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Abstract

We forecast 18 groups of individual components of the Consumer Price Index
(CPI) using a large Bayesian vector autoregressive model (BVAR) and then ag-
gregate those forecasts in order to obtain a headline inflation forecast (bottom-up
approach). De Mol et al. (2006) and Banbura et al. (2010) show that BVAR’s
forecasts can be significantly improved by the appropriate selection of the shrink-
age hyperparameter. We follow Banbura et al. (2010)’s strategy of “mixed priors,”
estimate the shrinkage parameter, and forecast inflation. Our findings suggest that
this strategy for modeling outperform the benchmark random walk as well as other
strategies for forecasting inflation.
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1 Introduction

The monetary policy in most central banks is designed for controlling inflation at low
levels because inflation has clear welfare costs at high levels. According to Walsh (2010),
inflation generates a welfare loss because money holdings yield utility and higher inflation
reduces real money balances. In that regard, forecasts of different inflation measures are
often used for the identification of underlying price pressures in the economy. This iden-
tification process usually requires a good understanding of both the aggregate inflation
level and its components. It also requires to fine-tune methodologies that lead to better
inflation forecasts.

Hubrich (2005) points out that the debate about aggregation versus disaggregation in
economic modeling for variables such as GDP or inflation goes back to Theil (1954) and
Grunfeld and Griliches (1960). Here the literature has focussed on the effect of contem-
poraneous aggregation on forecast accuracy.

The two main arguments for aggregating forecasts of disaggregated variables in order
to improve predictions of the aggregate (instead of directly forecasting the aggregate vari-
able) are: (i) the individual dynamic properties of disaggregated components are taking
into account so each disaggregate variable can be predicted more accurately,1 and (ii)
forecast errors of disaggregated components might partially cancel each other.2

On the other hand, arguments against disaggregation for forecasting the aggregate
are: (i) models for the disaggregate variables may not be correctly specified which might
not improve the forecast accuracy for the aggregate,3 (ii) a well specified model does not
necessarily imply higher forecast accuracy, and (iii) unexpected shocks might affect the
forecast errors of some of the disaggregate variables in the same direction (forecast errors
do not cancel each other).

As suggested in Ibarra (2012), one possible way to improve the accuracy of inflation
forecasts is to employ the information contained in the consumer price index (CPI) disag-
gregated data. In this regard, models such as vector autoregressions would require a large
number of parameters to be estimated. As pointed out above, part of the previous liter-
ature about predictions of economic aggregates based on disaggregated information has
focused on forecasting the component indices and aggregating such forecasts (bottom-up
approach).

The existing literature present mixed results with respect to the bottom-up approach.
Some studies we survey are:

1 Modeling disaggregated variables may involve using a larger and more heterogenous information set,
and specifications may vary across the disaggregate variables (see Barker and Pesaran, 1990). According
to Duarte and Rua (2007) this strategy permits the capture of idiosyncratic characteristics of each
variable by modelling each serie individually.

2 See Clements and Hendry (2002) for a discussion on forecast combination and bias correction.
3 This argument is valid in the presence of shocks that affect some of the disaggregate variables (see

Grunfeld and Griliches, 1960).
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• Hubrich (2005) examines whether aggregating inflation forecasts based on Harmo-
nized Index of Consumer Prices (HICP) subindices for the euro area is better than
forecasting aggregate HICP inflation directly and find that 12-month ahead fore-
casts are better by estimating directly HICP inflation.4

• For the case of forecasting inflation in Mexico using CPI disaggregated data we
survey Capistrán et al. (2010) and Ibarra (2012). Capistrán et al. (2010) use models
that deal with the stochastic properties of the trend and of the seasonal components
of the series. These authors choose the best model for each of 16 series of inflation
using a multi-horizon loss function, and then aggregate the resulting forecasts so
that they satisfy the hierarchies among them. They conclude that forecasting the
aggregates by disaggregates results in better forecasts than using the best individual
models. Ibarra (2012) use a dynamic common factor model to forecast inflation
in Mexico and evaluate weather the CPI disaggregated data improve forecasting
performance by employing the information contained in a large number of economic
series. His results suggest that the common component extracted from the CPI
disaggregated data has a good predictive content, especially for the medium-term
component of inflation. Factor models outperform the benchmark auto-regressive
model (AR model) and perform as well as the surveys of experts.

• For the case of Portugal, Duarte and Rua (2007) evaluate weather considering
different levels of data disaggregation improves inflation forecasting. The authors
consider three CPI disaggregation levels: the aggregate price index (the lowest
disaggregation level); five components; and almost sixty subcomponents. Their
results suggest that for very short term inflation forecasting, it is better to pursue
a bottom-up approach with a high disaggregation level while simpler models seem
to perform better for longer horizons.

• Ögünç et al. (2013) find that the Bayesian VAR (BVAR) outperform other inflation
forecast strategies in terms of lower forecast prediction error for the case of Turkey.
It also beats the random walk in a two quarters ahead window.

Here we focus on the information content of different components of the CPI. We
argue that the aggregation of different components into a smaller number of groups may
have important forecasting properties in different periods of time, fact that is documented
in previous literature. We estimate a large BVAR techniques for all groups. Then we
aggregate each forecast and obtain a result for the aggregate level of inflation. Our results
are promising for the case of Peru. We find that our strategy beats the random walk as
well as other time series approaches.

The rest of the paper is organized as follows. Section 2 discusses the benefits of the
BVAR approach. Section 3 describes the data used in this study as well as the aggregation

4 Another interesting study is Ruth (2008) that evaluates forecast pooling for predicting actual
macroeconomic variables in the euro area, including inflation. Ruth (2008) pools forecasts which are
obtained from models for subgroups of countries rather than single countries, thereby formulating an
intermediate case of disaggregation with regard to forecast combination.
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process. Section 4 presents our forecasting results with a mixture of priors competing
against other forms of forecasting. Finally, section 5 concludes.

2 Bayesian vector autoregressive approach

First proposed by Litterman (1980), Bayesian vector autoregressive (BVAR) mod-
els become an alternative to conventional VAR models because it deals with the loss of
degrees of freedom due to overparametrization. This is known in the literature as dimen-
sionality problem.

The dimensionality problem in VARs refers to the number of parameters to be es-
timated increases with the number of variables and with the number of lags included.
Even more, when the number of parameters is large relative to the available number of
observations, parameters estimated tend to be influenced by noise as opposed to signal
and may loss statistical significance. Hence, VARs only with relatively small number of
variables are feasible in practical applications.

On the other hand, VAR models are quite useful in forescasting economic variables
because they allow for interaction of different related variables. However, it is possible
that many different variables may be relevant in economic forecasting, probably more
than a standard VAR can deal with.

The BVAR approach deals with the dimensionality problem by shrinking the param-
eters via the imposition of priors. Banbura et al. (2010) show that this approach can
handle an unrestricted VAR with a large number of variables. Even more, Banbura et al.
(2010) extend the data set in order to incorporate disaggregated sectoral or geographical
indicators.

In our review we find that Ögünç et al. (2013) use BVAR estimates in order to fore-
cast inflation in Turkey. This strategy outperform other inflation forecast strategies and
beats the random walk in a two quarters ahead window. However there is not attemp in
Ögünç et al. (2013) for forecasting individual components of inflation, rather, they focus
in using the BVAR with variables that shares common behavior with inflation and sticks
to the Minnesota prior.

We contribute to the existing literature of forecasting inflation by using the bottom-
up approach and by the estimation of a BVAR. We estimate a BVAR for 18 groups that
are components of the Headline inflation. We then aggregate the forecast for each group,
obtain a forecast for the headline inflation for different time periods, and compare it with
those of other forecast strategies.
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3 The Data

We work with the different components of the CPI inflation (Headline inflation) for
Peru. The National Institute of Statistics (INEI) reports every month the official num-
bers regarding movements in prices, specifically the CPI. Our data set consists of 174
CPI subcomponents for the period 1998 - 2013. The frequency of the data set is monthly
and the base year of the CPI is 2009.

During the past years the INEI has made some changes in the CPI composition. The
increase in the number of items, as well as the change in the weight of each item, are
the result of a careful evaluation of the representative bundle of goods and services that
characterizes the living expenses in Peru. In Table 1 we show the main changes as well
as the dates for those changes.

Table 1: CPI and base years

Sample period Base year Items
Jan-1998 to Dec-2001 1994 150
Jan-2002 to Dec-2009 2001 156
Jan-2010 to Jul-2014 2009 174
Note: Number of items considered in each
base year, during each sample period.

We set our sample from 1998 because the Peruvian economy experienced a hyper-
inflation process during the late 80’s and early 90’s and the inflation rate stabilized at
the end of the 90’s (see Armas et al., 2001). In that regard, we argue that the dynamics
of inflation in Peru previous to 1998 correspond to different regimes (high inflation and
transition from high to low inflation).

The main focus in our paper is forecasting the headline inflation, however we also
present results corresponding to core and non-core inflation.5 Figure 1 plots the head-
line, core, and non-core inflation from 2002 to 2014. The 2008 financial crisis is associated
with high levels of headline inflation (see Figure 1a). One core inflation index includes
the least volatile components of the CPI which usually has a lagged response to macroe-
conomic variables such as interest rates, exchange rates, and wages (see Figure 1b). In
contrast, the non-core index contains the most volatile components, such as agricultural
goods, gasoline, electricity, and local transportation and mainly responds to external
variables, such as international prices and other domestic non-market forces (see Figure
1d). Another core index usually estimated in Peru is the one which excludes food and
energy (see Figure 1c) and, by complement, the non-core index build by adding only food
and energy components (see Figure 1e).

5 Core inflation is most often calculated by taking the CPI and excluding certain items from the
index, usually energy and food products. Other methods include the outliers method, which removes the
products that have had the largest price changes. Core inflation is though as an indicator of underlying
long-term inflation.
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Figure 1: Inflation rates (percentage change over 12 months)
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(b) Less volatile components
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(c) Excluding food and energy
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(d) More volatile components
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(e) Food and energy
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Note: Realized data and linearized model (Tramo - Seats) for identification of outliers
in the data.
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3.1 Bottom up components

We aggregate the 174 subcomponents of the CPI into only 18 groups (see Table 2).
We select those components in such a way that it is easy to recover the two measures
of core inflation previously described. In Table 2, one measure of core inflation in Peru
is the weighted average from Group 1 to Group 14. Another measure of core inflation
typically used is estimated by excluding energy and food products i.e. exclude Groups 1,
2, 3, 8, 14, 15, and 16.6

Table 2: CPI components aggregated in groups

Groups Description Weight Groups Description Weight
G1 Agricultural food 0.92 G10 Rents 2.41
G2 Processed foods 7.67 G11 Health 1.08
G3 Beverages 2.65 G12 Other personal services 3.33
G4 Textiles 4.13 G13 Other services 4.58
G5 Footwear 1.38 G14 Food 14.83
G6 Appliances 1.29 G15 Other non-core food 5.58
G7 Rest of industrial 14.86 G16 Energy 5.74
G8 Meals outside home 11.74 G17 Transportation 8.87
G9 Education 9.12 G18 Utilities 5.47
Note: Each group includes a number of the 174 subcomponents of the CPI.
Weight correspond to the 2009 base year.

3.2 Seasonallity in Large BVARs

For each group we consider monthly data of growth rates with respect to the cor-
responding month of the previous year.7 This measure is robust to seasonal effects.
However, the presence of breaking points is not ruled out. The three changes in the base
year reported in Table 1 may produce significant changes in the dynamics of each group
under analysis. Those changes may lead to the identification of structural breaks in the
data.

In order to control for structural changes, we use TRAMO-SEAT tools. We focus on
the TRAMO component given our interest in identifying and filtering structural breaks
and outliers (see Gómez and Maravall, 1996; and Gómez and Maravall, 1998).8 As a
result, we use filtered data in which any identified structural change is removed.9

6 For more details on the aggregation process of each group by components, see Apendix A.
7 These rates are denoted by ∆12xt and is defined by 100× [(xt − xt−12)/xt−12].
8 TRAMO stands for Time series Regression with ARIMA noise, Missing values, and Outliers.
9 See Appendix B for Figures B.1, B.2, and B.3 in which some structural breaks are identified.
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4 Forecasting framework and priors structures

For improving the forecasting performance of VAR models, the BVAR literature has
proposed to combine the likelihood function with some informative prior distributions.
These priors have been successful because they reduce the estimation error and gener-
ates small biases in the estimates of the parameters. There are three predominant priors
structures in the BVAR literature: (i) the Minnesota prior, (ii) the sum of coefficients
prior, and, (iii) the initial dummy observation prior. Here we present some of the most
important characteristics for assuming any of these structures:10

• The Minnesota prior was initially proposed by Litterman (1980) and modified
by Kadiyala and Karlsson (1997). This prior assumes that the mean of the BVAR
coefficients are random walks so that the variance of the coefficients decay as lags
increases. The Hyper-parameter λ is a constant proportion that multiply all prior
variances. Consequently, if λ → 0 the variance of the BVAR coefficients would
collapse to 0 and the prior mean (random walk) predominate in the forecast.

• The sum of coefficients prior was proposed by Doan et al. (1983) and asumes
that all mean coefficients matrices in the BVAR model add up to the identity
matrix. The Minnesota prior has the inconvenience of excluding any correlation
between variables, since all of them are assumed to be random walks. Nonetheless,
as it is reported by Robertson and Tallman (1999), including these correlations in
the beliefs can increase the estimation average accuracy and one way to do so is
by summing all of those coefficients priors.11 Similar to the Minnesota prior, the
coefficients variances are modulated by τ , i. e. if τ → 0 the variance of the BVAR’s
coefficients would collapse to 0 and variables are estimated mainly as a joint system
of random walks.

• Initial dummy observation prior is discussed by Sims (1993). Sims argues that
these prior is preferible to the previous prior structures because it includes the belief
that the system goes to a constant value in the long run. Variances are regulated
by τ . If τ → 0 the variance of the BVAR coefficients would collapse to 0 implying
that either all variables are stationary and converge to the mean or there might be
some stochastic trends in the underlying process of the series.

We follow the approach suggested in Sims and Zha (1998) in which the prior is di-
rectly introduced in the BVAR reduced form by extending the data with some dummy
observations which reproduce any moment of the three previous mentioned priors. Then,
we use the extended data in order to compute the posterior distribution by implementing
a non-informative Jeffrey’s prior.12

10 For a more detailed exposition regarding these three prior beliefs see Karlsson (2012).
11 In the VECM representation of a VAR, the matrix of coefficients associated to the vector of levels

is always the identity minus the sum of coefficients; therefore, with this prior it is assumed that this is
a null matrix. As a result, the sum of coefficients prior is the belief that the BVAR is ruled by as many
stochastic trends as variables in the system without ruling out correlations between trends. Notice that
this prior include the Minnesota prior.

12 For more details on non-informative Jeffrey’s Prior, see Jeffreys (1961).
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4.1 Forecasting design and model

Using 12-months inflation rates, we estimate a BVAR model that include a mix of
prior distributions for the 18 Groups. For the Minnesota prior, the hyper-parameter
is denoted by λ. Following Banbura et al. (2010), we consider the hyper-parameters
τ = 5 × λ for the sum of coefficients prior and for the initial dummy observation prior,
respectively.13 As a result, the determination of the prior collapses to the measure of only
one hyper-parameter, which is λ.

We design a grid search for the value of λ that minimizes the following loss function:

LF (λ) = mean

({
εxAug2011:Jul2014(h)

}h∈{1,...,12}
x∈{∆12Pt,∆12P c

t ,∆12P
nef
t }

)
,

where εxAug2011:Jul2014(h) is the Root Squared of the Mean Forecast Error (RSMFE) for
the variable x with a forecast horizon of h in the sample between August 2011 and July
2014.14 Therefore, this loss function is the average of the forecast error for the first 12
forecasts when forecasting inflation.

In Figure 2 we plot the loss function and find a value of λ of 0.03 that minimizes this
function. This small value of λ is consistent with the dimensionality of the BVAR model.
A classical VAR that includes 18 variables and 12 lags would require the estimation of
4041 parameters. In a BVAR with this dimension, the tightness parameter needs to be
close to cero.

Figure 2: Loss function - Hiper-parameter determination
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13 The hyper-parameters determines the tightness of the prior. Also, Banbura et al. (2010) approach
considers a τ that is a loose multiple of λ.

14 See the Appendix C for a detailed discussion of RSMFE.
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4.2 Forecast evaluation

We evaluate the forecast of our BVAR by competing with other forms of forecast-
ing by comparing the RSMFE. In line with Robertson and Tallman (1999), the natural
first challenge correspond to a BVAR with only a Minnesota prior. Then, we consider a
frequentist approach in which the forecast of best time-series models competes with our
BVAR forecast.

Finally, a naive random walk is used as our last benchmark because it usually per-
forms better in terms of forecasting compared to other time series models. Although
some of the time series models in the literature either improve on, or are roughly on a
par with a naive random walk, most models rarely neither beat it across all forecasting
horizons nor have a smaller RSMFE of all horizons.

We also perform some additional exercises over two different levels of aggregation
over core inflation measures. In addition to forecasting the headline inflation (∆12Pt), we
evaluate: (i) core inflation index that includes the less volatile components of the CPI
(∆12P

lv
t ), (ii) core inflation index that excludes food and energy (∆12P

efe
t ), (iii) inflation

index that includes the more volatile components (∆12P
mv
t ), and (iv) inflation index for

food and energy (∆12P
fe
t ).

4.2.1 Minnesota and mixed priors

In Table 3 we present the RSMFE for BVARs with both Minnesota and mixed priors.
The Minnesota hiperparameter is estimated under the same methodology used for the
estimation of the mixed-prior hyperparameter.15

In general, a BVAR with a mixed prior does a better job than the BVAR with a
Minnesota prior. It is clearly superior in forecasting the headline inflation for all periods,
up to a year. However, a BVAR with Minnesota prior has better forecasting properties
in the case of core inflation that excludes food and energy from 1 to 6 months ahead. In
all remaining cases, mixed prior is the superior strategy.

15 The Minnesota hiperparameter estimated is λM = 0.01. See appendix D for a detailed forecast
performance.
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Table 3: RSMFE for BVARs

Variable
Minnesota prior Mixed prior

h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12
∆12Pt 0.33 0.61 0.94 1.33 0.31 0.50 0.67 1.06
∆12P

lv
t 0.11 0.26 0.56 0.86 0.10 0.20 0.43 0.71

∆12P
efe
t 0.16 0.32 0.49 0.60 0.17 0.34 0.50 0.59

∆12P
mv
t 0.78 1.34 1.84 2.33 0.74 1.14 1.33 1.76

∆12P
fe
t 0.73 1.30 1.85 2.46 0.70 1.17 1.47 1.98

Note: RSMFE is the Root Squared of the Mean Forecast Error, h
stands for the horizon of forecasting, ∆12Pt is the headline inflation,

∆12P
lv
t is the inflation of the less volatile components, ∆12P

efe
t

is the inflation excluding food and energy, ∆12P
mv
t is the inflation of

the more volatile components, and, ∆12P
fe
t is the inflation

from food and energy.

4.2.2 BVAR versus frequentist approaches

From this point forward, we evaluate the quality of the forecasts by the relative
RSMFE. This measure is the ratio of the RSMSE of all those alternative models for fore-
casting inflation to the RSMFE of our BVAR model. A relative RMSE above one means
that the alternative approach performs worse than our proposed model. On the contrary,
a measure lower than one implies better forecasting performance.

First, we estimate the best univariate model with a Tramo-Seats procedure for the
headline inflation. In general, performances of this model is not promising. Table 4
shows that it delivers relatively high forecast errors compared to our BVAR with mixed
priors. The only time horizont for which this model has better forecasting properties is
one month ahead. Regarding the other indexes, again, only for one month ahead and
only for non-core measures of inflation.
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Table 4: RSMFE relative to BVAR with a mixed prior

Variable
Best univariate

h=1 h=3 h=6 h=12
∆12Pt 0.93 1.28 1.54 1.97
∆12P

lv
t 2.02 2.19 1.83 2.74

∆12P
efe
t 1.12 1.34 1.70 2.41

∆12P
mv
t 0.82 1.04 1.27 1.67

∆12P
fe
t 0.78 1.13 1.21 1.55

Note: RSMFE is the Root Squared of the Mean Forecast Error, h
stands for the horizon of forecasting, ∆12Pt is the headline inflation,

∆12P
lv
t is the inflation of the less volatile components, ∆12P

efe
t

is the inflation excluding food and energy, ∆12P
mv
t is the inflation of

the more volatile components, and, ∆12P
fe
t is the inflation

from food and energy.

Our second round of exercises considers the forecast under the bottom-up approach
with the best frequentist VARs for two levels of disaggregation:16

• 18 components: This VAR parallels the same number of variables that our BVAR.

• Two main components: core and non-core components.

In the case of two main components, we consider two possible estimations: (i) less
and more volatile components, and (ii) just food and energy and then excluding food and
energy. The RSMFE for the estimation (ii) was lower, and it is the one reported.17

Results are reported in Table 5. Our approach reports by far lower RSMFE than the
two alternatives under consideration.

Table 5: RSMFE relative to BVAR with a mixed prior

Variable
18 components Two main components

h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12
∆12Pt 1.19 1.42 1.47 1.31 1.10 1.13 1.12 1.12
∆12P

lv
t 1.68 2.32 2.28 1.76 - - - -

∆12P
efe
t 1.22 1.14 1.15 1.18 1.09 1.21 1.33 1.35

∆12P
mv
t 1.12 1.14 1.02 1.24 - - - -

∆12P
fe
t 1.13 1.21 1.17 1.20 1.06 1.15 1.25 1.31

Note: RSMFE is the Root Squared of the Mean Forecast Error, h
stands for the horizon of forecasting, ∆12Pt is the headline inflation,

∆12P
lv
t is the inflation of the less volatile components, ∆12P

efe
t

is the inflation excluding food and energy, ∆12P
mv
t is the inflation of

the more volatile components, and, ∆12P
fe
t is the inflation

from food and energy.

16 In each case, we use the Schwartz criteria for the optimal number of lags.
17 Results for the estimation (i) can be obtained under request.
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4.2.3 BVAR versus a random walk

We argue that the random walk is also a convenient model to compare the forecast-
ing performances of our BVAR specification. more complicated models. Our results are
promising. We find that our forecast beats the naive random walk across all forecasting
horizons (up to 12 months) in terms of a smaller RMSE (see Table 6).18

In terms of the core and non-core inflation indexes, results favor our approach. BVAR
forecasts beats almost all horizonts for different measures of inflation. Same as the exercise
with the Minnesota prior, the only case in which the random walk beats our BVAR
forecast is for inflation that excludes food and energy, and for horizonts up to 6 months.

Table 6: RSMFE relative to BVAR with a mixed prior

Variable
Random walk

h=1 h=3 h=6 h=12
∆12Pt 1.03 1.11 1.22 1.26
∆12P

lv
t 1.02 1.08 1.02 1.14

∆12P
efe
t 0.96 0.89 0.84 1.11

∆12P
mv
t 1.04 1.11 1.25 1.40

∆12P
fe
t 1.03 1.06 1.18 1.30

Note: RSMFE is the Root Squared of the Mean Forecast Error, h
stands for the horizon of forecasting, ∆12Pt is the headline inflation,

∆12P
lv
t is the inflation of the less volatile components, ∆12P

efe
t

is the inflation excluding food and energy, ∆12P
mv
t is the inflation of

the more volatile components, and, ∆12P
fe
t is the inflation

from food and energy.

5 Conclusion

In time series econometrics, the history of any series has important information about
its future evolution. In that regard, the forecasting ability of time series models has been
widely accepted in most fields in economics. Most time series models have been empow-
ered with Bayesian techniques, in particular VAR models.

In this paper we have used a large Bayesian VAR (BVAR) to forecast inflation in
Peru. The approach that we consider is to bottom-up disaggregated components of the
CPI into 18 groups. We estimate a shrinkage hyperparameter for the BVAR that is
built for those 18 groups using a multi-horizon loss function (in terms of out-of-sample
RSMFE), forecast each group, and then aggregate the resulting forecasts so that they
satisfy the hierarchies among them. The best forecasts are obtained by combining the
forecast for each group so as to make better use of the individual dynamics contained in
all of them while satisfying the hierarchies. Hence, in this case forecasting the aggregates
by disaggregates in groups results in better inflation forecasts (up to one year ahead)

18 See appendix D for the detailed forecast performance.
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than using traditional VARs, univariates models, or even a random walk.

The forecasts obtained can be employed as a good starting point in the recurrent
process of fine-tuning the forecasting inflation process. There are several ways to improve
the forecasts presented here. For instance, let this bottom up approach compete with
that based on extracting common factors for each group. Another interesting avenue for
future research involves allowing another level of aggregation, for instance, just aggregate
core and no-core components and estimate an BVAR with those two time series.
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A Aggregation by components of the CPI

Table A.1: Groups 1, 2, 3, and 4 (weight for base year 2009, in %)

Code Description Weight Code Description Weight
G1 Agricultural food 0.93 G2 Processed foods 7.67
P1 Other trifles 0.29 P8 Beef 1.20
P2 Other legumes 0.22 P9 Canned milk 1.65
P3 Other poultry 0.12 P10 Spices and seasonings 0.55
P4 Pork 0.14 P11 Cheeses 0.48
P5 Mutton 0.06 P12 Other meat preparations 0.45
P6 Wheat 0.04 P13 Margarine 0.16
P7 Other cereals slightly processed 0.05 P14 Coffee 0.17

P15 Cakes 0.38
G3 Beverages 2.65 P16 Fresh milk 0.15
P36 Beer 0.79 P17 Canned fish 0.22
P37 Drinks 1.30 P18 Avena 0.15
P38 Low-alcohol drinks 0.11 P19 Sugary products 0.21
P39 Beverages of high alcoholic content 0.06 P20 Cookies 0.36
P40 Juices and nectars packed fruit 0.17 P21 Prepared food stuffs 0.10
P41 Refreshments fluids 0.22 P22 Miscellaneous food products 0.27

P23 Farina 0.08
G4 Textiles 4.13 P24 Other dairy products 0.41
P42 Clothing for men over 12 years 1.52 P25 Tea 0.03
P43 Clothing for women over 12 years 1.46 P26 Cacao 0.09
P44 Clothing for children 0.12 P27 Butter 0.05
P45 Fabrics 0.03 P28 Flour and other derivatives 0.03
P46 Other accessories 0.13 P29 Sal 0.03
P47 Sheets 0.06 P30 Dried Fruits 0.02
P48 Towels 0.04 P31 Other herbal infusion 0.03
P49 Bedspread and comforters 0.07 P32 Fruit preserves 0.02
P50 Sewing products 0.06 P33 Processed grains 0.06
P51 Blankets 0.02 P34 Prepared foods 0.05
P52 Curtains 0.03 P35 Ice cream and edible ice 0.28
P53 Children’s Apparel 0.34
P54 Clothing for girls 0.28
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Table A.2: Groups 5, 6, 7, 8, 9 and 10 (weight for base year 2009, in %)

Code Description Weight Code Description Weight
G5,t Footwear 1.38 G7,t Rest of industrial 14.86
P55,t Shoes for men over 12 years 0.55 P67,t Personal care items 4.93
P56,t Shoes for women over 12 years 0.5 P68,t Cleaning supplies 0.92
P57,t Shoes for children 0.03 P69,t Medicinal products 2.08
P58,t Shoes for kids 0.16 P70,t Textbooks and school supplies 0.74
P59,t Shoes for girls 0.14 P71,t Newspapers 0.25

P72,t Other miscellaneous expenses 0.34
G6,t Appliances 1.29 P73,t Recreation equipment 0.75
P60,t Television 0.49 P74,t Purchase of vehicles 1.62
P61,t Radios 0.19 P75,t Other household items 0.62
P62,t Refrigerator 0.17 P76,t Furnishings 0.29
P63,t Kitchen appliances 0.23 P77,t Articles of jewelery 0.11
P64,t Blenders and extractor 0.05 P78,t Cigarettes 0.13
P65,t Washers 0.15 P79,t No textbooks 0.03
P66,t Iron 0.02 P80,t Other household items 0.07

P81,t Magazines and related 0.06
G8,t Meals outside home 11.74 P82,t Spare parts and vehicle washing and 0.21
P94,t Meals outside the home 8.4 P83,t Therapeutic devices 0.16
P95,t Other food away from home 2.29 P84,t Other furniture and accessories 0.03
P96,t Non-alcoholic beverages 0.69 P85,t Mattress 0.14
P97,t Alcoholic Drinks 0.37 P86,t Beds 0.1

P87,t Apparatus for recreation and culture 0.88
G9,t Education 9.12 P88,t Dinnerware 0.03
P98,t Tuition and board of education 8.83 P89,t Pump light 0.18
P99,t Teaching in various areas 0.29 P90,t Glassware 0.02

P091,t Storage cupboards 0.12
G10,t Rents 2.41 P92,t Natural products manufactured 0.08
P100,t Rental housing 2.41 P93,t Contraceptive devices 0.01

Table A.3: Groups 11, 12, 13, and 15 (weight for base year 2009, in %)

Code Description Weight Code Description Weight
G11,t Health 1.08 G15,t Other non-core food 5.58
P101,t Surgeries 0.33 P136,t Fresh and frozen fish 0.68
P102,t Hospitalization 0.37 P137,t Eggs 0.58
P103,t Other medical services 0.13 P138,t Citrus 0.52
P104,t Dental Service 0.25 P139,t Other vegetables 0.38

P140,t Onion 0.4
G12,t Other personal services 3.33 P141,t Fresh Vegetables 0.23
P105,t House Cleaning 2.06 P142,t Other fresh fruit 0.4
P106,t Personal Care Service 0.57 P143,t Banana 0.29
P107,t Vehicle Repair 0.2 P144,t Apple 0.22
P108,t Housekeeping 0.19 P145,t Tomato 0.2
P109,t Miscellaneous repairs 0.09 P146,t Fréjol 0.14
P110,t Preparation of various items 0.05 P147,t Corn 0.14
P111,t TV and Radio Repair 0.03 P148,t Papaya 0.17
P112,t Repair and maintenance of housing 0.06 P149,t Pumpkin 0.08
P113,t Composure Furniture 0.02 P150,t Varrot 0.13
P114,t Repair of various items 0.07 P151,t Chicken giblets and other 0.14

P152,t Garlic 0.07
G13,t Other services 4.58 P153,t Palta 0.12
P115,t Show tickets 1.7 P154,t Uva 0.12
P116,t Airfare 0.41 P155,t Seafood 0.03
P117,t municipal taxes 0.15 P156,t Olluco and similar 0.08
P118,t Repair and maintenance of housing 0.18 P157,t Celery 0.04
P119,t Miscellaneous insurance 0.28 P158,t Yuca 0.05
P120,t Court expenses 0.38 P159,t Peaches 0.08
P121,t Expenses in hotels and similar 0.13 P160,t Olive 0.09
P122,t Repair and Parts 0.03 P161,t Sweet Potato 0.06
P123,t Baptism and marriage expenses 0.07 P162,t Corn 0.06
P124,t Tour Desk 0.04 P163,t Chili 0.06
P125,t Other vehicle expenses 0.09
P126,t Expenditure sport classes, music and dance 0.22
P127,t Pet services and products 0.48
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Table A.4: Groups 14, 16, 17, and 18 (weight for base year 2009, in %)

Code Description Weight Code Description Weight
G14,t Food 14.83 G16,t Energy 5.74
P129,t Chicken meat 2.96 P164,t Electricity 2.95
P130,t Bread 1.92 P165,t Fuel and lubricants 1.3
P131,t rice 1.91 P166,t Gas 1.4
P132,t Pope 0.89 P167,t Kerosene 0.09
P133,t Sugar 0.53 P168,t Natural gas consumption for housing 0.01
P134,t Noodles 0.54
P135,t Oils 0.52 G18,t Utilities 5.41

P171,t Phones 2.92
G17,t Transportation 8.87 P172,t Water consumption 1.64
P169,t Urban landscape 8.54 P173,t Post 0.02
P170,t National transportation 0.33 P174,t Internet and other 0.83
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B Inflation for Groups
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Figure B.1: Inflation rates for groups (percentage change over 12 months)

(f) Agricultural food

2002:01 2004:01 2006:01 2008:01 2010:01 2012:01 2014:01

0

5

10

15

20

 

 

Data
Linearized

(g) Processed foods

2002:01 2004:01 2006:01 2008:01 2010:01 2012:01 2014:01

0

2

4

6

8

10

 

 

Data
Linearized

(h) Beverages

2002:01 2004:01 2006:01 2008:01 2010:01 2012:01 2014:01
−6

−4

−2

0

2

4

6

 

 

Data
Linearized

(i) Textiles

2002:01 2004:01 2006:01 2008:01 2010:01 2012:01 2014:01
0

1

2

3

4

5

6

 

 

Data
Linearized

(j) Footwear

2002:01 2004:01 2006:01 2008:01 2010:01 2012:01 2014:01

0

0.5

1

1.5

2

2.5

3

 

 

Data
Linearized

(k) Appliances

2002:01 2004:01 2006:01 2008:01 2010:01 2012:01 2014:01

−3

−2

−1

0

1

2

3

4

 

 

Data
Linearized

21



Figure B.2: Inflation rates for groups (percentage change over 12 months)
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Figure B.3: Inflation rates for groups (percentage change over 12 months)
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C Root Squared of the Mean Forecast Error (RSMFE)

RSMFE is a measure that estimates the average forecast error, holding constant a forecast
horizon. We denote this measure by εxt0:T (h) and refers to the average forecast error for
the variable x, for the sample that starts in t0 and ends in T . Here, h is the forecast
horizon. We compute this measure by:

i. Consider t ∈ {1, ..., T} as the time identifier for T observations of x.

ii. Perform a forecast for x at the moment t ≤ T with information until t = t0−h < T .
Let us denote it xft0|t0−h so that the squared forecast error can be computed

ε2
t0|t0−h =

(
xt0 − x

f
t0|t0−h

)2

.

iii. Repeat this process for every t ∈ {t0, ..., T} and build a sequence of T − t0 + 1
squared errors

{
ε2
t0|t0−h, ε

2
t0+1|t0+1−h, ..., ε

2
T |T−h

}
iv. Calculate the root squared for the average of sequence of errors estimated in (iii)

and interpret this result as an average error when a prediction of the variable x is
made with h periods in advance

εxt0:T (h) =

√
ε2
t0|t0−h + ε2

t0+1|t0+1−h + ...+ ε2
T |T−h

T − t0 + 1
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D Forecast perform per group

Table D.1: RSMFE for Minnesota and mixed priors by groups

Variable
Minnesota prior Mixed prior

h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12
∆12G1,t 0.77 1.95 3.25 4.52 0.83 2.08 3.52 5.21
∆12G2,t 0.39 0.85 1.23 1.58 0.40 0.88 1.33 1.67
∆12G3,t 0.48 1.14 1.58 1.76 0.48 1.12 1.55 1.84
∆12G4,t 0.23 0.54 0.99 1.76 0.21 0.48 0.89 1.55
∆12G5,t 0.19 0.43 0.63 0.53 0.18 0.38 0.54 0.72
∆12G6,t 0.35 0.77 1.26 1.64 0.34 0.72 1.18 1.37
∆12G7,t 0.17 0.33 0.59 0.93 0.18 0.39 0.71 0.95
∆12G8,t 0.21 0.35 0.73 1.37 0.22 0.44 0.90 1.60
∆12G9,t 0.28 0.47 0.68 1.01 0.29 0.54 0.87 1.37
∆12G10,t 0.34 0.78 1.29 1.79 0.37 0.84 1.36 1.95
∆12G11,t 0.39 0.88 1.39 1.87 0.37 0.79 1.16 1.49
∆12G12,t 0.17 0.37 0.58 0.68 0.17 0.36 0.54 0.60
∆12G13,t 0.32 0.58 0.95 1.47 0.33 0.61 1.04 1.74
∆12G14,t 1.45 2.29 2.47 3.21 1.49 2.46 2.86 3.64
∆12G15,t 2.63 4.64 5.55 6.06 2.67 4.79 6.26 7.94
∆12G16,t 1.60 2.78 3.59 4.60 1.63 2.94 3.97 5.45
∆12G17,t 0.59 0.99 1.25 1.30 0.58 0.92 1.18 1.22
∆12G18,t 0.68 1.31 1.82 2.08 0.66 1.23 1.63 1.76
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Table D.2: Others (RSMFE relative to BVAR with mixed priors)

Variable
Desaggregated VAR Random walk

h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12
∆12G1,t 1.13 1.19 1.24 1.17 0.98 0.89 0.83 0.92
∆12G2,t 1.42 1.69 1.80 1.42 0.96 0.93 1.00 1.16
∆12G3,t 1.45 1.56 1.48 1.32 1.02 1.00 1.02 1.06
∆12G4,t 1.08 1.09 1.35 1.06 0.99 0.97 0.94 0.94
∆12G5,t 1.20 1.08 1.09 1.59 1.02 0.99 1.04 1.39
∆12G6,t 2.56 2.50 2.11 1.30 0.90 0.83 0.86 0.98
∆12G7,t 1.48 1.93 2.07 1.25 1.07 1.18 1.12 1.10
∆12G8,t 1.29 1.91 2.32 2.08 1.02 1.18 1.01 1.14
∆12G9,t 1.15 1.35 1.75 2.04 1.03 1.14 1.11 0.94
∆12G10,t 2.11 1.90 1.64 1.23 1.03 0.98 0.98 1.11
∆12G11,t 1.32 1.13 0.79 0.57 0.93 0.86 0.80 0.91
∆12G12,t 1.74 1.84 1.52 1.09 0.90 0.83 0.84 1.03
∆12G13,t 1.68 2.14 2.06 1.82 0.94 0.81 0.62 0.66
∆12G14,t 1.22 1.47 1.47 1.13 1.03 1.07 1.19 1.34
∆12G15,t 1.09 1.10 1.04 0.99 1.02 1.05 1.17 1.37
∆12G16,t 1.06 1.03 1.02 1.01 0.97 0.93 0.85 1.07
∆12G17,t 1.07 1.03 1.11 0.97 0.99 0.97 1.00 1.19
∆12G18,t 1.06 1.13 1.05 0.72 0.96 0.91 0.89 1.02
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