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October, 2018

Abstract

We develop threshold estimation methods for panel data models with two thresh-

old variables and individual fixed specific effects covering short time periods. In the

static panel data model, we propose least squares estimation of the threshold and

regression slopes using fixed effects transformations; while in the dynamic panel

data model, we propose maximum likelihood estimation of the threshold and slope

parameters using first difference transformations. In both models, we propose to

estimate the threshold parameters sequentially. We apply the methods to a 15-year

sample of 565 U.S. firms to test whether financial constraints affect investment de-
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1 Introduction

One of the most interesting non-linear regression models is the threshold regression model

developed by Howell Tong at the end of the 1970s.1 This model has been enormously

influential in economics and remains popular in current applied econometric practice.

The model splits the sample into classes based on the value of an observed variable,

regardless of whether or not it exceeds a given threshold; that is, it internally sorts the

data on the basis of a given threshold determinant into groups of observations, each of

which obeys the same model. Hansen (2011) provides an excellent literature review on

the use of these models in econometrics and economics.

The literature contains a well-developed least squares estimation and inference theory

for threshold models with exogenous regressors, including Chan (1993) and Hansen (1997,

2000), while Chen et al. (2012) extended these model to allow two threshold variables.

Another important extension of these works would be to consider two threshold variables

in panel data models; that is, cross section and time series data. Thus, in this paper

we introduce econometric techniques appropriate for panel data models with two thresh-

old variables. We describe least squares estimation and maximum likelihood estimation

methods for the static and dynamic models, respectively.

These methods are used to study the relationship between investment and capital mar-

ket imperfections or financial constraints. Capital market imperfections may imply that

firms are restricted in their access to external finance. The impact of such imperfections

depends on the degree of informational asymmetries and on firms’ growth opportunity

(balance sheet) conditions (Hu and Schiantarelli, 1998). Informational asymmetries be-

tween borrowers and lenders generate agency cost, which creates a pecking order; that

is, the more severe the information and agency problems, the higher the cost of external

finance, and thus the greater the sensitivity to internal finance such as cash flow.

The impact of capital imperfections also depends on the extent of the growth op-

portunities; Gonzáles et al. (2005) argue that in the case of firms with ample growth

opportunities, internal and external finance are substitutes and so the firms’ investment

decisions are independent of their financial structure. Improving growth prospects help to

solve problems of overspending and to decrease the financial constraints of firms suffering

from severe information asymmetry; conversely, when firms have limited growth oppor-

tunities, a positive relationship between investment and cash flows indicates investment

in negative net present value projects (Pawlina and Renneboog, 2005), which may due to

agency problems.

1See Tong (2007) for the emergence of the threshold model.
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Empirical studies divide firms into constrained and unconstrained groups based on a

single variable that measures capital market imperfections (see Schiantarelli, 1996; Hub-

bard, 1998, for a review). Nonetheless, the criteria used to split the sample differ from

study to study, since there are multiple factors that influence a firm’s financial strength

and borrowing ability. In this paper we taken into account two indicators of capital mar-

ket imperfections: a measure of the degree of informational asymmetry, and a measure

of growth opportunities. Thus, we expect heavily indebted firms with limited growth

opportunities to face much higher costs of external finance and hence their investment

decisions to be more sensitive to internal finance.

The outline of the paper is as follows. In section 2 we develop estimation techniques

based on a static panel threshold model with two threshold variables. In section 3 we de-

velop estimation techniques based on a dynamic panel threshold model with two threshold

variables. In section 4 we show the performance of the estimators proposed via Monte

Carlo experiments. In section 5 we present an application to test whether financial con-

straints affect investment decisions. Finally, in section 6 we conclude.

2 Static Panel Data Model

The observed data are from a balanced panel {yit, xit : 1 ≤ i ≤ n, : 1 ≤ t ≤ T}. The

subscript i indexes the individual and the subscript t indexes time. The dependent variable

yit is scalar. The threshold variables qit = (q1it, q2it) can be elements or functions of the

vector xit of exogenous variables and must have continuous distributions. The equation

of interest is

yit = µi + β′1xit1(q1it ≤ γ1, q2it ≤ γ2) + β′2xit1(q1it ≤ γ1, q2it > γ2)

+β′3xit1(q1it > γ1, q2it ≤ γ2) + β′4xit1(q1it > γ1, q2it > γ2) + eit, (1)

where the threshold parameters γ = (γ1, γ2) ∈ Γ, where Γ = [γ1, γ1] × [γ2, γ2] is a strict

subsets of the support of qit. These parameters are unknown and need to be estimated.

β = (β1, β2, β3, β4)
′ are the slope parameters and βi 6= βj for some i 6= j; µi is the

individual specific effect assumed to be fixed and eit is the error term assumed to be

independent and identically distributed (iid). The analysis is asymptotic with fixed T as

n grows to infinity.

Another compact representation of (1) is to set

3



xit(γ) =


xit1(q1it ≤ γ1, q2it ≤ γ2)

xit1(q1it ≤ γ1, q2it > γ2)

xit1(q1it > γ1, q2it ≤ γ2)

xit1(q1it > γ1, q2it > γ2)

 ;

then, equation (1) equals

yit = µi + β′xit(γ) + eit. (2)

2.1 Estimation

One traditional method for eliminating the individual fixed specific effect µi is to remove

individual-specific means. While straightforward in linear models, threshold specification

(2) calls for more careful treatment. Similar to Hansen (1999) in a panel data model with

one threshold variable, we take averages over the time index t, which produces

yi = µi + β′xi(γ) + ei, (3)

where yi = T−1
∑T

t=1 yit, ei = T−1
∑T

t=1 eit and

xi(γ) =
1

T

T∑
t=1

xit(γ)

=


1
T

∑T
t=1 xit1(q1it ≤ γ1, q2it ≤ γ2)

1
T

∑T
t=1 xit1(q1it ≤ γ1, q2it > γ2)

1
T

∑T
t=1 xit1(q1it > γ1, q2it ≤ γ2)

1
T

∑T
t=1 xit1(q1it > γ1, q2it > γ2)

 ,

and taking the difference between (2) and (3) yields

y∗it = β′x∗it(γ) + e∗it, (4)

where y∗it = yit − yi, x∗it(γ) = xit(γ)− xi(γ) and e∗it = eit − ei.
Let

4



y∗i =


y∗i2
...

y∗iT

 , x∗i (γ) =


x∗i2(γ)

...

x∗iT (γ)

 , e∗i =


e∗i2
...

e∗iT


denote the stacked data and errors for an individual, with one time period deleted, and

let

Y ∗ =



y∗1
...

y∗i
...

y∗n


, X∗(γ) =



x∗1(γ)
...

x∗i (γ)
...

x∗n(γ)


, e∗ =



e∗1
...

e∗i
...

e∗n


.

Using this notation, (4) is equivalent to

Y ∗ = X∗(γ)β + e∗, (5)

and given γ, the conditional least squares (CLS) estimator for β is

β̂(γ) = (X∗(γ)′X∗(γ))−1X∗(γ)′Y ∗; (6)

thus, the vector of regression residuals is

ê∗(γ) = Y ∗ −X∗(γ)β(γ), (7)

and the sum of squared errors is

S(γ) = ê∗(γ)′ê∗(γ). (8)

Chan (1993) and Hansen (1999) recommend the estimation of γ by conditional least

squares in the context of a model with one threshold variable, and Chen et al. (2012) in

the context of a model with two threshold variables. Thus, we define the estimator of γ

as the value that minimizes
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γ̂ = argmin
γ

S(γ); (9)

and once γ̂ is obtained, the slope coefficient estimate is β̂ = β̂(γ̂). The residual vector is

e∗(γ̂) and the residual variance

σ̂2 =
1

n(T − 1)
ê∗(γ̂)′ê∗(γ̂).

The criterion function (8) is not smooth, so conventional gradient algorithms are not

suitable for its maximization. Hansen (1999, 2000) suggests using a grid search over the

threshold variable space in a model with one threshold variable; that is, constructing

an evenly spaced grid on the empirical support of the threshold variable. While these

estimates might seem desirable in theory, their implementation might be somewhat cum-

bersome in practice for the case of the model with two threshold variables. In a model with

one threshold variable and two threshold parameters, Hansen (1999) argues that the se-

quential estimation is found to be consistent in the multiple change-point model (Chong,

2003; Bai, 1997); thus, the same logic would seem to apply to the multiple threshold

model.

Following these ideas, we suggest estimating model (5) sequentially. The method works

as follows. In the first stage, we can consistently estimate one of the threshold parameters,

for example γ1, across the whole sample; to that end, initially we assume that β1 = β2

and β3 = β4, which means that we have two regimes instead of four. Then, we obtain γ̂1

by minimizing

γ̂1 = argmin
γ1

S(γ1); (10)

fixing the first-stage estimate γ̂1, within four subsamples, the second-stage estimate of γ2

is

γ̂r2 = argmin
γ2

S(γ̂1, γ2). (11)

In the model with time as a threshold variable and two breaks, Bai (1997) has shown

that the second break (threshold parameter) estimate is asymptotically efficient, but the

first break estimate is not. Hansen (1999) argues that this is because the estimate γ̂1 was

obtained from a concentrated function contaminated by the presence of a neglected regime.

Hansen (1999) proposes that the asymptotic efficiency of the first threshold estimate can

be improved by a third-stage estimation. Thus, by fixing the second-stage estimate γ̂r2,
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the refinement first threshold estimate is

γ̂r1 = argmin
γ1

S(γ1, γ̂2). (12)

Bai (1997) shows that the refinement estimator γ̂r1 is asymptotically efficient in the

change-point model; Hansen (1999) argues that a similar result is expected to hold in

threshold regression with one threshold variable and two threshold parameters. Likewise,

we expect a similar results to hold in the model with two threshold variables. Thus, once

γ̂r = (γ̂r1, γ̂
r
2) is obtained, the slope coefficient estimate is β̂ = β̂(γ̂r).

2.2 Inference

In the context of threshold autoregression estimation, Chan (1993) establishes that the

limiting distribution of the threshold parameter estimator converges to a functional of a

compound Poisson process at a rate n. However, the distribution is too complicated to

be used in practice due to the dependence on the nuisance parameters. Hansen (2000)

developed an asymptotic distribution for the threshold parameter estimate based on the

small threshold effect assumption, in which the threshold model becomes the linear model

asymptotically. The limiting distribution converges to a functional of a two-sided Brow-

nian motion process at a rate n1−2α with 0 < α < 1/2. The distribution does not depend

on the nuisance parameters; thus, the distribution can be available in a simple closed

form.

Chen et al. (2012) adopt the approach of Hansen (2000) in a time series model with two

threshold variables, finding both consistency and that the joint distribution of the least

squares estimator γ̂ converges to a functional of a two-sided Brownian motion process. We

expect that these results will also hold in the static panel data model with two threshold

variables since our assumptions meet the asymptotic theory of Hansen (1999) and Chen

et al. (2012).

Hansen (2000) argues that the best way to form confidence intervals for the threshold

is to form the non-rejection region using the likelihood ratio statistic for testing on γ̂. To

test hypothesis H0 : γ = γ0, the likelihood ratio test is to reject large values of LR(γ0)

where

LR(γ) = n(T − 1)
S(γ)− S(γ̂)

S(γ̂)
. (13)

Hansen (1996) shows the LR(γ) converges in distribution to ξ as n → ∞, where ξ

is a random variable with distribution function P (ξ ≤ z) = (1 − exp(−z/2))2. Thus,

7



the asymptotic distribution of the likelihood ratio statistic is non-standard, yet free of

nuisance parameters. Since the asymptotic distribution is pivotal, it may be used to form

valid asymptotic confidence intervals. Furthermore, the distribution function ξ has the

inverse

c(a) = −2 ln
(
1−
√

1− a
)
, (14)

where a is the significance level. To form an asymptotic confidence interval for γ, the non-

rejection region of confidence level 1− a is the set of values of γ, such that LR(γ) ≤ c(a),

where LR(γ) is defined in (13) and c(a) is defined in (14). The easiest way to find this is

by plotting LR(γ) against γ and drawing a flat line at c(a).

Bai (1997) shows (for the analogous case of change-point models) that the refinement

estimators have the same asymptotic distributions as the threshold estimate in a single

threshold model. Based on that finding, in a static panel data model with one threshold

variable and two threshold parameters, Hansen (1999) suggests that confidence intervals

can be constructed in the same way as the threshold estimate in a single threshold model.

We expect the same results to hold in our model with two threshold variables and two

threshold parameters.

For γ̂r2, let

LRr
2(γ2) = n(T − 1)

S(γ̂r1, γ2)− S(γ̂r1, γ̂
r
2)

S(γ̂r1, γ̂
r
2)

, (15)

and for γ̂r1, let

LRr
1(γ1) = n(T − 1)

S(γ1, γ̂
r
2)− S(γ̂r1, γ̂

r
2)

S(γ̂r1, γ̂
r
2)

; (16)

then, the asymptotic (1−a) percent confidence intervals for γ1 and γ2 are the set of values

of γ1 and γ2 such that LRr
2(γ1) ≤ c(a) and LRr

1(γ2) ≤ c(a), respectively.

In relation to the slope parameters β, as is standard in threshold models, the model

(4) conditional on γ is linear. Thus, the least squares estimation of β is consistent and

asymptotically normally distributed, as n tends to infinity and T is fixed, since we assume

that the regressors and the threshold variables are exogenous variables.

2.3 Testing for the threshold

Following Chen et al. (2012), in order to determine the number of regimes, we first consider

the null hypothesis of no threshold effect:
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H0 : β1 = β2 = β3 = β4; (17)

under H0 the thresholds γ1 and γ2 are not identified, so classical tests have non-standard

distributions. The fixed effect equation (4) belongs to the class of models considered by

Hansen (1996), who suggests a bootstrap to simulate the asymptotic distribution of the

likelihood ratio test. So, under the null hypothesis of no threshold, the model is

yit = µi + β′1xit + eit, (18)

and after the fixed effect transformation is made, we have

y∗it = β′1x
∗
it + e∗it. (19)

The regression parameter β1 is estimated by least squares (LS), yielding estimate β̃1,

residuals ẽ∗it and sum of squared errors S0 = ẽ∗it
′ẽ∗it. The likelihood ratio test statistics of

H0 is defined as

F = n(T − 1)(S0 − S(γ̂))/S(γ̂). (20)

Rejection of the null hypothesis suggests the existence of more than one regime. Hansen

(1999) argues that the asymptotic distribution of F is non-standard, and strictly dom-

inates the χ2
k distribution, which appears to depend in general upon moments of the

sample and thus critical values cannot be tabulated. Hansen (1996) shows that a boot-

strap procedure attains the first-order asymptotic distribution, so p-values constructed

from the bootstrap are asymptotically valid. As such, the asymptotic distribution can be

approximated by the following bootstrap procedure.

Similar to Hansen (1999), take the regression residuals ê∗it and group them by individual:

ê∗i = (ê∗i1, ê
∗
i2, . . . , ê

∗
iT ). Treat the sample {ê∗1, ê∗2, . . . , ê∗n} as the empirical distribution to be

used for bootstrapping. Draw (with replacement) a sample of size n from the empirical

distribution and use these errors to create a bootstrap sample under H0. Using the

bootstrap sample, estimate the model under the null (19) and alternative (4), and calculate

the bootstrap value of the likelihood ratio statistic F (20). Repeat this procedure a large

number of times to calculate the percentage of draws for which the simulated statistic

exceeds the actual value. The null is rejected if this p-value is smaller than the desired

critical value.

Rejection of the null hypothesis implies the presence of threshold effects. To determine

the number of regimes, we follow the general-to-specific approach of Chen et al. (2012).
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First, we test a three-regime model against a four-regime model. We test each of the

following hypotheses H0: βa = βb for a 6= b and a, b ∈ {1, 2, 3, 4} against the alternative

hypothesis H1 corresponding to four regimes. A likelihood ratio test used to test these

pairs of hypotheses is

F (γ̂) = n(T − 1)(S0(γ̂)− S1(γ̂))/S1(γ̂), (21)

where S0(γ̂) is the residual sum of squares under H0 and S1(γ̂) is the residual sum of

squares under H1. We will draw the bootstrap errors from the residuals calculated un-

der the alternative hypothesis, which should be the residuals from LS estimation under

the alternative model (4). The dependent variable should be generated under the null

hypothesis which depends on the parameter values β̂ and γ̂, the LS estimates under the

null.

Rejection of each of the null hypotheses H0: βa = βb for a 6= b and a, b ∈ {1, 2, 3, 4}
implies the existence of four regimes. If any one of them is accepted, then there are less

than four regimes, and following Chen et al. (2012), we proceed to test a two-regime

model against a three-regime model. For instance, if H0: β1 = β2 is accepted, we test the

following three hypotheses H0: β1 = β2 = β3, H0: β1 = β2 = β4 and H0: β1 = β2 and

β3 = β4. The alternative hypothesis is H1: there are three regimes with β1 = β2. If all the

above null hypotheses are rejected, we conclude that there are three regimes; otherwise,

we conclude that the model has two regimes.

3 Dynamic Panel Data Model

Model (1) is a static panel data model. In some applications there may be dynamics; that

is, they may allow lagged lagged dependent variables as regressors. The dynamic model

with two threshold variables can take the form

yit = µi + β1yit−11(q1it ≤ γ1, q2it ≤ γ2) + β2yit−11(q1it ≤ γ1, q2it > γ2)

+β3yit−11(q1it > γ1, q2it ≤ γ2) + β4yit−11(q1it > γ1, q2it > γ2) + eit, (22)

where the threshold variables qit = (q1it, q2it) may be elements or functions of the vector

xit of exogenous variables and must have continuous distributions. For simplicity, we do

not consider other exogenous regressors; the model may be extended to a model with

exogenous regressors, but at the cost of a more cumbersome notation.

The previous techniques cannot be used in the dynamic model (22), because any trans-
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formation to eliminate the individual fixed specific effect will introduce a correlation be-

tween the transformed regressors and the transformed error term in the model. In this

context Ramı́rez-Rondán (2015) develops econometric techniques to estimate a dynamic

panel model with one threshold variable; in this section we extend that work using model

(22) with two threshold variables.

3.1 Estimation

Similar to Ramı́rez-Rondán (2015), we propose a maximum likelihood approach to esti-

mate the dynamic panel model with two threshold variables; to this end, the error term

must be assumed to be independently identically normal distributed with mean 0 and

finite variance σ2
u. We also assume that the initial values, yi0 and xi0, are observable.

When the individual specific effects, µi, are fixed, the least-squared dummy variable

(LSDV) estimator of the linear version of model (22) leads to an inconsistency in the

slope parameter estimator as n grows to infinity for a fixed T (Nickell, 1981). If the errors

uit are normally distributed, then the LSDV are also the maximum likelihood estimator

(MLE), conditional on the initial observation yi0, the MLE also leads to an inconsistency

in the slope parameter estimator, due to the classical incidental parameter problem in

which the number of parameters increases with the number of observations (Lancaster,

2000).

To address the incidental parameter problem we take the first difference to eliminate

the individual specific effect in model (22), obtaining

yit − yit−1 = β1(yit−11(q1it ≤ γ1, q2it ≤ γ2)− yit−21(q1it−1 ≤ γ1, q2it−1 ≤ γ2))

+β2(yit−11(q1it ≤ γ1, q2it > γ2)− yit−21(q1it−1 ≤ γ1, q2it−1 > γ2))

+β3(yit−11(q1it > γ1, q2it ≤ γ2)− yit−21(q1it−1 > γ1, q2it−1 ≤ γ2))

+β4(yit−11(q1it > γ1, q2it > γ2)− yit−21(q1it−1 > γ1, q2it−1 > γ2))

+eit − eit−1; (23)

to simplify notation, let ∆yit ≡ yit − yit−1,

∆y∗it−1(γ) =


yit−11(q1it ≤ γ1, q2it ≤ γ2)− yit−21(q1it−1 ≤ γ1, q2it−1 ≤ γ2)

yit−11(q1it ≤ γ1, q2it > γ2)− yit−21(q1it−1 ≤ γ1, q2it−1 > γ2)

yit−11(q1it > γ1, q2it ≤ γ2)− yit−21(q1it−1 > γ1, q2it−1 ≤ γ2)

yit−11(q1it > γ1, q2it > γ2)− yit−21(q1it−1 > γ1, q2it−1 > γ2)

 ,
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and ∆eit ≡ eit − eit−1. Then equation (23) becomes

∆yit = β′∆y∗it−1(γ) + ∆eit; (24)

also, note that for t = 2, 3, . . . , T , (24) is well defined, but not for ∆yi1 because ∆y∗i0(γ)

is missing; that is, yi,−1 is not available.

When the time period is fixed, or the panel covers only a short period, the MLE of the

dynamic linear panel model depends on the initial condition and the assumption on the

initial condition plays a crucial role in devising consistent estimates. Anderson and Hsiao

(1981) show the assumptions under which the MLE leads to consistent or inconsistent

estimates of the slope parameter. This problem arises because the covariance matrix

depends on the initial conditions; if T grows to infinity the initial condition problem

disappears.

By continuous substitution of equation (24) for the first period, ∆yi1, the resulting

equation has an intractable form and depends on the structural parameters. Moreover, it

is clear that equation (24) does not depend on the individual specific fixed effect for all t.

Thus, to address the initial condition problem, we assume the process has started from a

finite period in the past, namely for given values of yi,−1 such that

E(∆yi1|xi) = δ,

where xi = (xi0, xi1, ..., xiT )′. This assumption imposes the restriction that the expected

changes in the initial endowments are the same across all individuals, though this does not

necessarily require that the process has reached stationary. It is important to note that

the “small threshold effect” assumption specifies that the difference in slopes decreases

as the sample size increases, i.e. the threshold model becomes the linear model as the

sample size grows. Thus, E(∆yi1|xi) = δ can be seen as an approximation for a large

number of individuals.

Hence, the marginal distribution of ∆yi1 conditional on xi can be written as

∆yi1 = δ + υi1, (25)

where υi1 is the error term in the first period. Under the exogeneity of xit and by

construction, E(υi1|xi) = 0, Eυ2i1 = σ2
υ, and we assume Cov(υi1,∆ei2|xit) = −σ2

u and

Cov(υi1,∆eit|xit) = 0 for t = 3, ..., T , i = 1, ..., n; that is, we assume homoscedasticity

across regimes. The auxiliary external parameter, δ, can be a function of the structural

parameters, but similarly to Hsiao et al. (2002) we treat the external parameters as free

parameters in the sense they do not depend on the structural parameters.
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Maximum Likelihood Function

Let ∆yi = (∆yi1,∆yi2, ...,∆yiT )′ and ∆ei = (υi1,∆ei2, ...,∆eiT )′. The Jacobian of the

transformation from ∆ei to ∆yi is unity and the joint probability distribution function of

∆yi and ∆ei are therefore the same. The covariance matrix of ∆ei has the form

Ω = σ2
u



ω −1 0 . . . 0

−1 2 −1

0 −1 2
...

. . . −1

0 −1 2


= σ2

uΩ
?, (26)

where ω = σ2
υ/σ

2
u.

Let βδ = (δ, β′)′ and define the matrix ∆yi,−1(γ) as follows

∆yi,−1(γ) =



1 0

0 ∆y∗i1(γ)

0 ∆y∗i2(γ)
...

...

0 ∆y∗iT−1(γ)


;

and, under the assumption that eit is independent normal, the joint probability distribu-

tion function of ∆yi conditional on xi is given by

lnL(βδ, γ, σ
2
u, ω) = −nT

2
ln(2π)− n

2
ln |Ω(γ)|

− 1

2

n∑
i=1

[(∆yi −∆yi,−1(γ)βδ)
′Ω−1(∆yi −∆yi,−1(γ)βδ)]. (27)

The likelihood function (27) is well defined, depends on a fixed number of parameters.

The only unknown element of Ω? is ω and it can be shown that |Ω| = σ2T
u [1 + T (ω − 1)]

(see Hsiao et al., 2002). For this maximization, note that γ is assumed to be restricted

to a bounded set Γ = [γ; γ] = [γ1, γ1] × [γ2, γ2]. Note that since this set is also closed, it

is compact on IR2. Then, the MLE (δ̂, β̂, γ̂, σ̂2
u, ω̂) are the values that globally maximize

lnL(δ, β, γ, σ2
u, ω).
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ML Estimators of δ, β, σ2
u and ω for a given γ

We start the estimation procedure by considering a fixed γ. Then, for a given γ, taking

the first-order partial derivatives with respect to βδ, σ
2
u and ω and setting the partial

derivatives equal to zero gives2

β̂δ(γ) =

( n∑
i=1

∆yi,−1(γ)′Ω̂?(γ)−1∆yi,−1(γ)

)−1( n∑
i=1

∆yi,−1(γ)′Ω̂?(γ)−1∆yi

)
, (28)

σ̂2
u(γ) =

1

nT

n∑
i=1

[(∆yi −∆yi,−1(γ)β̂δ(γ))′Ω̂?(γ)−1(∆yi −∆yi,−1(γ)β̂δ(γ))], (29)

and

ω̂(γ) =
T − 1

T
+

1

σ̂2
u(γ)nT 2

n∑
i=1

[(∆yi −∆yi,−1(γ)β̂δ(γ))′Φ(∆yi −∆yi,−1(γ)β̂δ(γ))], (30)

where

Φ =


T 2 T (T − 1) T (T − 2) . . . T

T (T − 1) (T − 1)2 (T − 1)(T − 2) . . . (T − 1)
...

...
... . . .

...

T (T − 1) (T − 2) . . . 1

 .
Note that the ML slope estimators depend on σ2

u and ω, and these in turn depend on

the slope parameters; thus, in order to compute the MLE δ̂(γ), β̂(γ), σ̂2
u(γ) and ω̂(γ) for a

given γ, we can use a grid search procedure whereby the MLE are computed for a number

of values of ω(γ) > 1 − 1/T at a given γ, and then choosing that value of ω(γ), which

globally maximizes the log-likelihood function (27).

ML Estimator for the Threshold Parameter γ

The ML estimators for a given γ are β̂δ(γ) = (δ̂(γ), β̂(γ)), σ̂2
u(γ) and ω̂(γ). Therefore

the threshold parameters, γ = (γ1, γ2), are estimated by maximizing the concentrated

log-likelihood function (31),

2The formulas for the first-order partial derivatives with respect to βδ, σ
2
u and ω are similar to Ramı́rez-

Rondán (2015).
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lnL(γ) = −nT
2

ln(2π)− n

2
ln |Ω̂(γ)|

−1

2

n∑
i=1

(∆yi −∆yi,−1(γ)β̂δ(γ))′Ω̂(γ)−1(∆yi −∆yi,−1(γ)β̂δ(γ))

= −nT
2

ln(2π)− n

2
ln |Ω̂(γ)| − 1

2

n∑
i=1

∆êi(γ)′Ω̂(γ)−1∆êi(γ). (31)

The criterion function (31) is not smooth; therefore, similarly to the static model, we

also suggest estimating the model (22) sequentially. The method works as follows. In the

first stage, we first consistently estimate one of the threshold parameters, for example γ1,

across the whole sample; to this end we initially assume that β1 = β2 and β3 = β4 (or set

γ2 at any value), which means that we have two regimes instead of four. Thus, we obtain

γ̂1 by maximizing

γ̂1 = argmax
γ1

lnL(γ1); (32)

fixing the first-stage estimate γ̂1, within both subsamples, the refinement second-stage

estimate of γ2 is

γ̂r2 = argmax
γ2

lnL(γ̂1, γ2); (33)

similarly, fixing the second-stage estimate γ̂r2, the refinement first threshold estimate is

γ̂r1 = argmax
γ1

lnL(γ1, γ̂2). (34)

ML Estimators for the Slope Parameters β

Once γ̂ = (γ̂1, γ̂2) are obtained by maximizing (31), the ML estimators of slope parameters

are β̂ = β̂(γ̂). That is, once the refinement estimator γ̂r = (γ̂r1, γ̂
r
2) are obtained, the slope

coefficient estimates are β̂ = β̂(γ̂r). Also, the ML estimators of the remaining parameters

that involve the estimation method are δ̂ = δ̂(γ̂r), σ̂2
u = σ̂2

u(γ̂
r) and ω̂ = ω̂(γ̂r).

The estimated covariance matrix for the ML slope estimators β̂δ = (δ̂, β̂′)′ is
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Cov

[
δ̂

β̂

]
=

(
n∑
i=1

∆yi,−1(γ̂)′Ω̂−1∆yi,−1(γ̂)

)−1

= σ̂2
u

(
n∑
i=1

∆yi,−1(γ̂)′Ω̂?−1∆yi,−1(γ̂)

)−1
;

or, under a suitable partition of the matrix ∆yi,−1(γ̂), the estimated covariance matrix

for the ML slope estimators β̂ = (β̂1, β̂2, β̂3, β̂4)
′ is

Cov
(
β̂
)

= σ̂2
u

(
n∑
i=1

∆y◦i,−1(γ̂)′Ω̂?−1∆y◦i,−1(γ̂)

)−1
,

where

∆y◦i,−1(γ) =



0

∆y∗i1(γ)

∆y∗i2(γ)
...

∆y∗iT−1(γ)


.

3.2 Inference

Similar to the static model, in the dynamic panel data model we can construct confidence

interval for γ1 and γ2 as follows. For γ̂r2 let

LRr
2(γ2) = nT

S(γ̂r1, γ2)− S(γ̂r1, γ̂
r
2)

S(γ̂r1, γ̂
r
2)

, (35)

where S(γ) =
∑n

i=1 ∆êi(γ)′Ω̂?−1∆êi(γ), that is called the minimum distance estimator.

For γ̂r1 let

LRr
1(γ1) = nT

S(γ1, γ̂
r
2)− S(γ̂r1, γ̂

r
2)

S(γ̂r1, γ̂
r
2)

, (36)

and the asymptotic (1− a) percent confidence intervals for γ1 and γ2 are the set of values

of γ1 and γ2 such that LRr
2(γ1) ≤ c(a) and LRr

1(γ2) ≤ c(a), respectively.

In relation to the slope parameters, β, the likelihood function (31) is well defined; it

depends on a fixed number of parameters, and satisfies the usual regularity conditions

conditional on γ. Therefore, the MLE of β is consistent and asymptotically normally

distributed, as n tends to infinity and T is fixed.
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As regards consistency of the maximum likelihood threshold estimates, the proposed

dynamic panel model meets the assumptions of the asymptotic theory developed by

Hansen (2000), Chen et al. (2012) and Ramı́rez-Rondán (2015); thus, by following similar

arguments of aforementioned studies, the consistency of the threshold estimates can be

proven.

3.3 Testing for the threshold

Due to the time dependence of the dynamic model, following Kapetanios (2008) we con-

sider resampling with replacement only in the cross-sectional dimension, as in the static

model case. The parametric bootstrap can be implemented by resampling the “pairs”

(∆yi,∆yi−), where ∆yi = (∆yi1,∆yi2, ...,∆yiT )′ and ∆yi− = (0,∆yi1, ...,∆yiT−1)
′, which

can be implemented similarly with the residuals of ∆ei = (υi1,∆ei2, ...,∆eiT )′.

Thus, similar to test for the threshold in the static model, we first consider the null

hypothesis of no threshold effect:

H0 : β1 = β2 = β3 = β4, (37)

under H0 the thresholds γ1 and γ2 are not identified, so classical tests have non-standard

distributions. The first difference equation (24) fall in the class of models considered by

Hansen (1996) who suggested a bootstrap to simulate the asymptotic distribution of the

likelihood ratio test. Under the null hypothesis of no threshold, the model is

yit = µi + β1yit−1 + eit, (38)

after the first difference transformation is made, we have

∆yit = β1∆yit−1 + ∆eit, (39)

and the model in the first period is ∆y1 = δ + υi1.
3

The regression parameters β1 and δ are estimated by maximum likelihood (ML), yield-

ing estimate β̃1, δ̃, ω̃, residuals ∆ẽi = (υ̃i1,∆ẽi2, ...,∆ẽiT )′ and the minimum distance

estimator S0 = ∆ẽ∗i
′Ω̃?−1∆ẽ∗i . Hence, the likelihood ratio test statistics of H0 is defined

as

F = n(T − 1)(S0 − S(γ̂))/S(γ̂). (40)

3Note that the equation in the first period is needed for consistency of the ML estimators (for the
dynamic linear panel model estimation see Hsiao et al., 2002).
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Rejection of the null hypothesis suggests the existence of more than one regime. Similar

to the static model, take the regression residuals υ̂i1 and ∆êit and group them by individ-

ual: ∆êi = (υ̂i1,∆êi2, . . . ,∆êiT ). Treat the sample {∆ê1,∆ê2, . . . ,∆ên} as the empirical

distribution to be used for bootstrapping. Draw (with replacement) a sample of size n

from the empirical distribution and use these errors to create a bootstrap sample under

H0. Using the bootstrap sample, estimate the model under the null (39) and alternative

(24) and calculate the bootstrap value of the likelihood ratio statistic F (40).

Rejection of the null hypothesis implies the presence of threshold effects. To determine

the number of regimes, we follow again the general-to-specific approach of Chen et al.

(2012). First, we test a three-regime model against a four-regime model. We test each

of the following hypotheses H0: βa = βb for a 6= b and a, b ∈ {1, 2, 3, 4} against the

alternative hypothesis H1: there are four regimes. A likelihood ratio test used to test

these pairs of hypotheses is

F (γ̂) = n(T − 1)(S0(γ̂)− S1(γ̂))/S1(γ̂), (41)

where S0(γ̂) is the minimum distance estimator under H0 and S1(γ̂) is the minimum

distance estimator under H1.

We will draw the bootstrap errors from the residuals calculated under the alterna-

tive hypothesis, which should be the residuals from ML estimation under the alternative

model (24). The dependent variable should be generated under the null hypothesis which

depends on the parameter values β̂, δ̂, ω̂ and γ̂, the ML estimates under the null. The

next steps are the same as the procedure in the static panel model.

4 Monte Carlo Experiments

4.1 Models

We use two models: the first model is a static panel data and the second model is a

dynamic panel data. Moreover, we construct an exogenous variable as a function of the

two threshold variables. Then we use the following models to generate yit,

yit = µi + β1xit1(q1it ≤ γ1, q2it ≤ γ2) + β2xit1(q1it ≤ γ1, q2it > γ2)

+β3xit1(q1it > γ1, q2it ≤ γ2) + β4xit1(q1it > γ1, q2it > γ2) + eit, (42)

and
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yit = µi + β1yit−11(q1it ≤ γ1, q2it ≤ γ2) + β2yit−11(q1it ≤ γ1, q2it > γ2)

+β3yit−11(q1it > γ1, q2it ≤ γ2) + β4yit−11(q1it > γ1, q2it > γ2) + eit. (43)

We generate the threshold variables as q1it ∼ N(1/2, 1) and q2it ∼ N(3/2, 1) + 0.3q1it,

the exogenous variable as xit ∼ N(−1/2, 1) + 0.4q1it − 0.3q2it, and the error term as

eit ∼ N(0, 1). The variable yit in the static model follows equation (42); while in the

dynamic models, yit follows equation (43), and it is generated from t = −10 to t = T ,

and then we discard the first 10 observations by using the observations t = 0 through T

for estimation (we also set yi,−10 = 0).

4.2 Individual Fixed Effect Construction

For each model, we consider two designs to construct the individual fixed effect correlated

with the exogenous threshold variable; each design considers different sets of the structural

parameters. The two designs for generating µi ensures that the random effects slope

estimates are inconsistent due to the correlation that exists between the individual specific

effects and the explanatory variables qit.

Design 1

The individual effects, µi, are generated for the static panel model as

µi = ui + T−1
T∑
t=1

q2it, ui ∼ N(2, 3),

while for the dynamic panel model as

µi = ui + (T + 11)−1
T∑

t=−10

q2it, ui ∼ N(2, 3),

and we consider these structural parameters (γ1,γ2, β1, β2, β3, β4)=(0, 2, 0.5, 1.5, -0.8,-2).

Design 2

The individual effects, µi, are generated for the static panel model as

µi = ui + T−1
T∑
t=1

[−0.7xit1(q1it ≤ γ1) + 0.4xit1(q2it > γ2)], ui ∼ N(2, 3),
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while for the dynamic panel model as

µi = ui + (T + 11)−1
T∑

t=−10

[−0.7xit1(q1it ≤ γ1) + 0.4xit1(q2it > γ2)], ui ∼ N(2, 3),

and we consider these structural parameters (γ1,γ2, β1, β2, β3, β4)=(-0.5, 1, -0.3, -1.2,

-0.7, 1.2).

4.3 Simulation results

Table 1 presents the performance of the estimators. The table shows the bias and root

mean square error of the estimators γ̂1, γ̂2, β̂1, β̂2, β̂3 and β̂4 for different choices of numbers

of individuals n and a fixed time period T = 5. It can be seen that as n increases, the bias

of the threshold parameter estimates γ̂1 and γ̂2 decreases quickly; this is consistent with

what is found in threshold models, whereby the threshold parameter converges faster (at

rate n) than the slope parameters (at rate n1/2) to the true parameters. Moreover, the

bias of the slope parameters β̂1, β̂2, β̂3 and β̂4 decreases.

Similarly, this table shows in general that as the number of individuals n increases,

the root mean square error (MRSE) of all parameter estimates decreases. Note that this

measure considers the second moments of the data; that is, the RMSE combines bias and

efficiency.

5 Investment and financing constraints

We apply the methodology to study the relationship between investment and financial

constraints. We follow the tradition of papers that investigate this relationship in a

context of panel data threshold models (Hansen, 1999; Gonzáles et al., 2005; Seo and

Shin, 2016). This literature states that If there are financial constraints, firm investment

decisions are not independent of fluctuations in internal finance such as cash flow.

Empirical studies divide firms into constrained and unconstrained groups based on a

variable that measures capital market imperfections or financial constraints. Fazzari et

al. (1988) argue that cash flow and investment are positively related only when a firm

faces constraints on external financing. They use the dividend to income ratio to divide

constrained and unconstrained firms. Since the variable dividend payments is treated as

a decision variable in Fazzari et al. (1988), it is an endogenous variable. The threshold

variable should be an exogenous indicator of a firm’s access to external financing. Hansen
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Table 1: Performance of estimators

Bias of estimators Root mean square error

T = 5 T = 5
Model Coefficient n = 50 n = 500 n = 50 n = 500

Model (42) γ1 = 0.0 -0.009 -0.006 0.031 0.002
Design 1 γ2 = 2.0 -0.006 0.000 0.060 0.005

β1 = 0.5 0.001 0.001 0.120 0.040
β2 = 1.5 0.005 0.001 0.177 0.054
β3 = -0.8 -0.007 0.002 0.120 0.038
β4 = -2.0 -0.017 -0.001 0.121 0.037

Model (42) γ1 = -0.5 -0.012 0.007 0.046 0.006
Design 2 γ2 = 1.0 -0.006 -0.001 0.044 0.005

β1 = -0.3 0.014 0.013 0.236 0.067
β2 = -1.2 -0.004 0.002 0.161 0.048
β3 = -0.7 0.017 -0.005 0.162 0.050
β4 = 1.2 -0.004 -0.001 0.086 0.029

Model (43) γ1 = 0.0 0.006 0.002 0.209 0.078
Design 1 γ2 = 2.0 -0.012 0.005 0.254 0.127

β1 = 0.5 -0.016 -0.005 0.165 0.066
β2 = 1.5 -0.126 -0.027 0.570 0.194
β3 = -0.8 -0.005 -0.005 0.332 0.071
β4 = -2.0 0.013 0.005 0.161 0.081

Model (43) γ1 = -0.5 0.132 -0.002 0.517 0.080
Design 2 γ2 = 1.0 0.074 0.002 0.420 0.051

β1 = -0.3 -0.039 -0.007 0.273 0.037
β2 = -1.2 0.342 0.023 0.777 0.112
β3 = -0.7 0.173 0.015 0.477 0.072
β4 = 1.2 -0.064 -0.015 0.195 0.044

Note: All results are based on 1000 replications.

(1999) and Hu and Schiantarelli (1998) argue that a natural candidate is debt level, since

banks will be reluctant to lend money to debt-heavy firms.

Balance sheet conditions or growth opportunities is another important variable in dis-

tinguishing between constrained and unconstrained firms; Gonzáles et al. (2005) argue

that in firms with ample growth opportunities, internal and external finance are substi-

tutes, so their investment decisions are independent of their financial structure. However,
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firms with high information cost and limited growth opportunities face much higher costs

of external finance, so their investment decisions are more sensitive to cash flow. A vari-

able that relates growth opportunities is Tobin’s Q; Audretsch and Elston (2002) and

Kadapakkam et al. (1998) use firm size as an approximation; Gilchrist and Himmelberg

(1995) construct a proxy called fundamental Q; Gonzáles et al. (2005) use total market

value to assets; and Hubbard (1998) and Lang et al. (1996) use a measure of expected

present value of future profits.

Thus, the distinction between constrained and unconstrained firms is based on a vari-

able that measures a degree of information asymmetry or on a variable that measures

growth opportunities. In this paper we consider both of these financial constraints on the

basis of which firms are divided into four regimes; thus, we consider the debt to assets

ratio as a measure of the degree of information, and the total market value to assets ratio

as a measure of growth opportunities.4

Thus, we estimate a variation of Hansen (1999)’s model with four regimes,

Iit = µi + θ1Qit + θ2Q
2
it + θ3Q

3
it + θ4Dit + θ5QitDit (44)

+β1CFit1(Dit ≤ γ1, Qit ≤ γ2) + β2CFit1(Dit ≤ γ1, Qit > γ2)

+β3CFit1(Dit > γ1, Qit ≥ γ2) + β4CFit1(Dit > γ1, Qit > γ2) + eit,

where Iit is the investment to assets ratio, Qit is the total market value to assets ratio,

Dit is the long-term debt to assets ratio; CFit is the cash flow to assets ratio, i indexes

firms and t indexes time. Following Hansen (1999), we use a balance panel data of 565

U.S. firms from 1973 to 1987.

While model (44) is a static panel data model, most economic models also exhibit

dynamics; lagged investment captures the accelerator effect of investment, whereby past

investments have a positive effect on future investments (Aivazian et al., 2005). Thus, we

use a dynamic model by adding the lagged dependent variable as a regressor in model

(44) as follows

Iit = µi + θ1Qit + θ2Q
2
it + θ3Q

3
it + θ4Dit + θ5QitDit + θ6Iit−1 (45)

+β1CFit1(Dit ≤ γ1, Qit ≤ γ2) + β2CFit1(Dit ≤ γ1, Qit > γ2)

+β3CFit1(Dit > γ1, Qit ≥ γ2) + β4CFit1(Dit > γ1, Qit > γ2) + eit.

4Other variables used in the literature to divide constrained and unconstrained firms are dividends,
inventory investment, capital intensity, interest payment to income ratio, and liquid assets to capital
stock ratio, among others.
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First, in order to determine the number of regimes, we perform several tests, allowing

for one, two, three, and four regimes. We find that the test that rejects the null for one

regime or no threshold effects F is highly significant, with a bootstrap p-value of 0.007

and 0.003 for the static and dynamic panel threshold models, respectively.

The test statistics F (γ̂) for different null hypothesis along with their bootstrap5 p-

values are shown in Table 2. When we perform the null for three regimes, we reject the

null in all cases, except when β1 = β4 since this statistic has a p-value larger than 0.1.

Next, we proceed to test the null of two regimes against the alternative for three regimes

with β1 = β4; the results indicate that we cannot reject the null in all cases, which means

that the investment can be approximated using a three-regime model.

Table 2: Tests for number of regimes

H1: 4 regimes β1 6= β2 6= β3 6= β4
H0: 3 regimes β1 = β2 β1 = β3 β1 = β4 β2 = β3 β2 = β4 β3 = β4

Static model F (γ̂) 31.3 18.5 0.6 42.2 19.5 24.0
p-value 0.000 0.007 0.503 0.000 0.013 0.007

Dynamic model F (γ̂) 25.8 15.3 1.2 35.1 13.8 26.0
p-value 0.000 0.013 0.280 0.000 0.010 0.010

H1: 3 regimes β1 = β4 6= β2 6= β3
H0: 2 regimes β1 = β4 = β2 β1 = β4 = β3 β1 = β4 and β2 = β3

Static model F (γ̂) 36.1 36.4 43.3
p-value 0.000 0.003 0.000

Dynamic model F (γ̂) 27.1 34.0 34.6
p-value 0.000 0.007 0.003

The point estimate of the thresholds and their asymptotic 95 percent confidence inter-

vals are reported in Table 3. The estimate of the threshold level of debt and threshold

level of market value are 0.012 and 3.035 in the static panel model, and the corresponding

estimates for the dynamic panel model are 0.012 and 2.968.

Thus, the four classes of regimes indicated by the point estimates are those with “low

debt and limited growth opportunities” for debt lower than 0.012 percent and market

value lower than 3.035 (or 2.968); a “low debt and ample growth opportunities” for debt

lower that 0.012 and market value higher than 3.035 (or 2.968); a “high debt and limited

growth opportunities” for debt higher that 0.012 and market value lower than 3.035 (or

2.968), and a “high debt and ample growth opportunities” for debt higher that 0.012 and

market value higher than 3.035 (or 2.968). The asymptotic confidence intervals for the

5300 bootstrap replications were used for each of the bootstrap tests.
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threshold level of market value are not tight, indicating considerable uncertainty about

the nature of this division.

More information can be discerned about the threshold estimates from plots of the

concentrated likelihood ratio function LR(γ). Figures 1 and 2 show the likelihood ratio

function, which is computed when estimating a threshold model. The threshold estimates

are the point where the LR(γ) equals zero, which occur at γ̂1 = 0.012 and γ̂2 = 3.035,

and at γ̂1 = 0.012 and γ̂2 = 2.968 in the static and dynamic panel models, respectively.

Table 3: Asymptotic confidence interval in threshold models

Static model Dynamic model

Threshold 95% confidence Threshold 95% confidence
estimate (%) interval estimate (%) interval

γ̂1 0.012 [0.004, 0.014] 0.012 [0.004, 0.016]
γ̂2 3.035 [2.754, 4.324] 2.968 [2.754, 3.590]

Note: Asymptotic critical values are reported in Hansen (2000).

Figure 1: Confidence interval construction for thresholds in static model
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The coefficients of primary interest are those expressing the interaction between invest-

ment and cash flow. The point estimates in Table 4 suggest that the investment decisions

of firms under the “high debt and limited growth opportunities” - that is, firms with a

high degree of financial constraints - are the most sensitive to internal finance in compar-

ison with the other regimes. In contrast, for firms in a regime of “low debt and ample

growth opportunities” - that is, firms that face no financial restrictions - cash flow is not

related to investment decisions. Note that cash flow coefficient is significant in the other

regime (“high debt and ample growth opportunities” or “low debt and limited growth op-

portunities”) but lower than in the “high debt and limited growth opportunities” regime.

24



Figure 2: Confidence interval construction for thresholds in dynamic model
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Table 4: Estimation results - Dependent variable: Investment (Iit)

Static model Dynamic model

Regressor OLS estimate OLS SE ML estimate ML SE

Qit 0.013 0.002 0.012 0.001
Q2
it/103 -0.372 0.060 -0.387 0.046

Q3
it/106 2.684 0.581 3.176 0.500

Dit 0.041 0.006 0.031 0.004
QitDit -0.003 0.001 -0.002 0.001
Iit−1 – – 0.237 0.011
CFit1(Dit ≤ γ̂1, Qit > γ̂2) -0.010 0.012 -0.007 0.007
CFit[1(Dit > γ̂1, Qit > γ̂2) or 0.035 0.010 0.031 0.006

1(Dit ≤ γ̂1, Qit ≤ γ̂2)]
CFit1(Dit > γ̂1, Qit ≤ γ̂2) 0.069 0.009 0.063 0.006

Note: γ̂1 = 0.012 and γ̂2 = 3.035 are the estimated values for the static model, while γ̂1 = 0.012

and γ̂2 = 2.968 are the estimated values for the dynamic model.

Other empirical applications of two threshold variables can be found in Chen et al.

(2012), who use the past information of price and market turnover as threshold variables

to study the stock market in Hong Kong. Meanwhile, Chong and Yan (2014) consider

several currency crisis indictors in a framework of currency crisis models. In turn, Donayre

and Panovska (2018) study the role of inflation and unemployment in U.S. wage growth

(wage Phillips curve), using a VAR framework and providing evidence of unemployment

and inflation threshold effects on U.S. wage growth dynamics.
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6 Conclusion

In this paper we introduce econometric techniques for static and dynamic panel data

threshold models with two threshold variables. The setup is for short time period panels

and considering individual fixed effects. In short, we extend that works of Chen et al.

(2012), Hansen (1999) and Ramı́rez-Rondán (2015) to panel data models.

In the static panel data model, like Hansen (1999) with a model with one threshold

variable, we propose a least squares estimation of the threshold and slope parameters using

fixed effects transformations; while in the dynamic panel data model, like Ramı́rez-Rondán

(2015) with a model with one threshold variable, we propose a maximum likelihood esti-

mation of the threshold and slope parameters using first difference transformations.

In both panel data models, we propose to estimate the two threshold parameters se-

quentially. We also propose a method to construct confidence intervals for the threshold

estimates, similar to Hansen (2000); and a test to determine the number of regimes,

similar to Hansen (1996) and Chen et al. (2012).

In addition, we evaluate the performance of the estimators in a Monte Carlo experi-

ment for 1000 replications; for a small sample size of number of individuals n = 50 and

time periods T = 5. The threshold parameters estimated sequentially show a relatively

small bias in both the static and dynamic models. But when we increase the number of

individuals to n = 500 for the same time periods T = 5, these biases decrease quickly.

The RMSE also decreases quickly as the number of individuals increases for a fixed time

period.

The methods are applied to a 15-year sample of 565 U.S. firms to test whether financial

constraints affect investment decisions. The threshold estimates in both the static and dy-

namic panel models indicate that for firms under the worst scenario, investment decisions

are the most sensitive to cash flow; while for firms under the best scenario, investment

decisions and cash flow are not related.

Several extensions to this paper would be desirable. These include allowing for het-

eroskedasticity, endogenous variables, random effects, non-balanced data, testing random

against fixed effects, including time specific effects, considering more than two threshold

variables, and comparing the results with alternative approximations such as regression

kink.
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