ξ
α

1+ν−α

{
ḡs(αε)

α
1+ν−α − (αε)

1+ν
1+ν−α

}
.

Note that by knowing s and ε, one can compute Ê = π̂(X, s). The advantage of using ε instead of Ê is twofold.

First, it is bounded by the lowest and the highest TFP growth shocks. Second, it renders a more efficient numerical

algorithm as the updating rule for ε, ε′(X, s) = EfX,s[g], does not depend on the future exogenous state s′.

Again, with a slight abuse of notation, let X = {ε, {ηi}I−1
i=1 , ηw}. Given this change of variables, a simple algebra

reveals that the key equation (9) in the main text now reads

q̂(X, s) =
β(1− ηw)π̂(X, s) + ḡsB̂

′(X, s)

1− β(1− ηw)
. (14)

Under the assumption that S = 2, equation (12) in Appendix B solves for the optimal interior portfolio weights

b̃i(X, s) as functions of q̂(X, s), Rb(X, s), Rn(X, s), ψ(X, s, s′) and vi(X, s, s
′) = Vi(ψ(X, s, s′), s′). This is the only

part of the solution method that the assumption of S = 2 kicks in.

The market clearing condition for bonds reads:

ḡsB̂
′(X, s) = −β(π̂(X, s) + ḡsB̂

′(X, s)− ηw(q̂(X, s) + π̂(X, s)))

1− β
∑
i

b̃i(X, s)ηi.

If γ 6= 1, then the value function Vi(X, s) satisfies the following recursion:

lnVi(X, s) = (1− β) ln(1− β) + β lnβ +

+
β

1− γ
ln

({
Ei,s

[(
Vi(ψ(X, s, s′), s′)

[
Rn(X, s, s′)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)

])1−γ
]})

.

If γ = 1 the solution simplifies as portfolios weights, b̃i(X, s), cease to depend on vi(X, s, s′), and thus, the recursion

above when γ → 1 is immaterial for the solution.
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The law of motion X ′ = ψ(X, s, s′) is implicitly defined by

ε′(X, s) = EfX,s[g];

η′i(X, s, s
′) =

[
Rn(X, s, s′)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)

]
ηi∑I

i=1

[
Rn(X, s, s′)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)

]
ηi

;

η′w(X, s, s′) =
Rb(X, s)B̂

′(X, s)

q(ψ(X, s, s′), s′) + π̂(ψ(X, s, s′), s′)
.

Recall that stock returns are given by

Rn(X, s, s′) =
q̂(ψ(X, s, s′), s′) + π̂(ψ(X, s, s′), s′)

q̂(X, s)
,

whereas the stochastic discount factors are given by

SDFi(X, s, s
′) =

(vi(X, s, s
′))1−γ[

Rn(X, s, s′)(1− b̃i(X, s)) +Rb(X, s)b̃i(X, s)
]γ .

Finally, firm’s adjusted beliefs are given by

pfss′(X) =
∑
i

ωi(X, s)

[
SDFi(X, s, s

′)piss′∑
s′ SDFi(X, s, s

′)piss′

]
,

where we assume that weights are given by

ωi(X, s) =
I{b̃i(X,s)<1}ηi(1− b̃i(X, s))∑
i I{b̃i(X,s)<1}ηi(1− b̃i(X, s))

.

After assuming a functional form for the supply of funds to the investors, B′(X, s), one can solve numerically

the model in the computer.

We propose the following numerical algorithm to compute globally the equilibrium. Discretize ε, {ηi}I−1
i=1 and

ηw, fix B̂′(X, s), and conjecture the law of motion X ′ = ψ(X, s, s′). The idea is to iterate over ψ(X, s, s′) until

convergence is reached. With B̂′(X, s) and a guess for ψ(X, s, s′) at hand, one can compute q̂(X, s) andRn(X, s, s′).

Hence, within each iteration, use the bisection method to find Rb(X, s) that clears the bonds market, keeping

in mind that if γ 6= 1, one also needs to iterate over Vi(X, s) inside this inner loop to compute b̃i(X, s). With

Rn(X, s, s′),Rb(X, s) and b̃i(X, s) at hand, one can update η′i(X, s, s
′), η′w(X, s, s′) and ε′(X, s) to obtain a new guess

for ψ(X, s, s′) in the next iteration.

This numerical algorithm is easily malleable if we impose short-selling constraints: b̃i(X, s) ≤ 1 + κ, with κ ∈
[0,∞). All we need is to replace b̃i(X, s) obtained in equation (12) after working out the FOCs by 1 +κ if the optimal
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interior solution is outside this bound.

C.1 Specialization: γ = 1, S = 2, κ =∞, B̂′(X, s) = B̂ = 0, I = 2

As argued above, if γ = 1 and S = 2 with s ∈ {L,H}, the solution simplifies as b̃i(X, s) and SDFi(X, s, s′) cease to

depend on vi(X, s, s′) (see expressions obtained in Lemma 2 in the main text), avoiding an inner loop to compute

vi(X, s, s
′) recursively. If in addition κ = ∞, as discussed in the main text, we obtain the following closed form for

the evolution of wealth shares,

η′i(X, s, s
′) =

piss′ηi∑I
i=1 p

i
ss′ηi

.

Also, under these assumptions, firm’s adjusted beliefs become a simple function of the stock returns and risk-free

rate,

pfsL(X, s) =
Rn(X, s,H)−Rb(X, s)
Rn(X, s,H)−Rn(X, s, L)

and pfsH(X, s) =
Rb(X, s)−Rn(X, s, L)

Rn(X, s,H)−Rn(X, s, L)
.

These formulas are valid for any supply of funds schedule, B̂′(X, s), and simplify the computation of the equilib-

rium as there is no need to iterate over η′i(X, s, s
′) and vi(X, s, s′).

Now if we assume there is no supply of funds to the investors, B̂′(X, s) = B̂ = 0, which implies η′w(X, s, s′) =

ηw = 0, the solution for the price per share is simplified,

q̂(X, s) =
βπ̂(X, s)

1− β
,

which implies the following expression for asset returns,

Rn(X, s, s′) =
π(ψ(X, s, s′), s′)

βπ̂(X, s)
=

1

β

ḡs′(αε
′(X, s))

α
1+ν−α − (αε′(X, s))

1+ν
1+ν−α

ḡs(αε)
α

1+ν−α − (αε)
1+ν

1+ν−α
.

In addition, the market clearing condition for bonds reads

I∑
i=1

ηib̃i(X, s) = 0.

These expressions are valid for any value of γ, κ or S. They facilitate the implementation of the equilibrium as,

of course, we do not need to track ηw as a state variable, reducing the dimensionality of the state space.

Finally, by assuming altogether γ = 1, S = 2, κ = ∞, B̂′(X, s) = B̂ = 0 as well as I = 2, one can use the

expressions in Lemma 2 to workout the above market clearing condition for bonds, and reach an expression for

Rb(X, s) also as a function of stock returns,

Rb(X, s) =
Rn(X, s,H)Rn(X, s, L)

(η1p1
sL + η2p2

sL)Rn(X, s,H) + (η1p1
sH + η2p2

sH)Rn(X, s, L)
.

These extra assumptions make the numerical computation of the equilibrium significantly more efficient, as
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one only needs to iterate over ε′(X, s) within a state space with lower dimensionality. In addition, there is no need

to use the bisection method to find the Rb(X, s) that clears the market.

If we impose an upper bound on the portfolio decisions, κ <∞, to obtain speculative behavior, the numerical

implementation becomes less efficient. In particular, one also needs to iterate over ηi(X ′, s, s), check whether the

optimal interior solution for b̃i(X, s) is outside the bound (and replace accordingly), and run the bisection method

to find Rb(X, s) that clears the bonds market. Nonetheless the state space is now reduced due to the assumption

that B̂′(X, s) = B̂ = 0.

C.2 Specialization: B̂′(X, s) = φs(ŵh+RB̂)

We consider in this subsection the case B̂′(X, s) = φs(ŵh + RB̂). Recall that the algorithm outlined above com-

pute the endogenous objects by taking B′(X, s) as given. Also recall that the state space is represented by X =

{ε, {ηi}I−1
i=1 , ηw}. Hence,

B̂′(X, s) = φs(ŵ(ε)h(ε) + ηw(q̂(X, s) + π̂(X, s)), (15)

which coupled with equation (14) determines both B′(X, s) and q(X, s) for each (X, s). In this linear case, it is

straight forward to obtain the solution. Indeed, one can further develop (14) by plugging (15) into, and after rear-

ranging terms, obtain the following expression:

q̂(X, s) =
(β(1− ηw) + ḡsφsηw)π̂(X, s) + ḡsφsŵ(ε)h(ε)

1− β(1− ηw)− ḡsφsηw
.

By plugging this expression back into (15), one obtains B′(X, s) as a direct function of the state space, and can

solve the model by applying the algorithm outlined above.

If the supply of funds were not linear, an intermediate step in the algorithm would be necessary to solve for

both q̂(X, s) and B̂′(X, s) simultaneously.


