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Abstract

We propose an empirical Bayesian implementation of principal components analysis

for estimating high dimensional factor models. The method is evaluated in a large

Monte Carlo study where we compare the traditional principal components estima-

tor to the our proposed empirical Bayes version. We find that for increasingly weak

factor specifications the mean squared error gain that is obtained from the empiri-

cal Bayes implementation increases. We further compare the standard and empirical

Bayes principal components estimators to their maximum likelihood counterparts and

document that in all cases the maximum likelihood estimates remain more accurate.

The methodology is illustrated for two empirical applications. One for nowcasting

macroeconomic time series and one for portfolio management. We find that the em-

pirical Bayesian principal components estimates outperform the standard principal

components estimates when compared the mean squared error for the inner product

of the macroeconomic forecast estimates. Second, in the portfolio optimization prob-

lem the covariance matrix of the stock returns estimated by empirical Bayes methods

achieve, in most cases, the highest Information Ratio and the highest expected return

for the portfolio manager.

JEL classification: C32; C43

Some keywords: Shrinkage; Principal Component Analysis; Posterior modes; Now-

casting; Portfolio Management.
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1 Introduction

Principal components analysis (PCA) is one of the main methods for estimating parame-

ters in high dimensional approximate factor models. In macroeconomics these models are

typically used for forecasting and structural analysis. Bai and Ng (2008) and Stock and

Watson (2011) provide reviews of the factor model literature.

Bai and Ng (2002) and Bai (2003) show that under strong factor assumptions the prin-

cipal components method yields consistent and asymptotically normal estimates for the

factors. Unfortunately, for many empirical applications such strong factor assumptions

are argued to be not realistic, see Onatski (2012). In fact, relaxing the strong factor as-

sumption, Onatski (2012) shows that the principal components method no longer yields

consistent estimates for the factors.

In this paper we explore an empirical Bayesian implementation of the PCA for estimat-

ing approximate factor models. In particular, using Gaussian prior densities we shrink the

loadings and factors of the principal components estimates towards common means. We

propose an easy algorithm to implement an estimator that carries out the procedure. No-

tably, the method under consideration requires only marginally more computational time

when compared to the standard principal components estimator.

The Bayesian approach to PCA has already been considered in the machine learning

literature for exact factor models with scalar variance, see Bishop (1999). Moreover, Bishop

(2006) provides a textbook treatment. He argues that Bayesian approaches to PCA may

give more accurate estimates in mean squared error sense for the inner product between

the loadings and the factors when compared to the classical principal components method.

However, no comparison between Bayesian and standard PCA exists neither for approx-

imate factor models, where the error terms do not have a scalar variance structure, nor

for weak factor settings. We expect that in exactly these settings where the noise is large

relative to the factors, the Bayesian methods perform increasingly well, see Gelman, Carlin,
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Stern, Dunson, Vehtari and Rubin (2012) for further discussion.

An alternative popular method for estimating parameters in high dimensional approxi-

mate factor models is the Maximum Likelihood Estimation (MLE), see Doz, Giannone and

Reichlin (2012), Bai and Li (2012) and Bai and Li (2015). Both Doz et al. (2012) and

Bai and Li (2015) show that maximum likelihood outperform principal components based

methods in terms of accuracy. Nevertheless, the maximum likelihood method requires more

computation time, which makes it less attractive for practitioners. An empirical Bayes im-

plementation for the maximum likelihood method was recently proposed by Koopman and

Mesters (2016). They show that the empirical Bayes implementation gives large gains in

mean squared error for the inner product estimates.

The contributions of this paper can be summarized as follows. First, we propose an

empirical Bayesian implementation of the PCA for estimating approximate factor models.

Second, we compare this alternative implementation to the standard principal components

method in a large Monte Carlo study. Here we study whether the Bayesian version of

PCA can improve the estimation accuracy. We are especially interested in the weak factor

settings. Third, we compare the empirical Bayes PCA to the Bayesian maximum likelihood

method. Here we aim at documenting whether the empirical Bayesian implementation of

the principal components method can give results that are close to the maximum likelihood

estimates.

Finally, we illustrate one empirical application for macroeconomic nowcasting and an-

other for portfolio optimization. We compare the different nowcasting methods among

them upon macroeconomic time series. Nowcasting relies on different types of data based

on real economic activities such as financial series and surveys. Because the time series are

non-synchronized, the resulting panel is an unbalanced data set. This feature makes it a

difficult task to efficiently use the information contained in various time series.

In the portfolio optimization problem, we study how these methods perform when esti-

mating the covariances of different portfolios. Here the object of interest is not the forecast,
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but the covariance matrix estimate is implied by the factor model.

Our paper yields three main results. First, the simulation exercise shows that the

empirical Bayesian PCA is more accurate than the standard PCA when comparing the

mean squared error of the inner product estimates. The gains can be as large as 98%, 64%

and 15% depending on how strong the factors are. The weaker the factors the larger the

gains implied by the empirical Bayes PCA. Also, under various disturbances’ specification

the gains stay the same. This conclusion complements Bai (2003) and Onatski (2012).

Second, within the Bayesian specifications, MLE outperform PCA. Despite that the em-

pirical Bayesian MLE achieves the lower mean squared error for the inner product estimates,

it requires much more computational time than the empirical Bayes PCA.

Third, the empirical illustrations show that the empirical Bayesian estimates outperform

the standard estimates considered in each exercise. When dealing with macroeconomic

forecasting, the empirical Bayesian methods outperfom their standard counterparts. Similar

results are obtained for the portfolio optimization problem, where largest Information Ratio

is achieved by the empirical Bayesian estimates when compared to shrinkage covariance

estimates, see Ledoit and Wolf (2004).

The remainder of the paper is organized as follow. The next section provides a brief

literature overview of factor models in macroeconomics. Section 3 discusses the approximate

factor model and explains why it is different from the exact factor model. The PCA method

and the empirical Bayes implementation of it are discussed in Section 4. Their maximum

likelihood counterparts are discussed in Section 5. The Monte Carlo study which compares

all methods is shown in Section 6 and the empirical studies are shown in Section 7. Section

8 concludes.
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2 Literature review

The seminar papers of Geweke (1989), Stock and Watson (1989) and, Bai and Ng (2002)

have placed the dynamic factor model (DFM) as the predominant framework for research

on macroeconomic forecasting using many predictors. Overall, this framework allows us to

study large panels of time series through few common factors, especially, when the data

series are strongly collinear.

The available methodologies for estimating DFMs can be divided into three groups. The

first group of estimators entails nonparametric estimation with large N using cross-sectional

averaging methods, primarily principal components. Principal components analysis (PCA)

is the most popular factor extraction method in the treatment of dynamic factors models.

PCA is appealing because of its computational advantages and asymptotic properties in

large data sets, see Bai (2003). Moreover, few improvements have been introduced in order

to enhance the estimator’s efficiency. Stock and Watson (2006) presented a handy summary

to novel PCA estimators, e.g. weighted principal components.

The second group consists of parametric models estimated in the time domain using

maximum likelihood estimation (MLE) and the Kalman filter. MLE has been used suc-

cessfully to estimate the parameters of low-dimensional DFMs. The likelihood function is

computed by the Kalman filter and the factors are estimated by the Kalman smoother.

However, there are significant computational requirements to maximize the likelihood func-

tion with many parameters. In order to deal with the dimensionality problem associated

with the likelihood function, further estimators have been implemented. The main idea

behind this methods is to use the consistent parameters implied by the first group for com-

puting the factors implied by the second one, see Doz and Reichlin (2011) and Doz et al.

(2012).

The third group relies on Bayesian methods to estimate DFMs. The main idea be-

hind these methods is the Bayesian dynamic factor analysis introduced by Aguilar and
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West (2000), Kaufman and Schumacher (2013) and, Nakajima and West (2013). Moreover,

Stock and Watson (2012) provide an empirical comparison study using Bayesian methods.

They suggest that further shrinkage estimators can potencially improve the estimation accu-

rancy. Thereby, Bayesian methods appear to be a potential tool to solve the dimensionality

problem associated with high dimensional DFMs.

3 Approximate factor model

Let yit be the observed data for the ith variable at time t. In total we have N variables

indexed by i = 1, . . . , N . Also, we have T time periods and t = 1, . . . , T . The approximate

factor model decomposes N dimensional vectors yt = (y1t, . . . , yNt)
′, for t = 1, . . . , T , as

follows

yt = Λft + εt (1)

where Λ = (λ1, . . . , λN)′ is the N × r matrix of factor loadings with r as the number of

factors, ft = (f1t, . . . , frt)
′ is the r × 1 vector of factors and εt is the N × 1 idiosyncratic

disturbance term.

The observation equation of the model (1) can also be written as

y = Λf + ε (2)

where y = (y1, . . . , yN)′ is the N × T matrix of the observed data, f = (f1, . . . , fr)
′ is

the r × T matrix of factors, and ε is the N × T disturbances matrix. This alternative

representation is convenient for our exposition along this paper.

Typically, the exact factor model assumes idiosyncratic disturbances mutually uncorre-

lated for all i = 1, . . . , N and t = 1, . . . , T . Unlike the exact factor model, we assume an

approximate factor structure by allowing some serial and cross-sectional correlation among

the idiosyncratic components, see Bai and Ng (2002).
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In approximate factor settings, the consistency and asymptotic normality of the estima-

tors when both N and T go to infinity have been recently shown by Bai (2003), Bai and Ng

(2002) and Doz et al. (2012). In order to prove these properties, Bai (2003) makes a strong

assumption related to the eigenvalues of the population covariance matrix of the data.

Specifically, it requires that the ratio between the r − th largest and the r + 1− th largest

eigenvalues increase proportionately to N . Asymptotically, this implies that the cumulative

effects of the normalized factors strongly dominate the idiosyncratic disturbances.

The strong factor assumptions is sometimes called pervasive factor assumption, and it

can be expressed as follows Λ′Λ/N = DN with elements d1N > . . . > drN > 0 along the

diagonal. Such that, DN
N−→∞−−−−→ D where D is a diagonal matrix with elements d1 > . . . >

dr > 0. It requires that the cumulative explanatory power of the factors is measured by the

diagonal elements of Λ′Λ, and it increases proportionally to N .

Recently, Onatski (2012) and Onatski (2015) show that the strong factor assumption

requires one of the following two scenarios. Either, an overwhelming domination of the

factors represented by higher values of dr for all r, or εε′/T needs to be close to the identity

matrix, where ε = (ε1, . . . , εN)′ is the N × T disturbances matrix. However, the former

scenario is unwanted because we do not want to assume the overwhelming domination of

factors over the idiosyncratic disturbances. The latest scenario does not hold as typically

the expected covariance matrix of the disturbances is not the identity, E(εtε
′
t) = Ω 6= IN .

Moreover, Onatski (2012) proposed the alternative weak factor assumptions. He assumes

Λ′Λ = ∆N with elements δ1N > . . . > δrN > 0 along the diagonal. Such that, ∆N
N−→∞−−−−→ ∆

where ∆ is a diagonal matrix with elements δ1 > . . . > δr > 0. As explained in details in

Onatski (2012), the aymptotic regime described by this assumption is meant to provide an

adequate approximation to empirically relevant finite sample situations where a few of the

largest eigenvalues of the sample covariance matrix are not overwhelmingly larger than the

rest of the eigenvalues.

We notice that the pervasive factor assumption plays a key role in order to determine
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the accuracy of the estimates. However, many of the macroeconomics applications do not

verify this assumption. In fact, very few estimation procedures are dealing with the weak

factor assumptions.

In this paper we address a Bayesian approach in order to deal with the weak factor

assumptions. In particular, we rely on the following two arguments. The pervasive factor

assumption only considers the deterministic loading matrix case. Nonetheless, the loadings

may follow a stochastic process. This implies that the cumulative explanatory power of

factors could be wrongly estimated. This shortcoming allows us to start considering the

Bayesian approaches as the ideal framework to deal with high dimensional DFMs where

the loading matrix is treated as latent variable.

Second, under the strong factor assumptions the disturbances are assumed to be uncor-

related and εε′/T is fixed as identity matrix. Therefore, the disturbances covariance matrix

is not relevant to determine the factors and loading estimates. In our setting, we allow

random loadings and factors in order to incorporate an approximate factor structure into

the determinacy of our estimates by using the joint posterior density.

4 Principal components analysis

In this section, we provide a detailed discussion on the standard principal components

analysis (PCA) and empirical Bayesian PCA estimators. PCA is often used for dynamic

factor models because of its computational efficiency for practitioners. Moreover, it is

a nonparametric procedure that relies on the strong factor assumption to be consistent.

Notwithstanding, the strong factor assumption does not hold in many macroeconomics

applications. Thereby, we implement an empirical Bayesian estimator in order to deal the

with weak factor assumptions. Our proposed empirical Bayesian PCA is a nonparametric

estimator that uses the joint posterior density to determine the estimates. This estimator

requires marginally more computational time than the standard PCA estimator.
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4.1 Standard principal component analysis

We estimate the common factor, Λft, in large panels using the method of principal compo-

nents. Consider an arbitrary number of factors r (r < min{N, T}), such that rankf = r

and rankΛ = r, where f = (f1, . . . , fr)
′ is the r × T matrix of factors.

The PCA estimates of Λ and ft are obtained by solving the optimization problem

V = min
Λ,f

(NT )−1

N∑
i=1

T∑
t=1

(yit − λift)2 (3)

subject to the normalization of either Λ′Λ/N = Ir with r(r+1)/2 restrictions or ff ′/T = Ir

with r(r − 1)/2 restrictions. We used the notation λi as the ith row of Λ for i = 1, . . . , N .

The optimization problem is identical to maximizing tr(f(y′y)f ′) where y = (y1, . . . , yN)′

is the N × T matrix of the observed data. Here tr() denotes the trace operator. Let

Q the r × r diagonal matrix containing the r largest eigenvalues of sample covariance

matrix S = 1
T

∑T
t=1 yty

′
t. The estimated factor matrix denoted by f̂PCA, is

√
T times the

eigenvector, P , associated with Q. Hence, Λ̂PCA = yf̂PCA
′
/T is the corresponding matrix

of factor loadings estimated.

The solution to the above minimization problem is not unique, even though the sum of

squared residuals V is unique. Another equivalent solution explored by Doz and Reichlin

(2011) and Bai and Ng (2002) is expressed as follow

f̂t
PCA

= Q−1/2P ′yt

Λ̂PCA = PQ1/2
(4)

Recent literature has shown that the principal components estimator of the common factors

provides consistent estimates under the strong factor assumptions, see Bai and Ng (2000),

Bai and Ng (2002) and Onatski (2012). However, the weak factor assumptions are more

relevant for the empirical macroeconomics applications, see Boivin and Ng (2003).
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4.2 Empirical Bayes principal components analysis

In this section we introduce our proposed empirical Bayesian implementation for the PCA.

As stated in the standard PCA, the factors and disturbances follow a random distributions

defined by ft ∼ NID(0, Ir) and εt ∼ NID(0, σ2
εIN). Nevertheless in order to deal with

the weak factor assumptions, we assume that the loading follows a random distribution of

the form λi ∼ NID(0,Σ), where Λ = (λ1, . . . , λN)′ is the N × r loading matrix and Σ

is the loading covariance matrix. Hence, the asymptotic covariance matrix is defined by

E(yty
′
t) = tr(Σ)IN + σ2

εIN , where tr() denotes the trace operator and yt = (y1t, . . . , yNt)
′ is

the N × 1 vector of the observed data. In our setting tr(Σ) is not necessarily proportional

to N and does not overwhelms to the disturbances. Thereby, weak factors are implied by

smaller values of tr(Σ).

Unlike the standard PCA, in our setting the disturbances play a key role in the maxi-

mization problem. The conditional joint posterior distribution of the loadings and factors,

p(Λ, f |y), allows us to consider a more general case in which the disturbances covariance

matrix is not equal to the identity.

Hence, instead of the optimization problem (3), we propose one associated with the

posterior density given by

{
Λ̂EB/PCA, f̂EB/PCA

}
= arg

Λ,f
max log p(Λ, f |y) (5)

where

log p(Λ, f |y) = log p(y|f,Λ) + log p(f) + log p(Λ)− log p(y), (6)

f = (f1, . . . , fr)
′ is the r×T matrix of factors, and y = (y1, . . . , yN)′ is the N ×T matrix of

the observed data. An analytical solution of (5) is complicated as the first order conditions

to Λ and f depend on each other. However, we can obtain the modes Λ̂EB/PCA and f̂EB/PCA

under the iterative conditional mode algorithm described as follows
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(i) f (s) = Λ(s−1)′ inv
(

Λ(s−1)Λ(s−1)′ + σ
2(s−1)
ε IN

)
y

(ii) Λ(s) = y inv
(
f (s)′Σ(s−1)f (s) + σ

2(s−1)
ε IT

)
f (s)′Σ(s−1)

(iii) σ
2(s)
ε = 1

NT

∑T
t=1

∑N
i=1

(
yit − λ(s)

i f
(s)
t

)2

, and

Σ(s) = diag
(
σ

2(s)
λ,1 , . . . , σ

2(s)
λ,r

)
with σ

2(s)
λ,j = 1

N

∑N
i=1 λ

2(s)
ij for all j = 1, . . . , r.

(iv) s = s+ 1, until they converge

We use the convergence criteria proposed by Onatski (2015) described as follows, tr
[(

Λ(s)f (s)−

Λ(s−1)f (s−1)
)(

Λ(s)f (s)−Λ(s−1)f (s−1)
)′]

< 10−6. As well, λ(0) and f (0) are chosen as the stan-

dard principal components estimates.

Since our setting does not involve any analytical solution to the optimization problem

(5), an evaluation of its consistency properties would be interesting to develop. In fact, it

is an important next step in our research agenda.

5 Maximum likelihood based approaches

In this section we discuss the standard and the empirical Bayesian maximum likelihood

methods. For this methods, we need to make an assumption about the stochastic process

of the factors such that the model can be written in state space form. In particular, we

assume that the factors follow a vector autoregressive model of order one. We have

ft = Hft−1 + ηt ηt ∼ IID(0,Ση) (7)

where H is the r × r transition matrix and ηt is the r × 1 factor error term that has mean

zero and variance Ση. This specification can easily be extended to allow for higher order

vector autoregressions. Together with the observation equation (1) the model can be viewed

as a state space model, see Durbin and Koopman (2012). Furthermore, we assume a more

general case for the disturances covariance matrix, such that εt ∼ NID(0,Ω).

12



The reason for introducing the Bayesian estimation is the same as stated in Section

4.2. However, the factors follow an autoregressive process defined by the equation (7). See

Koopman and Mesters (2016) for a detailed discussion.

5.1 Standard maximum likelihood estimation

We describe the parametric MLE method documented upon Durbin and Koopman (2012)

and Ghahramani and Hinton (1996). The method relies on the Kalman filter. We define the

conditional moments at|s = E(ft|y1, . . . , ys;ψ
MLE) and Pt|s = V ar(at|s−ft|y1, . . . , ys;ψ

MLE)

for t, s = 1, . . . , T , where ψMLE = {Λ,Ω, H,Ση} contains the parameters that pertain to

the distribution of the factors as well as to the disturbances in the equations (1) and (7).

Moreover, we assume that the initial factor has density N(0, P1) where P1 = inv(Ir−HH ′)

and εt ∼ NID(0,Ω) is the N × 1 disturbance term.

The Kalman filter is a recursive procedure through the time index t and is given by

Ft = ΛPt|t−1Λ′ + Ω, Kt = HPt|t−1Λ′,

at+1|t = Hat|t−1 +KtF
−1
t υt, Pt+1|t = HPt|t−1H

′ −KtF
−1
t + Ση, υt = yt − Λat|t−1

(8)

The conditional mean of the state ft given the obervations y, where y = (y1, . . . , yN)′ is

the N × T matrix of the observed data, that is f̂t
MLE

= E(ft|y), together with its mean

squared error matrix Vt can be therefore calculated using the backwards recursion

rt−1 = Λ′F−1
t υt + L′trt, Nt−1 = Λ′F−1

t Λ + L′tNtLt,

f̂t
MLE

= at + Ptrt−1, Vt = Pt − PtNt−1Pt, Lt = H −HPtΛ′F−1
t Λ

(9)

for t = T, T −1, . . . , 1. Moreover, we set rT = 0 and NT = 0. The relations in (9) are called

the state smoothing recursions.

Defined the variables by the equations (1) and (7), the log-likelihood function associated
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to the Gaussian density is given by

logL
(
y;ψMLE

)
= −NT

2
log 2π − 1

2

T∑
t=1

(
log|Ft|+ υ′tF

−1
t υt

)
(10)

where the quantities υt and Ft are evaluated by the Kalman filter. As well, the vector

ψMLE = {Λ,Ω, H,Ση} of unknown parameters, contains the parameters that pertain to the

distribution of the factors and disturbances.

The estimation of the parameter vector ψMLE is based upon maximizing the log-likelihood

function L
(
y;ψMLE

)
in (10) with respect to ψMLE. In large data sets, the number of pa-

rameters is typically large (i.e. 500). Therefore, numerical optimization procedures are

used for the maximization of the log-likelihood function. Within these procedures we chose

the Expectation-Maximization (EM) algorithm due to its relative computational efficiency

advantage over other methods such as the quasi-Newton and Broyden-Fletcher-Goldfarb-

Shanno (BFGS), see appendix A for more details.

Moreover, Doz et al. (2012) show that MLE estimates are consistent under the strong

factor assumption. In fact, the effects of misspecification on the estimation of the common

factors is negligible when N, T −→∞.

5.2 Empirical Bayes implementation of maximum likelihood es-

timation

The parametric empirical Bayesian estimator was proposed by Koopman and Mesters

(2016). As proved by the authors, this method is appealing to perform in order to deal

with the weak factor assumptions in the context of the state space model described by the

equations (1) and (7).

We allow the loading matrix to follow a random distribution λi ∼ NID(δ,Σ) as in

section 4.2 where we set δ = 0, and Σ is the loading covariance matrix. The factors follow

the autoregressive process described by the equation (7) and εt ∼ NID(0,Ω) is the N × 1
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disturbance term.

Koopman and Mesters (2016) described two general steps for performing the likelihood

evaluation and the pertain parameters. They redefined the parameter vector ψEB/MLE =

{ψEB/MLE
1 , ψ

EB/MLE
2 }, as ψ

EB/MLE
1 = {Ω, H,Ση} and ψ

EB/MLE
2 = {δ,Σ}. The first step is

concerning to obtain the ψ
EB/MLE
1 estimates by similar procedures described in the standard

maximum likelihood, solving

{
λ̂EB/MLE, ψ̂

EB/MLE
1

}
= arg

λ,ψ1

max logL
(
y;ψ

EB/MLE
1

)
(11)

where logL
(
y;ψ

EB/MLE
1

)
is given by the equation (10), y = (y1, . . . , yN)′ is the N × T

matrix of the observed data, and λ = vec(Λ) = (λ′1, . . . , λ
′
r)
′ is treated as a deterministic

variable. The problem (11) can be optimized with respect to λ and ψ
EB/MLE
1 using the

standard numerical methods, e.g. the EM algorithm as used in the Section 5.1, see the

appendix A.

The second step aims at obtaining an estimate for ψ
EB/MLE
2 , which is achieves by solving

ψ̂2 = arg
ψ
EB/MLE
2

max log p
(
λ̂EB/MLE;ψ

EB/MLE
2

)
(12)

It is easy to verify that the procedure yields consistent estimates for the parameter vector

because λ̂EB/MLE is obtained in the first step and the density p
(
λ̂EB/MLE;ψ

EB/MLE
2

)
is

implied by the normality assumption of the loadings, see appendix B.

Then, given the estimated parameters described by ψ̂EB/MLE we compute the posterior

modes for Λ and f as follow

{
λ̂EB/MLE, f̂EB/MLE

}
= arg

λ,f
max log p

(
λ, f |y; ψ̂EB/MLE

)
, (13)

where f = (f1, . . . , fr)
′ is the r × T matrix of factors. However, the direct optimization of

(13) with respect to λ and f is complicated as the first order conditions for λ and f depend
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on each other and solving analytically, or numerically for either one is infeasible when N

and T are large. Instead, Koopman and Mesters (2016) proposed a simple algorithm as

follows

(i) f (s) = E
(
f |y; λ = λ(s−1), ψ̂EB/MLE

)
;

(ii) λ(s) = E
(
λ|y; f = f (s), ψ̂EB/MLE

)
;

(iii) s = s+ 1, until they converge

We notice that the algorithm presented here is similar to the one we set in Section 4.2.

Nonetheless, they rely on the Kalman filter in order to compute the estimates.

In practice, we use the convergence criteria described by ‖λ(s)
i,j /λ

(s−1)
i,j − 1‖< 10−5 and

‖f (s)
i,j /f

(s−1)
i,j − 1‖< 10−5, for all i = 1, . . . , N , j = 1, . . . , r and t = 1, . . . , T . The initial

points λ(0) and f (0) are chosen as the standard maximum likelihood estimates.

6 Simulation Study

We present results from a simulation study under different data generating processes. The

main interest is to compare the empirical Bayesian principal components to the standard

principal components estimates. Moreover, we want to compare the empirical Bayesian

maximum likelihood estimates with their standard counterpart. Finally, we compare the

estimates between both Bayesian approaches, MLE and PCA. The estimates are computed

given the estimated parameters vector ψ̂m for m = EB/PCA,PCA,EB/MLE or MLE

which are obtained by the methods discussed in Sections 4 and 5.

6.1 Simulation design

We design two simulation exercises that rely upon specific factor assumptions which allow

us to perform a clear comparison between methods. In the first exercise, we simulate the
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approximate factor structure described in Section 4. The second exercise is to simulate the

state space model described in Section 5.

In both simulation designs the dynamic factor model is simulated for different cross-

sections and time series dimensions. We include combinations for N, T = 50 and 100. The

number of common factors is chosen to be equal to r = 3 and 5. During the study is

assumed that the true number of factors is known.

6.1.1 Simulation design 1

We draw J = 1000 different panels of observations for the general model (1) and for

each combination of panel size. Here, each observation has its own “true ”loadings ma-

trix and factors: λ(l) and f(l) where λ(l) = vec(Λ(l)) = (λ1(l)′, . . . , λr(l)
′)′ and f(l) =

(f1(l), . . . , fr(l))
′ is the r × T matrix of the true factors. The loadings λi are drawn from

a distribution described by NID(0,Σ) where Σ = σ2
λIr and ft by NID(0, Ir). The distur-

bance εt incorporates cross-sectional and serial correlation, which is generated by

D(L)εt = νt with νt ∼ NID(0,Γ)

dij(L) = (1− ρL) if i = j

Γij = τ |i−j|(1− ρ2) ∀ i, j = 1,. . ., n

(14)

Notice that we defined the cross-correlation among the idiosyncratic elements by the Toeplitz

matrix Γ. Where ρ and τ are defined as the serial correlation and cross correlation coeffi-

cient, respectively.

We control the signal-noise ratio of the model (1) such that

yt = Λft +
√
θεt t = 1, . . . , T (15)

where the common factor Λft and the idiosyncratic disturbance component εt are inde-

pendent. The parameter θ measures the inverse of the signal-to-noise ratio, see Onatski
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(2015).

Moreover the loadings’ variance, σ2
λ, is chosen such that it mimics the empirical distri-

bution of the loadings that is found in many macroeconomics applications as explained in

Onatski (2012). In particular, σ2
λ = {0.01, 0.1, 0.25, 0.5, 1, 2}. Since E(λ′iλi) is equivalent to

Σ for all i = 1, . . . , N , we represent the strong factor assumptions with high values of σ2
λ.

Therefore the weak factors are represented by smaller values of σ2
λ.

Along this exercise, we set ρ = 0.5 and τ = 0.5 in order to represent serial and cross-

sectional correlation among the idiosyncratic disturbances, or approximate factor model

setting. Therefore, ρ = 0 and τ = 0 represent idiosyncratic disturbances mutually uncorre-

lated, or exact factor model setting. Finally, we set θ = 0.5, which sets the ratio between

the variances to 0.5 on average.

6.1.2 Simulation design 2

There are J = 500 different panels of observations for the general model (1) and (7) for

each combination of panel size. Here, each observation has its own “true ”loadings ma-

trix and factors: λ(l) and f(l) where λ(l) = vec(Λ(l)) = (λ1(l)′, . . . , λr(l)
′)′ and f(l) =

(f1(l), . . . , fr(l))
′ is the r × T matrix of the true factors.

The loadings vectors λi(l) are drawn from two different mixture distributions. The

distributions are chosen such that they mimic the empirical distribution of the loadings

that is found in many macroeconomic applications. In particular, we draw the elements of

the loading vector from

π(λi,j) = κ1N(µ1, σ
2
1) + . . .+ κsN(µs, σ

2
s) (16)

where the values for µn, σ2
s , κn for n = 1, . . . , s and s are taken such that the loadings have

normal and bimodal distributions. The values for the loading setting are given in Marron

and Wand (1992).
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The dynamics factors are simulated from the autoregressive process given by the equa-

tion (7) with autoregressive polynomial matrix H and covariance matrix Ση = Ir, such that

Var(ft) = inv(Ir −HH ′). The elements for the diagonal of H are drawn from the uniform

distribution U(0.5, 0.9). The off-diagonal elements are set to zero. For both the standard

maximum likelihood and the empirical Bayesian maximum likelihood methods, the factor

process is correctly specified.

The error term εt incorporates cross-sectional and serial correlation. Given draws λi,j,

εt is generated by

D(L)εt = νt with νt ∼ NID(0,Γ)

dij(L) = (1− ρL) if i = j

αi = βi
1−βiλ

′
i inv(Ir −HH ′) λi with βi ∼ U(µ, 1− µ)

Γij =
√
αiαjτ

|i−j|(1− ρ2) ∀i, j = 1, . . . , N

(17)

We defined the cross-correlation among the idiosyncratic disturbance elements as the Toeplitz

matrix Γ. Where ρ and τ are defined like the serial correlation and cross correlation co-

efficient, respectively. The coefficient βi captures the ratio between the variance of the

idiosyncratic component, εit, and the total variance of yit. We draw βi from the uniform

distribution U(µ, 1− µ) with µ = 0.1, which sets the ratio between the variances to 0.5 on

average. Finally, we set ρ = 0.5, and τ = 0.5 in order to represent serial and cross-sectional

correlation among the idiosyncratic disturbances, or approximate factor model. Therefore,

ρ = 0 and τ = 0 represent idiosyncratic disturbances mutually uncorrelated, or exact factor

model.

6.2 Results

We study the accuracy of the empirical Bayesian principal components and the empirical

Bayesian maximum likelihood estimates comparing these with their standard counterparts.

We define the accuracy of the estimates for the common factors by computing the average
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mean squared error statistics. In particular, we compare

MSE = J−1

J∑
l=1

(NT )−1

N∑
i=1

T∑
t=1

(
λ̂i(l)f̂t(l)− λi(l)ft

)2

(18)

where the loading λi is the ith row of Λ for i = 1, . . . , N and the averaging is over the J

samples. Here, λ̂ and f̂ may represent the estimates obtained by the empirical Bayesian

principal components (λ̂EB/PCA, f̂EB/PCA), standard principal components (λ̂PCA, f̂PCA),

empirical Bayesian maximum likelihood (λ̂EB/MLE, f̂EB/MLE) or standard maximum like-

lihood (λ̂MLE, f̂MLE). For each data generating process described above we present the

relative mean squared error statistics MSEEB/q/MSEq where q = PCA or MLE.

6.2.1 Results 1

In Table 1 we show the relative statistics between the empirical Bayesian principal com-

ponents estimates and the standard principal components estimates. These results are

simulated as described in Section 6.1.1.

We deduct the following five conclusions. First, the relative statistics are smaller than

one in most cases. It shows that the empirical Bayesian principal components estimates are

on average more accurate when compared to the standard principal component estimates.

Second, the relative statistics tend to one when the variance of the loadings, σ2
λ, is larger.

The intuition behind this result is implied by the strong factor assumptions. As is stated

in Section 4.2, high values of σ2
λ leads to consistent estimates, see Bai (2003). Thereby, the

relative mean squared error ratio between empirical Bayesian principal components and

standard principal components estimates converge to one, see Figure 1. We notice that

under weak factor settings, represented by smaller values of σ2
λ, our empirical Bayesian

principal components estimator is more accurate than its standard counterpart.

Third, the relative statistics depend on the panel dimensions. The relative perfomance

of the empirical Bayesian principal component estimates is better when N ≥ T . Fourth,
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Figure 1: MSEEB/PCA/MSEPCA for different values of σ2
λ. The DGP and parameters are

chosen as discussed in Section 6.1.1. We fixed ρ = 0 and τ = 0

the relative perfomances increases (declines) for all the cases when the number of factors

r decreases (increases). Finally, the overall perfomance of the empirical Bayesian principal

components estimates is not affected by different disturbance term’s sampling schemes.

The magnitude of the gain depend on the data generating process. The gains of empirical

Bayesian principal component estimates can be as large as 98% while the largest loss has

only been 1%. For the case N ≥ T the relative gains (losses) are around 52% (0.6%), when

N ≤ T the relative gains (losses) are reduced to 28% (4%). As well, for r = 3 the relative

gains (losses) are around 64% (0.5%) and, 15% (0.5%) for r = 5.

Overall, we may conclude that the empirical Bayesian principal component estimates

are more accurate than standard principal component estimates under strong and weak

factor settings. The relative gains depend on the loadings’ sampling scheme and the panel

dimensions.
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N T r E σ2
λ = 0.01 σ2

λ = 0.1 σ2
λ = 0.25 σ2

λ = 0.5 σ2
λ = 1 σ2

λ = 2

50 50 3 n 0.8298 0.9275 0.9598 0.9739 0.9818 0.9861
50 50 3 s 0.9251 0.9739 0.9897 0.9986 1.0024 1.0060
50 50 3 c 0.8796 0.9302 0.9603 0.9743 0.9821 0.9858
50 50 3 sc 0.4585 0.4801 0.8168 0.8796 0.9376 0.9737
50 50 5 n 0.8612 0.9346 0.9644 0.9754 0.9820 0.9855
50 50 5 s 0.9514 0.9791 0.9901 0.9982 1.0034 1.0059
50 50 5 c 0.9093 0.9365 0.9635 0.9748 0.9821 0.9855
50 50 5 sc 0.9677 0.9878 0.9947 1.0009 1.0037 1.0061
50 100 3 n 0.8818 0.9600 0.9800 0.9881 0.9923 0.9943
50 100 3 s 0.9300 0.9743 0.9890 0.9959 1.000 1.0011
50 100 3 c 0.9194 0.9622 0.9806 0.9878 0.9919 0.9943
50 100 3 sc 0.6789 0.7440 0.8459 0.9176 0.9575 0.9799
50 100 5 n 0.8966 0.9633 0.9819 0.9888 0.9927 0.9944
50 100 5 s 0.9420 0.9769 0.9908 0.9965 0.9996 1.0010
50 100 5 c 0.9350 0.9647 0.9823 0.9887 0.9927 0.9947
50 100 5 sc 0.9603 0.9863 0.9928 0.9975 0.9999 1.0015
100 50 3 n 0.7515 0.9205 0.9570 0.9706 0.9780 0.9824
100 50 3 s 0.8904 0.9658 0.9904 1.0001 1.0071 1.0087
100 50 3 c 0.8141 0.9215 0.9573 0.9699 0.9785 0.9810
100 50 3 sc 0.0564 0.5198 1.6762 0.9588 0.9580 0.9863
100 50 5 n 0.7844 0.9253 0.9584 0.9720 0.9777 0.9818
100 50 5 s 0.9198 0.9711 0.9926 1.0010 1.0039 1.0081
100 50 5 c 0.8421 0.9268 0.9597 0.9703 0.9784 0.9810
100 50 5 sc 0.9373 0.9764 0.9927 1.0014 1.0045 1.0081
100 100 3 n 0.8258 0.9576 0.9787 0.9867 0.9904 0.9930
100 100 3 s 0.8980 0.9733 0.9912 0.9976 1.0012 1.0031
100 100 3 c 0.8746 0.9585 0.9789 0.9872 0.9909 0.9927
100 100 3 sc 0.2469 0.6656 0.8547 0.9288 0.9676 0.9858
100 100 5 n 0.8398 0.9591 0.9795 0.9867 0.9905 0.9927
100 100 5 s 0.9099 0.9752 0.9913 0.9987 1.0013 1.0027
100 100 5 c 0.8869 0.9593 0.9798 0.9865 0.9910 0.9930
100 100 5 sc 0.9320 0.9769 0.9930 0.9980 1.0014 1.0028

Table 1. Simulations results for MSEEB/PCA

MSEPCA . The DGP and parameters are chosen as discussed

in Section 6.1.1. We fixed θ = 1/2. The codes n, c, s and sc indicate: uncorrelated disturbances,

serial correlated disturbances, cross-section correlated disturbances and serial and cross-section

correlated disturbances, respectively.
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6.2.2 Results 2

In Table 2 we compare the empirical Bayesian maximum likelihood estimates with its

standard counterpart, which are simulated as described in the Section 6.1.2. Moreover,

we compare the empirical Bayesian maximum likelihood and empirical Bayesian principal

component estimates.

We reach the following conclusion. The relative statistics are smaller than one in most

of the cases, mainly compared to the empirical Bayesian principal component estimates.

It shows that the empirical Bayesian maximum likelihood estimates are on average more

accurate when compared to standard maximum likelihood and empirical Bayesian principal

component estimates.

The magnitude of the gain depends on the data generating process. When we compare

the empirical Bayesian maximum likelihood to the standard maximum likelihood estimates,

the gains can be as large as 22%. Moreover, the different panel size specifications leads to

different gains. For the case N ≥ T the relative gains are around 15% and for N ≤ T are

around to 13%.

On the other hand, when comparig the empirical Bayesian maximum likelihood to the

empirical Bayesian principal component estimates the gains can be as large as 48 %. As

well, for the case N ≥ T the relative gains are around 42% and for the case N ≤ T are

around to 44%.

Overall we may conclude that the empirical Bayesian maximum likelihodd estimates

are more accurate than the standard maximum likelihood and empirical Bayesian principal

component estimates. The relative gains depend on the sampling scheme for the loadings

and the panel dimensions. However, the computational time required by the empirical

Bayes PCA is not as sensitive as the empirical Bayes MLE when N and T tend to infinity

(e.g. N = 1000 and T = 1000). For all computations in this study, we have written the

codes in MATLAB programming language.
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Panel (i) Panel (ii)

N T r E MSEEB/MLE

MSEMLE
MSEEB/MLE

MSEEB/PCA
MSEEB/MLE

MSEMLE
MSEEB/MLE

MSEEB/PCA

50 50 3 n 0.8967 0.7585 0.8666 0.6530
50 50 3 s 0.8268 0.5805 0.7848 0.5570
50 50 3 c 0.8662 0.6575 0.8652 0.5955
50 50 3 sc 0.8067 0.5891 0.8202 0.6294
50 50 5 n 0.8396 0.6216 0.8133 0.6305
50 50 5 s 0.7723 0.6069 0.7515 0.5598
50 50 5 c 0.7401 0.5166 0.7524 0.5112
50 50 5 sc 0.7560 0.6081 0.7613 0.5957
50 100 3 n 0.9856 0.7255 0.9590 0.7769
50 100 3 s 0.8937 0.6870 0.8750 0.6177
50 100 3 c 0.9830 0.6881 0.9490 0.6465
50 100 3 sc 0.8803 0.6330 0.8716 0.6204
50 100 5 n 0.9615 0.6664 0.9335 0.6940
50 100 5 s 0.8493 0.6421 0.8356 0.6199
50 100 5 c 0.9092 0.5875 0.9120 0.5426
50 100 5 sc 0.8389 0.5996 0.8389 0.5879
100 50 3 n 0.8790 0.6898 0.9122 0.6895
100 50 3 s 0.7671 0.5595 0.7844 0.5458
100 50 3 c 0.8932 0.6787 0.9105 0.6869
100 50 3 sc 0.7990 0.5579 0.7767 0.5740
100 50 5 n 0.8249 0.6514 0.7825 0.6784
100 50 5 s 0.7529 0.5801 0.7318 0.5564
100 50 5 c 0.7557 0.6213 0.7568 0.5616
100 50 5 sc 0.7335 0.5776 0.7247 0.5931
100 100 3 n 0.9872 0.7386 0.9660 0.7663
100 100 3 s 0.9007 0.5970 0.8674 0.6318
100 100 3 c 0.9723 0.8208 0.9378 0.7155
100 100 3 sc 0.9040 0.6154 0.8655 0.6468
100 100 5 n 0.8900 0.7455 0.9043 0.7390
100 100 5 s 0.8493 0.6380 0.8234 0.6218
100 100 5 c 0.8985 0.7135 0.8661 0.6219
100 100 5 sc 0.8226 0.6204 0.8191 0.6267

Table 2. Simulations results for the empirical Bayesian maximum likelihood, empirical Bayesian

principal component and standard maximum likelihood estimates. The DGP and parameters are

chosen as discussed in Section 6.1.2. The Panel (i) shows the results for normal distribution

N(0, 1) and Panel (ii), bimodal distribution for the true-loadings. The codes n, c, s and sc

indicate: uncorrelated disturbances, serial correlated disturbances, cross-section correlated

disturbances and serial and cross-section correlated disturbances, respectively.
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7 Empirical studies

In this section we discuss the results from two empirical applications.

7.1 Nowcasting macroeconomic variables

This study is concerned with the comparison between the empirical Bayesian principal

component estimates and the standard principal component and standard maximum like-

lihood estimates for macroeconomic forecasting based on monthly U.S dataset. Moreover,

we compare the empirical Bayesian maximum likelihood estimates to the standard princi-

pal component and standard maximum likelihood estimates. The key question is whether

and to what extent the empirical Bayes methods improve out-of-sample forecasts when

compared with the standard methods.

We consider a similar data set as in Giannone, Reichlin and Small (2008), which includes

N = 139 macro economic and financial time series. Table 3 summarizes the categories for

which the time series are included. They are constructed as stationary time series following

the guidelines in the appendix of Giannone et al. (2008). The resulting panel ranges from

January 2000 until December 2015, with T = 179.

According to Stock and Watson (2012), Giannone et al. (2008) and Koopman and

Mesters (2016) we consider the dynamic factor model with r = 5 factors and a diagonal

variance matrix for the disturbances. Similar results can be obtained for models with r = 3

factors. Moreover, the factors are assumed to follow an autoregressive process described by

equation (7).

The out-of-sample forecasting study for the panel of macroeconomic time series is de-

signed as follows. We forecast each time series 1 and 2 months ahead for 2013-06 until

2015-12. All regressions start in 2000-01, with earlier observations used for initial condi-

tions. In total we compute k = 60 out-of-sample predictions for each horizon. In particular,

let the integer n denote the sample split point (2013-05 for h = 1 and 2013-04 for h = 2).
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Category number of series

Employment Situation 38
Foreign Exchange Rates 5
Industrial Production and Capacity Utilization 29
Inventories 11
Money, Loans and Reserves 11
Personal Income/GDP Componets 10
Prices 21
Selected Interest Rates 9
Stock Market 5

Table 3. Summary of the time series that are included in the empirical application

The forecasts are computed for n + 1, . . . , n + k based on subsamples of the observations

Y1, . . . , Yn+j−h for j = 1, . . . , k, where Yj = (yj,1, . . . , yj,N)′. We estimate the parameter vec-

tors ψPCA, ψEB/PCA, ψMLE and ψEB/MLE for each subsample using the methods explained

in Sections 4 and 5. We compute the forecast defined by

Ŷ m
n+j = Λ̂mf̂mn+j

(19)

where m = EB/PCA,PCA,EB/MLE or MLE and f̂mn+j = (f̂mn+j,1, . . . , f̂
m
n+j,r)

′ is the fore-

cast for the factors based on the principal component, empirical Bayes principal component,

maximum likelihood or empirical Bayes maximum likelihood procedures. These forecasts

are computed for all horizons h = 1, 2.

As a measure of accurancy we consider the mean squared error (MSE) of the out-sample

forecasts. In particular we compute for each time series

MSEi = k−1Σk
j=1(yi,n+j − ŷmi,n+j)

2 (20)

where yi,n+j and ŷmi,n+j are elements of Yn+j and Ŷ m
n+j, respectively. In this way we compute

the mean squared error statistics for the 139 time series for all forecastings horizons.

At the top of table 4 we present the summary statistics for the relative mean squared
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error statistics to MSE
EB/PCA
i /MSEPCA

i and MSE
EB/PCA
i /MSEMLE

i . Moreover, at the

bottom of the table we present the summary statistics to MSE
EB/MLE
i /MSEPCA

i and

MSE
EB/MLE
i /MSEMLE

i . In the last row, the average statistics over all series are displayed.

When we compare the empirical Bayesian principal components estimates to the stan-

dard principal components estimates, the gains are 4% and 0.4% for the one month and two

months ahead forecasts, respectively. However, standard maximum likelihood estimates are

more accurate than the empirical Bayesian principal component estimates.

Furthermore, when we compare the empirical Bayesian maximum likelihood estimates

to the standard maximum likelihood ones, the gains are 5% and 4% for the one and two

months ahead forecasts. Also, when we compare the empirical Bayesian maximum likeli-

hood estimates to the standard principal components estimates the gains are 11% and 5%

for the one and two months ahead forecasts, respectively.

The relative improvements in accuracy of empirical Bayes principal components forecasts

declines as we forecast further in the future. As well, the relative accuracy of empirical

Bayes maximum likelihood declines as we forecast further into the future. Similar results

are obtained by Koopman and Mesters (2016) to empirical Bayes maximum likelihood

and standard maximum likelihood because both estimates are based on the same vector

autoregressive process for the factors.

Finally, we summarize the relative mean squared error statistics per category. We

find largest gains when using the empirical Bayes principal components for Employment

Situation, Foreign Exchange Rates, Money, Personal Income, Prices, Interest Rates and

Stock Market with respect to the standard principal components estimates. For the other

categories we do not obtain much improvements. For the comparison between the empirical

Bayes maximum likelihood estimates and their standard counterpart, the largest gains are

obtained for Employment Situation, Foreign Exchange Rates, Industrial Production, Prices

and Interest Rates. For the other categories we do not obtain much improvements.
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Components (mean) h = 1 h = 1 h = 2 h = 2

(i) EB/PCA estimates MSEEB/PCA

MSEMLE
MSEEB/PCA

MSEPCA
MSEEB/PCA

MSEMLE
MSEEB/PCA

MSEPCA

Employment Situation 1.0732 0.9506 1.0631 0.9918
Foreign Exchange Rates 1.0110 0.9531 1.0151 0.9991
Industrial Production 1.0659 0.9957 1.0446 0.9972
Inventories 1.0168 0.9991 1.0248 0.9990
Money, Loans and Reserves 1.1669 0.9518 1.0970 0.9937
Personal Income/GDP Componets 1.0300 0.9609 1.0210 0.9971
Prices 1.1514 0.9583 1.0849 0.9940
Selected Interest Rates 0.9833 0.9651 0.9753 0.9936
Stock Market 0.9321 0.9657 0.9123 0.9959
Global Mean 1.1127 0.9667 1.0840 0.9957

(ii) EB/MLE estimates MSEEB/MLE

MSEMLE
MSEEB/MLE

MSEPCA
MSEEB/MLE

MSEMLE
MSEEB/MLE

MSEPCA

Employment Situation 0.9764 0.8649 0.9902 0.9238
Foreign Exchange Rates 0.8789 0.8286 0.9153 0.9009
Industrial Production 0.9635 0.9000 0.9739 0.9297
Inventories 1.0622 1.0437 1.0402 1.0140
Money, Loans and Reserves 1.0148 0.8277 1.0132 0.9178
Personal Income/GDP Componets 1.0150 0.9469 1.0116 0.9879
Prices 0.8929 0.7432 0.9239 0.8465
Selected Interest Rates 0.8125 0.7975 0.9675 0.9857
Stock Market 1.0054 1.0416 0.9956 10868.
Global Mean 0.9526 0.8882 0.9557 0.9548

Table 4. Relative mean squared error statistics for out-sample forecasting using empirical Bayes

principal component, empirical Bayes maximum likelihood, standard principal component and

standard maximum likelihood methods. The results summarize the statistics

MSE
EB/PCA
i /MSEPCAi , MSE

EB/PCA
i /MSEMLE

i , MSE
EB/MLE
i /MSEPCAi and

MSE
EB/MLE
i /MSEMLE

i for i = 1, . . . , 139 and forecasts horizons h = 1, 2.

28



7.2 Portfolio optimization

The mean-variance optimization approach has been the most rigorous way to pick stocks

where to invest. The two fundamental ingredients are the expected return for each stock,

which represents the portfolio manager’s ability to forecast future price movements, and

the covariance matrix of stock returns, which represents risk control.

Estimating the covariance matrix of stock returns has always been one of the toughest

points. Even if the sample covariance matrix is easy to compute, it contains a lot of estima-

tion error when the number of data points is of comparable or even smaller order than the

number of individual stocks; this is the common situation in financial applications. Ledoit

and Wolf (2004) proposed a shrinkage estimator of the covariance matrix that combine the

sample covariance matrix S and a highly structured estimator, denoted by Π, in a linear

combination described as follows, δΠ + (1− δ)S where δ is a shrinkage target. See Ledoit

and Wolf (2004) for a detailed discussion to the estimation procedure.

Another approach to estimate the covariance matrix of stock returns is to use statis-

tical factors, such as principal components or maximum likelihood approaches, with the

total number of factors being on the order of 5. In particular, in this study we consider

the empirical Bayesian principal components and empirical Bayesian maximum likelihood

estimates in order to compute the covariance matrix of stock returns.

The key question is whether the empirical Bayes methods improve the covariance matrix

estimated in a portfolio optimization problem.

Formally, the optimization problem of the manager is defined as follow

Minimize: σ2
P = 1

2
x′Σx

such that: x′α ≥ αP

x′1N = 1

(21)

where α is the vector expected stock returns, αP = x′α is the expected return on portfolio
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and Σ the covariance matrix of stock returns.

As far as the equity size N is concerned, we employ N = 30, 50, 100 and 150. The

stocks are provided by monthly U.S. stock data (NYSE), starting in January 2005 until

December 2015. We present the solutions to the expected portfolio returns and variance

portfolio of the problem (21), where the covariance matrix is performed using the empiri-

cal Bayesian principal component, empirical Bayesian maximum likelihood and shrinkage

estimates. Moreover, we introduced the Information Ratio (IR)1 to measure the portfolio

perfomances for each estimate with respect to the benchmark2. The higher the Information

Ratio the better performance implied by the estimators when compared to the standard

benchmark.

In table 5, we present the results. First, in most cases, the empirical Bayesian prin-

cipal componentss estimates yield the highest portfolio returns. However, the empirical

Bayesian maximmum likelihood achieves the lower standard deviation of the portfolio re-

turns. Second, for N ≤ 50 the empirical Bayesian principal components achieves the higher

Information Ratios. For the case N > 50 the results are not clear. Finally, in most cases,

the empirical Bayesian principal component and empirical Bayesian maximum likelihood

estimates yield the highest portfolio expected returns.

Overall, we may conclude that the empirical Bayes estimates in most of the cases increase

substantially the realized Information Ratio of the portfolio manager. Mainly with a small

stock portfolio.

1We define the Information Ratio as follow, IR = αP−αB

σ̂P,B
, where αP is the expected return of the

portfolio, αB is the expected return of the benchmark and, σP,B is the standard deviation of the difference

between returns of the portfolio and the returns of the benchmark.
2The benchmark is implied by the standard solution obtained in Markowitz (1952).
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EB/PCA EB/PCA EB/MLE EB/MLE Shrink Benchmark
r = 3 r = 5 r = 3 r = 5

N = 30
Portfolio Return 0.1332 0.1330 0.1208 0.1184 0.0400 0.0324
S.D Portfolio 0.6029 0.7483 0.0378 0.0338 0.0612 0.0403
IR 0.4390 0.4390 0.4231 0.4052 0.3273
N = 50
Portfolio Return 0.1430 0.1430 0.1223 0.1157 0.0359 0.0483
S.D Portfolio 0.4643 0.5983 0.0279 0.0226 0.0478 0.0249
IR 0.4145 0.4145 0.3760 0.3632 -0.5166
N = 100
Portfolio Return 0.1383 0.1383 0.1341 0.1290 0.0557 0.0353
S.D Portfolio 0.3420 0.4263 0.0793 0.0267 0.0377 0.0082
IR 0.4579 0.4579 0.4595 0.4692 0.8191
N = 150
Portfolio Return 0.1298 0.1298 0.1268 0.1199 0.0524 0.1734
S.D Portfolio 0.2797 0.3549 0.0569 0.0186 0.0315 0.1792
IR -0.1645 -0.1645 -0.1807 -0.2189 -0.6811

Table 5. Mean-Summary Statistics for expected portfolio return and variance portfolio. This

table presents means, and standard deviations of realized expected portfolio returns. The

out-of-sample period is 01.2005 until 12.2015, yielding 120 monthly data. The size of the

benchmark is denoted by N . ”Benchmark” denotes the sample covariance matrix; ”Shrink”

denotes the shrinkage estimator proposed by Ledoit and Wolf(2003), and ”EB/PCA” and

”EB/MLE” the empirical Bayes estimators. All numbers are annualized
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8 Conclusion

In this paper, we have developed an empirical Bayes principal components estimator for

dynamic factor models in order to deal with the weak factor assumptions. In particular, we

designed a simulation study in order to evaluate our estimator with its standard principal

components counterpart. Moreover, we provide a comparison between the empirical Bayes

maximum likelihood and standard maximum likelihood methods.

The methods are evaluated in a Monte Carlo study for dynamic factor models with

different dimensions and number of factors. Our empirical Bayesian principal component

estimates for common factors outperfom the standard principal component estimates for

the data generating process considered. Moreover, the empirical Bayesian maximum likeli-

hood estimates for common factors outperfom the standard maximum likelihood estimates.

The results hold for different consideration of non-Gaussian process and weak factor set-

tings. We have further illustrated this methods in an empirical application for forecasting

macroeconomic time series and portfolio optimization problem. Our empirical Bayesian

principal component estimates outperform the standard principal component estimates

when compared to the mean squared error for the inner product of the macroeconomic

forecast estimates. Second, in the portfolio optimization problem the covariance matrix of

the stock returns estimated by the empirical Bayes methods achieve, in most cases, the

highest Information Ratio and the highest expected return for the portfolio manager.
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Appendices

A EM Algorithm

The EM algorithm is an iterative maximum likelihood estimation for many state space

models, in which the direct maximization of the likelihood function is intractable or com-

putationally difficult. For a given parameter vector ψ0. The procedure relies on two steps

E-step: the expectation of the log-likelihood conditional on the data is calculated using

the estimates from the previous iteration, ψj, for j = 0, 1, . . ..

M-step: the new parameter, ψj+1, is estimated through the maximization of the ex-

pected log-likelihood expressed by the equation (10) with respect to ψ, for j = 0, 1, . . .. In

particular, consider the Kalman filter expressed by the equations in (8), the parameters are

estimated as follow

(i) Loading matrix: Λnew =
(∑T

t=1 ytf̂
′
t

)
inv
(∑T

t=1 f̂tf̂
′
t

)
(ii) Noise covariance: Ωnew = 1

N

∑T
t=1

(
yty
′
t − Λnewf̂ty

′
t

)
(iii) State dynamic matrix: Hnew =

(∑T
t=2 f̂tf̂

′
t−1

)
inv
(∑T

t=1 f̂t−1f̂
′
t−1

)
(iv) State noise covariance: Σnew

η = 1
T−1

(∑T
t=2 f̂tf̂

′
t −Hnew

∑T
t=2 f̂t−1f̂

′
t

)
where f̂t is the r× 1 factor vector estimated by the state smoothing recursion given by the

equations in (9).

The evaluation of L(y;ψj+1) relies on the Kalman filter and smoother. The two steps are

repeated until the convergence criteria is satisfied or reaches a local maximum. In particular,

we control the EM’s convergence criteria by looking at Jm =
logL(y;ψj+1)−logL(y;ψj)

|logL(y;ψj)| . And, we

stop after M iterations if Jm < 10−5.

B Assumptions on Maximum Likelihood - Bayes estimation

Consider the dynamic factor model expressed in (1) and (4). We assume that,
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(i) Common Factors: The r×1 vector of common factors ft is stationary and restricted

such that Var(ft) = inv (Ir −HH ′). The initial state is given by f1 ∼ N(0, inv (Ir −

HH ′)), that is f1 = 0 and P1 = inv (Ir −HH ′). The common innovations ηt and the

initial state f1 are mutually independent and distributed independent of the loadings

vectors λi, and disturbances εi,s for all i = 1, . . . , N and s, t = 1, . . . , T .

(ii) Loading vectors: The loading vectors λi are distributed normally and indepen-

dently with mean δ and positive homoscedasticity variance Σ. Moreover, loadings

and disturbances are mutually uncorrelated.

(iii) Disturbances: The disturbance vector εt is normally and independently distributed

with mean zero and diagonal matrix Ω = diag{σ2
ε,i, . . . , σ

2
ε,N}
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